Skip to main content

Few-Shot Classification with Multi-task Self-supervised Learning

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13111))

Included in the following conference series:

  • 2023 Accesses

Abstract

Few-shot learning aims to mitigate the need for large-scale annotated data in the real world. The focus of few-shot learning is how to quickly adapt to unseen tasks, which heavily depends on outstanding feature extraction ability. Motivated by the success of self-supervised learning, we propose a novel multi-task self-supervised learning framework for few-shot learning. To alleviate the deficiency of annotated samples in few-shot classification tasks, we introduce and analyze three different aspects, i.e., data augmentation, feature discrimination, and generalization, to improve the ability of feature learning. The proposed method achieves clear classification boundaries for different categories and shows promising generalization ability. Experimental results demonstrate that our method outperforms the state-of-the-arts on four few-shot classification benchmarks.

This work is supported in part by the National Natural Science Foundation of China Under Grants No. U20B2066, the Open Research Projects of Zhejiang Lab (No. 2021KB0AB01), and the National Key R&D Program of China (Grant No. 2020AAA0109304).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertinetto, L., Henriques, J.F., Torr, P.H.S., Vedaldi, A.: Meta-learning with differentiable closed-form solvers. ArXiv arxiv:1805.08136 (2019)

  2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. ArXiv arxiv:2002.05709 (2020)

  3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  4. Dhillon, G.S., Chaudhari, P., Ravichandran, A., Soatto, S.: A baseline for few-shot image classification. arXiv (2019)

    Google Scholar 

  5. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1422–1430 (2015)

    Google Scholar 

  6. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML (2017)

    Google Scholar 

  7. Gidaris, S., Bursuc, A., Komodakis, N., Pérez, P., Cord, M.: Boosting few-shot visual learning with self-supervision. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  8. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. ArXiv arxiv:1803.07728 (2018)

  9. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  10. Hinton, G.E.: Visualizing high-dimensional data using t-SNE. Vigiliae Christianae 9, 2579–2605 (2008)

    MATH  Google Scholar 

  11. Hinton, G.E., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. ArXiv arxiv:1503.02531 (2015)

  12. Khosla, P., et al.: Supervised contrastive learning. ArXiv arxiv:2004.11362 (2020)

  13. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition (2015)

    Google Scholar 

  14. Lee, H., Hwang, S.J., Shin, J.: Rethinking data augmentation: Self-supervision and self-distillation. ArXiv arxiv:1910.05872 (2019)

  15. Zhang, C., Cai, Y., Lin, G., Shen, C.: DeepEMD: Differentiable Earth Mover’s Distance for Few-Shot Learning (2020)

    Google Scholar 

  16. Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable convex optimization. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10649–10657 (2019)

    Google Scholar 

  17. Mobahi, H., Farajtabar, M., Bartlett, P.: Self-distillation amplifies regularization in Hilbert space. ArXiv arxiv:2002.05715 (2020)

  18. Oreshkin, B.N., Rodriguez, P., Lacoste, A.: Tadam: task dependent adaptive metric for improved few-shot learning. In: NeurIPS (2020)

    Google Scholar 

  19. Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2536–2544 (2016)

    Google Scholar 

  20. Raghu, A., Raghu, M., Bengio, S., Vinyals, O.: Rapid learning or feature reuse? Towards understanding the effectiveness of MAML. ArXiv arxiv:1909.09157 (2020)

  21. Rajasegaran, J., Khan, S., Hayat, M., Khan, F., Shah, M.: Self-supervised knowledge distillation for few-shot learning. ArXiv arxiv:2006.09785 (2020)

  22. Ren, M., et al.: Meta-learning for semi-supervised few-shot classification. ArXiv arxiv:1803.00676 (2018)

  23. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: NIPS (2017)

    Google Scholar 

  24. Sun, Q., Liu, Y., Chua, T.S., Schiele, B.: Meta-transfer learning for few-shot learning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  25. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H.S., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1199–1208 (2018)

    Google Scholar 

  26. Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J., Isola, P.: Rethinking few-shot image classification: a good embedding is all you need? ArXiv arxiv:2003.11539 (2020)

  27. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. In: NIPS (2016)

    Google Scholar 

  28. Wertheimer, D., Tang, L., Hariharan, B.: Few-shot classification with feature map reconstruction networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  29. Ye, H.J., Hu, H., Zhan, D.C., Sha, F.: Few-shot learning via embedding adaptation with set-to-set functions. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  30. Zhang, L., Song, J., Gao, A., Chen, J., Bao, C., Ma, K.: Be your own teacher: improve the performance of convolutional neural networks via self distillation (2019)

    Google Scholar 

  31. Zhang, M., Zhang, J., Lu, Z., Xiang, T., Ding, M., Huang, S.: IEPT: instance-level and episode-level pretext tasks for few-shot learning. In: ICLR (2021)

    Google Scholar 

  32. Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, F., Wang, R., Zhang, S., Cao, X. (2021). Few-Shot Classification with Multi-task Self-supervised Learning. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13111. Springer, Cham. https://doi.org/10.1007/978-3-030-92273-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92273-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92272-6

  • Online ISBN: 978-3-030-92273-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics