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Abstract. Neural networks are often utilised in critical domain appli-
cations (e.g. self-driving cars, financial markets, and aerospace engineer-
ing), even though they exhibit overconfident predictions for ambiguous
inputs. This deficiency demonstrates a fundamental flaw indicating that
neural networks often overfit on spurious correlations. To address this
problem in this work we present two novel objectives that improve the
ability of a network to detect out-of-distribution samples and therefore
avoid overconfident predictions for ambiguous inputs. We empirically
demonstrate that our methods outperform the baseline and perform bet-
ter than the majority of existing approaches while still maintaining a
competitive performance against the rest. Additionally, we empirically
demonstrate the robustness of our approach against common corruptions
and demonstrate the importance of regularisation and auxiliary informa-
tion in out-of-distribution detection.

Keywords: Out-of-Distribution Detection · Neural Networks · Robust
Predictions · Stability · Overconfident Predictions · Anomaly Detection
· Open Set Recognition.

1 Introduction

Out of distribution (OOD) detection is becoming more important as machine
learning solutions are developed for critical applications (e.g. self-driving cars,
financial markets, and aerospace engineering), and especially in evaluating the
robustness of deployed models. The main goal of OOD is to equip a classifier
with the ability to provide stable, consistent and low confidence predictions for
data points that might be far away from the in-distribution (ID) training data.
This is often referred to as the capacity of the model to generalise.

A central assumption in statistical learning theory [41,42,1,43,26] states that
the train and test set (xni=1, y

n
i=1), are generated independently and identically

distributed (IID) from a distribution P , such that data points are usually as-
signed randomly to either train or test set.Unfortunately, this assumption fails
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to assess whether the model has learned to properly generalise to new un-
seen data or has simply overfit to irrelevant factors (e.g., backgrounds in im-
age recognition task) that might be spuriously correlated with the correct label
due to shortcut learning [8]. Numerous methods have been proposed to miti-
gate this deficiency and improve OOD detection [21,24,39,22,33,29,20] within
supervised, semi-supervised, and unsupervised learning [2], including discrimi-
native [37,31,15] and generative [4,25,23,49] models. In addition, some methods
cast the OOD problem as binary classification [38] with alternative approaches
relying either only on ID data [7] or both ID and OOD data [14] during training.

Inspired by recent progress in contrastive learning [30,9,11] we propose two
novel objectives for OOD detection and demonstrate empirically that our method
not only is competitive with existing approaches but it also outperforms some
of them in most occasions. Additionally, we empirically study the role of regu-
larisation in OOD detection and robust classification.

In this work we investigate the following questions:

– Can contrastive learning improve OOD detection in neural networks?
– What is the role of explicit regularisation in OOD detection, and does addi-

tional regularisation improve or degrade OOD detection?

The main contributions of this work are:

– A novel objective function based on the cosine angle between the ID and
OOD data.

– A novel objective function inspired by prior work on margin and ranking
objectives utilising the cosine angle between ID and OOD data as well as
additional explicit regularisation.

2 Related Work

In this section we describe existing work on the OOD problem, and the objectives
used in recent approaches based on contrastive learning.

2.1 Out of Distribution Detection

Early attempts at OOD detection [13] used the maximum softmax probability
as an indicator to identify OOD samples, while alternative approaches such as
ODIN [24] use adversarially perturbed samples while computing the softmax
with high temperature during training. Furthermore, the Mahalanobis detec-
tor [22] fits a Gaussian distribution to the activation of the last layer of a neural
network and performs OOD by measuring the Mahalanobis distance from the
inputs to the ID data.

In addition, methods explicitly trained to output uniform distribution over
ID perturbed samples, usually resemble techniques simulating OOD inputs from
a GAN [21], or utilising auxiliary information (e.g. additional datasets) as out-
liers [14]. Finally, there exist approaches relying on averaging predictions of
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randomly initialised, independently trained, neural networks, either in a dis-
criminative [19] or generative [4] approach.

A naturally occurring question is: “What do these methods have in com-
mmon?” To the best of our knowledge the majority of techniques proposed to
tackle the OOD problem can be attributed to one of the following categories:
optimisation, regularisation, or sampling—or a combination of the three.

2.2 Objective Functions in Machine Learning

Most objectives adopted today in machine learning (e.g. cross-entropy, mean
squared error, and log-likelihood) have a single goal, to induce a cost in order
for the underlying model to directly learn a label, a value, or a set of values from
a specific input. In contrast, ranking objectives strive to predict similarities (i.e.
relative distances) between inputs, thus the underlying task is often identified
and referred to as metric learning. The key idea is to employ a metric function
(e.g. Euclidean distance) in order to obtain a similarity score between inputs
embedded in a latent feature space, where the score should be small for similar
inputs and large otherwise. One such example is SimCLR [3] that maximises the
agreement in latent representations via a contrastive objective between pairs of
inputs.

Let cos(u,v) = u>v/‖u‖‖v‖ define a similarity score indicated by the cosine
angle between vectors u and v. This is utilised in the SimCLR objective. Given
a pair of distinct latent features (zi, zj), such that zi,j = fθ(ti,j(x)),∀x ∈ X ,
with augmentation operations ti, tj ∼ T , such that ti 6= tj , and temperature
scaling τ then the objective is formulated as:

L(zi, zj) = − log
exp (cos (zi, zj) /τ)∑2n

j=1 1[j 6=i] exp (cos (zi, zj) /τ)
(1)

Although ranking objectives (e.g. pairwise, triplet, etc.) might differ with
regards to the number of inputs they operate on (e.g. pairs or triplets), never-
theless, their main concept is to learn a similarity/dissimilarity metric, (e.g.
`p-norm) on latent representations (zi, zj) such that d = ‖zi, zj‖2 for j =
{1, . . . , n}. Given a set of inputs

{
x,x+

1 ,x
−
2 . . . ,x

−
n

}
with one positive and n−1

negative samples, where x represents an anchor sample, x+
i=1 a positve sample

and x−j=2,...,n a negative sample, with y = {0, 1} being the labels. Then, a pair-
wise ranking objective strives to learn representations with small distance d
between positive pairs (x,x+

i ) and greater than a margin γ for negative pairs
(x,x−j ) such that.

L(xi,xj , y) =

{
y d(z, z+) if (x,xi) is a positive pair

(1− y) max(0, γ − d(z, z−)) if (x,xj) is a negative pair
(2)

Instead of pairs the triplet ranking objective uses triplets {. . . ,x,x−,x+, . . .}.
We have an anchor x, a positive x+, and a negative x− sample, instead of pairs of
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positive (x,x+) and negative (x,x−) samples as illustrated in Equation 2. The
goal is to learn representations with greater distance between the anchor and
the negative sample d(z, z−) than between the anchor and the positive sample
d(z, z+). The final triplet objective is formulated as:

L(x,x+,x−) = max(0, γ + d(z, z+)− d(z, z−)) (3)

=


Easy triplets: if d(z, z−) > d(z, z+) + γ

Semi-hard triplets: if d(z, z+) < d(z, z−) < d(z, z+) + γ

Hard triplets: if d(z, z−) < d(z, z+)

3 Objective Functions for OOD Detection

The first contribution that this article makes to OOD detection is a novel ob-
jective based on the cosine similarity between ID and OOD predictions. Let
(xid, yid) ∼ SID and (xood, yood) ∼ SOOD represent two data points sampled
from the ID data SID and OOD data SOOD respectively, and, define pid =
max
yid

p(yid|fθ(xid)) to be the maximum softmax probability (MSP) for xid ∈ SID,

and, pood = max
yid

p(yid|fθ(xood)) be the MSP for xood ∈ SOOD. Then our objec-

tive is formulated as:

L(xid,xood, yid) = −E [log p(yid|xid)]︸ ︷︷ ︸
cross-entropy

+ λ cos(pid,pood)︸ ︷︷ ︸
cosine-regularisation

(4)

The regularisation strength λ is often obtained using the validation set, and
whenever λ = −1 then the underlying objective becomes a minimax optimisation
formulation similar to adversarial learning paradigms [32], with the advantage
that it is faster to train a model with this objective since it avoids computing
gradients for worst-case perturbations on the inputs. The goal is to lower the
cross-entropy error on SID while at the same time increasing the cosine angle
between SID and SOOD. This synergy of minimax optimisation can also be
found in energy-based models [25,10] where the intention is to lower the energy
for similar samples while at the same time increasing the energy on dissimilar
inputs. This approach is summarised in Algorithm 1.

Algorithm 1 Contrastive Regularised Objective

procedure ContReg(xid,xood, yid)
fθ ← θ . initialise model
zid, zood ← fθ(xid,xood) . compute logits for xid ∈ SID,xood ∈ SOOD
p̂id, p̂ood ← softmax(zid, zood) . probab. for logits ∈ (SID,SOOD)
CE ← −E[log p(yid|xid)] . compute cross-entropy for (xid, yid) ∈ SID
cos← pid>pood

‖pid‖ ‖pood‖
. computer cosine for probabilities p̂id, p̂ood

L← CE + λ cos . compute final regularised loss
θt+1 = θt − η∇θL . compute gradient w.r.t params θ and backprop errors

end procedure
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The second contribution is a novel ranking objective for OOD detection. We
utilise cosine similarity as a metric learning function in addition to explicit `2 and
`1 regularisation for SID and SOOD respectively, which essentially constitutes
into the following objective:

L(xid,xood, yid) = max(0, γ + cos(pid,pood))︸ ︷︷ ︸
ranking objective

+ λ1
∑
n

|pood − 1/k|︸ ︷︷ ︸
`1-regularisation on SOOD

+ λ2
∑
n

‖yid pid − α‖2︸ ︷︷ ︸
`2-regularisation on SID

(5)

Notice that k ∈ Z refers to the number of ID classes in SID, and yid represents
a one-hot encoding of the labels, while α ∈ R is a user defined scalar that indi-
cates the desired ID accuracy. There are a number of hyperpameters {γ, λ1, λ2}
which can be tuned on the validation set, γ defines the margin and λ1, λ2 refer
to the regularisation strength. This approach is depicted in Algorithm 2.

Algorithm 2 Contrastive Ranking Objective

procedure ContRank(xid,xood, yid)
fθ ← θ . initialise model
zid, zood ← fθ(xid,xood) . compute logits for xid ∈ SID,xood ∈ SOOD
p̂id, p̂ood ← softmax(zid, zood) . probab. for logits ∈ (SID,Sood)
`1 ← λ1

∑
n |pood − 1/k| . compute `1-regularisation for p̂ood ∈ Sood

`2 ← λ2

∑
n ‖yid pid, α‖ . compute `2-regularisation for p̂id ∈ Sid

cos← pid>pood
‖pid‖ ‖pood‖

. compute cosine for probabilities p̂id, p̂ood
L← max(0, γ + cos(·)) + `1 + `2 . compute the final ranking loss
θt+1 = θt − η∇θL . compute gradient w.r.t params θ and backprop errors

end procedure

4 Experiments

In this section we describe a set of experiments designed to evaluate the effective-
ness of the proposed objectives defined in the previous section, and to compare
them to existing approaches. We first evaluate the objectives using an artificially
generated dataset, before using a selection of real image classification datasets
to evaluate them.

4.1 Artificial Data Experiments

To validate the efficacy of our proposed objectives for OOD detection we designed
a controlled experiment utilising synthetic data. The training ID data SID is
comprised of 3 Gaussians with standard deviation σ representing different classes
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in a multi-class classification setting. The different subset splits train ∼ StrainID ,
test ∼ StestID and test OOD ∼ SOOD over the synthetic dataset are depicted in
Figure 1.

Fig. 1: Synthetic dataset from left to right, comprised of ID train data (1st), ID
test data (2nd), OOD test data (3rd), and finally the union of ID∪OOD (yellow)
test data (4th).

The underlying model is a 3-layer MLP network, trained on the synthetic
ID train split. During inference we test each objective on the OOD test data
SOOD constructed of 4-Gaussians displaced at different locations. To measure
performance at OOD detection we measure AUC based on three OOD metrics
on the models’ logits: confidence, entropy, and mutual information.

Results & Discussion Table 1 presents our findings for OOD detection across
objectives, while Figure 2 depicts the different decision boundaries across each
objective for ID (1st row) and OOD (2nd row) test data.

Table 1: Accuracy and AUC-ROC-scores across objectives & metrics represented
in percentage (%).

Data
Objectives Accuracy

AUC-ROC scores
SID SOOD Confidence Entropy Mutual Information

3-Gaussians 4-Gaussians CrossEntropy 100 61.64 61.61 63.62
CrossEntropy+MC-Dropout 100 75.14 73.63 73.56
ContReg (ours) 100 99.99 99.99 99.99
ContRank (ours) 100 99.99 99.99 99.99

As suggested in Table 1 our proposed methods achieve near optimal OOD
detection when presented with ambiguous test data. Notice that explicit reg-
ularisation (e.g. MC-Dropout) does indeed provide additional benefit in OOD
detection. Similar conclusions supporting our claims have been demonstrated in
prior works of [36,34,16,44,17] regarding the impact of regularisation. To under
stand why explicit regularisation improves OOD detection we exhibit the exis-
tence of a connection among Dropout [6], Mixup [48] and Randomised smooth-
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(a) CrossEntropy objective as baseline.

(b) ContReg (ours)

(c) ContRank (ours)

Fig. 2: Decision boundaries across objective functions for ID (1st row) and OOD
(2nd row) test data.

ing [5], where these methods act as boundary thickness [46]. It is evident from
Figure 2 that a model trained with CrossEntropy on a classification setting acts
as a max-margin predictor while our objective act as density estimator. This
indicates that the choice of objective and regularisation play a crucial role in the
final behaviour of the predictor.
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4.2 Real Data Experiment

Five well-known image classification datasets are used in this experiment:CIFAR-
10, CIFAR-100, SVHN, FashionMNIST and LSUN. Every dataset was split into
three distinct sets {train, validation, test} with random mirroring and cropping
augmentations. We utilised WideResNet28x10 [47] as the DNN model trained
for 300 epochs using a validation set for hyper-parameter tuning and rolling
back to the best checkpoint to avoid overfitting. The optimiser was Stochastic
Gradient Descent (SGD) [35,18] with momentum set to 0.9 and weight decay in
the range [3e−4, 5e−4]. Given that all datasets have balanced class distributions
we utilised classification accuracy to measure their performance on the clean ID
test data. To measure the ability of the models to recognise OOD examples we
utilised the predictions of the test portion of three OOD datasets (see Table 5).
We measure the separation between ID and OOD data using the area under the
curve (AUC-ROC) for each approach.

We also compare the effectiveness of the custom objective described in this
paper with the following existing objectives designed to address the OOD prob-
lem.

Mahalanobis [22] M(x) = maxc−(f(x)− µ̂c)>Σ̂−1 (f(x)− µ̂c)

ODIN [24] g(x; δ, T, ε) =

{
1 if maxi p(x̃;T ) ≤ δ
0 if maxi p(x̃;T ) > δ

MSRep [39] ¯̀(x, y; θ) =
∑K
k=1 dcos

(
ek(y), fkθk(x)

)
OutlierExposure [14] E(x,y)∼Din

[
L(f(x), y) + λEx′∼DOE

out
[LOE (f (x′) , f(x), y)]

]
EnergyOOD [25] minθ E(x,y)∼Din

[− logFy(x)] + λ · Lenergy

CSI [40] − 1
|{x+}| log

∑
x′∈{x+} exp(sim(z(x),z(x′))/τ)∑

x′∈{x+}∪{x−} exp(sim(z(x),z(x′))/τ)

DoSE [28] 1
m

∑m
j (log q(xj | {xi}ni , T, γ)2+2H[p] 1

m

∑m
j log q(xj | {xi}ni , T, γ)

Results & Discussion According to Table 3 and Table 5 our objectives out-
perform the max softmax probabilty (MSP) baseline by a large margin (see Fig-
ure 3), except when {CIFAR-100} ∈ SID while {CIFAR-10, LSUN} ∈ SOOD.
This observation is interesting since it suggests that the value of auxiliary in-
formation from SOOD might be degrading when SID ⊇ SOOD. With the term
superset SID ⊇ SOOD we refer to the fact that the ID data SID might represent
a broader set of features compared to OOD data SOOD. Thus, training a model
with a small subset of the ID data as OOD might not be beneficial since no
additional information is presented to the model because the features from SID
and SOOD conflict with each other. Another factor that impairs OOD detection
is the presence of label noise [27], (e.g. {CIFAR-10 vs. CIFAR-100}), which has
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been identified with the term near-OOD vs. far-OOD in subsequent work [45].
A natural question arising from this observation is whether we can identify the
inflection point between label noise and OOD detection?

Table 2: Accuracy of models on ID dataset classification tasks.
Model CIFAR-10 SVHN FashionMNIST CIFAR100

DNN 95.06 96.67 95.27 77.44
DPN 88.10 90.10 93.20 79.34
MC-Dropout 96.22 96.90 95.40 78.39
SWAG 96.53 97.06 93.80 78.61
JEM 92.83 96.13 83.21 77.86
CE+`1 90.66 95.34 93.89 62.30
CE+`1+MCD 90.33 94.85 91.37 60.35
ContReg (ours) 90.76 95.25 93.68 72.78
ContReg+MCD 90.31 94.75 93.01 64.04
ContRank (ours) 89.01 94.97 93.40 64.32
ContRank+MCD 91.96 82.34 93.13 60.43

Fig. 3: Comparison of CrossEntropy (baseline) against our proposed objective
(i.e. ContReg (see Table 3 and 5) across three metrics {confidence, entropy,
mutual information} with respect to a WideResNet28x10 architecture.

Table 3 compares the performance of the proposed objectives described in
this paper with existing OOD detection approaches, where we report confidence-
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based AUC-ROC scores matching our experimental setting. Our methods out-
perform MSP, ODIN, and EnergyOOD (w/o pre-training), and provide compa-
rable results with Mahalanobis, MSRep, and OE.

Table 3: Comparison of our methods with related work based on published results
in the literature corresponding with our setting.

Data
AUC-ROC scores

SID SOOD MSP Mahalanobis ODIN MSRep OE EnergyOOD ContReg(ours) ContRank(ours)

CIFAR-10 CIFAR-100* 86.15 93.90 85.59 91.23 93.30 92.60 92.23 94.23
SVHN 89.60 97.62 91.96 99.48 98.40 90.96 99.18 95.40
LSUN 88.54 96.30 90.35 96.05 97.60 94.24 92.44 94.77

CIFAR-100 CIFAR-10 73.41 81.34 74.54 81.49 75.70 76.61 72.94 68.89
SVHN* 71.44 86.01 67.26 87.42 86.66 73.99 99.68 99.95
LSUN 75.38 93.9 78.94 79.05 79.71 79.23 70.50 62.17

From Table 5 we can observe that even though explicit regularisation overall
is beneficial compared to no regularisation, on the contrary, stronger regularisa-
tion might deteriorate OOD detection. An ongoing inquiry is to formally char-
acterise and identify the necessary and sufficient conditions of regularisation in
order to robustify models against ambiguous and corrupted inputs.

To evaluate whether our method is robust against common corruptions we
utilised CIFAR10-C and CIFAR100-C. Similar to [12] we report the mean cor-
ruption error (mCE) in Table 4, with the exception that we do not adjust for
the varying corruption difficulties by dividing the average corruption error with
those of a baseline model. Observe that our objective attains the smallest mCE
on CIFAR10-C indicating that is indeed robust against common corruptions
while on CIFAR100-C cross-entropy with `1-regularisation attain the smallest
error with ours being second best.
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(a) Train, {CIFAR-10}, Test {CIFAR-
100, SVHN, LSUN }

(b) Train, {SVHN }, Test {CIFAR-100,
CIFAR-10, LSUN }

(c) Train, {FashionMNIST}, Test
{CIFAR-100, CIFAR-10, LSUN }

(d) Train, {CIFAR-100}, Test
{CIFAR-10, SVHN, LSUN }

Fig. 4: Comparison of objective functions with and without MC-Dropout dur-
ing inference. Each histogram corresponds to evaluating a particular loss on a
different OOD dataset.

Table 4: Evaluating objective functions across common corruptions against
CIFAR10-C and CIFAR100-C measured in average corruption error (mCE).

Objectives
mCE

CIFAR10-C CIFAR100-C

CrossEntropy 161.14 717.04
CrossEntropy+MCD 120.91 536.63
CrossEntropy+`1 144.02 247.78
CrossEntropy+`1+MCD 140.96 285.04
ContReg (ours) 119.98 337.94
ContReg+MCD 129.20 269.52
ContRank (ours) 149.46 258.73
ContRank+MCD 167.30 306.42
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(a) CrossEntropy (b) CrossEntropy+`1 (c) ContReg

(d) CrossEnt+MCD (e) CrossEnt+`1+MCD (f) ContReg+MCD

Fig. 5: Comparison of different objectives trained on ID CIFAR-10 and tested on
OOD CIFAR-100 with (1st row) and without (2nd row) explicit regularisation
(MCD: Monte-Carlo Dropout).

5 Conclusion

In this work we presented two novel objective functions with the goal of being
utilised in a normal classification setting while at the same time exhibiting some
robustness properties against common corruptions and ambiguous inputs when
evaluated in OOD detection. We demonstrated that our approach outperforms
half of the competitive methods and performs comparably to the remaining
ones. Furthermore, we presented the efficacy of our method against common
corruptions measured in mCE compared to competitive alternative methods.
Finally, we identified the importance of auxiliary information as well as the
role of regularisation in OOD detection, followed some important questions in
identifying the role of bias in the choice of objective function, family class, and
algorithm when considering open set classification problems.
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