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Abstract. The analysis sparsity model is a very effective approach in
modern Compressed Sensing applications. Specifically, redundant anal-
ysis operators can lead to fewer measurements needed for reconstruc-
tion when employing the analysis l1-minimization in Compressed Sens-
ing. In this paper, we pick an eigenvector of the Zauner unitary matrix
and –under certain assumptions on the ambient dimension– we build
a spark deficient Gabor frame. The analysis operator associated with
such a frame, is a new (highly) redundant Gabor transform, which we
use as a sparsifier in Compressed Sensing. We conduct computational
experiments –on both synthetic and real-world data– solving the analy-
sis l1-minimization problem of Compressed Sensing, with four different
choices of analysis operators, including our Gabor analysis operator. The
results show that our proposed redundant Gabor transform outperforms
–in all cases– Gabor transforms generated by state-of-the-art window
vectors of time-frequency analysis.

Keywords: Compressed Sensing · analysis sparsity · Gabor transform
· window vector · spark deficient Gabor frame.

1 Introduction

Compressed Sensing (CS) [1] is a modern technique to recover vectors x ∈ VL
(V = R or C) from few linear and possibly corrupted measurements

y = Ax+ e ∈ VK , (1)

K < L. The applications of CS vary among Radar Imaging [2], Cryptography
[3], Telecommunications [4], Magnetic Resonance Imaging [5], Deep Learning [6].
Related Work: CS heavily relies on sparsity/compressibility of the signal of
interest x. Sparse data models are split in synthesis and analysis sparsity. The
former is by now very well studied [5,7,8,9]. On the other hand, significant re-
search has also been conducted over the last years towards its analysis counter-
part [10,11,12], (also known as co-sparse model [13,14]), due to the flexibility
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it provides in modelling sparse signals, since it leverages the redundancy of the
involved analysis operators. Related work [10] has also demonstrated that it is
computationally more appealing to solve the optimization algorithm of analy-
sis CS since a) the actual optimization takes place in the ambient space b) the
algorithm may need less measurements for perfect reconstruction, if one uses a
redundant transform instead of an orthogonal one.
Motivation: Our work is inspired by the articles [10,11,15], which propose either
analysis operators associated to redundant frames with atoms in general posi-
tion, or a finite difference operator, in which many linear dependencies appear
for large dimensions. In a similar spirit, we also deploy frames, but we differen-
tiate our approach by using spark deficient frames, i.e. their elements are not in
general linear position. Our intuition behind this choice is based on remarks of
[14]. The authors of [14] refer to the union-of-subspaces model [16], according to
which, it is desired to have analysis operators exhibiting high linear dependencies
among their rows; this is a condition satisfied by spark deficient frames. To that
end, we introduce a novel analysis operator associated with a spark deficient
Gabor frame (SDGF). The latter can be generated by time-frequency shifts of
any eigenvector of the Zauner unitary matrix [17], under certain assumptions.
To the best of our knowledge, its efficiency when combined with CS has not
yet been demonstrated. Moreover, since Gabor transforms are little explored
in terms of CS [9,18,19], we compare our proposed Gabor transform to three
other Gabor transforms, emerging from state-of-the-art window vectors in time-
frequency analysis. Finally, we illustrate the practical importance of our method
for synthetic and real-world data.
Key Contributions: Our novelty is twofold: (a) we generate a SDGF based
on a window vector, associate this SDGF to a new Gabor analysis operator and
use the latter as a sparsifier in analysis CS (b) we compare numerically our
proposed method with three other Gabor analysis operators, based on common
windows of time-frequency analysis, on synthetic data and real-world speech sig-
nals. Our experiments show that our method outperforms all others, consistently
for synthetic and real-world signals.

2 Compressed Sensing setup

Notation: For a set of indices N = {0, 1, . . . , N − 1}, we write [N ]. The set of
(column) vectors |0〉, |1〉, . . . , |L − 1〉 is the standard basis of CL. We write ZL
for the ring of residues modL, that is ZL = {0modL, 1modL, . . . , (L− 1)modL}
and a ≡ b(modL) denotes the congruence modulo, a, b ∈ Z. The support of a
signal x ∈ VL is denoted by supp(x) = {i ∈ [L] : xi 6= 0}. For its cardinality we
write |supp(x)| and if |supp(x)| ≤ s << L, we call x s-sparse.
Analysis Compressed Sensing Formulation: As already described in Sec-
tion I, the main idea of CS is to reconstruct a signal x ∈ VL from y = Ax+ e ∈
VK , K < L, where A is the so-called measurement matrix and e ∈ VK , with
‖e‖2 ≤ η, corresponds to noise. To do so, we first assume there exists a redun-
dant sparsifying transform Φ ∈ VP×L (P > L) called the analysis operator, such
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that Φx is (approximately) sparse. On the other hand, the choice of A is tailored
to the application for which CS is employed. In this paper, we choose A to be
a randomly subsampled identity operator, since this is considered a standard
CS setup. Moreover, this type of measurement matrix has proven to work well
[8], since it meets conditions ensuring exact or approximate reconstruction of x,
i.e., the matrix has small coherence or satisfies the restricted isometry property
[7]. Now, using analysis sparsity in CS, we wish to recover x from y. A common
approach is the analysis l1-minimization problem

min
x∈VL

‖Φx‖1 subject to ‖Ax− y‖2 ≤ η, (2)

or a regularized3 version [20] of it:

min
x∈VL

‖Φx‖1 +
µ

2
‖x− x0‖22 subject to ‖Ax− y‖2 ≤ η, (3)

with x0 being an initial guess on x and µ > 0 a smoothing parameter. We will
devote the next Section to the construction of a suitable analysis operator Φ.

3 Gabor Frames

Gabor Systems: A discrete Gabor system (g, a, b) [21] is defined as a collection
of time-frequency shifts of the so-called window vector g ∈ CL, expressed as

gn,m(l) = e2πimbl/Lg(l − na), l ∈ [L], (4)

where a, b denote time and frequency (lattice) parameters respectively, n ∈ [N ]
chosen such that N = L/a ∈ N and m ∈ [M ] chosen such that M = L/b ∈ N
denote time and frequency shift indices, respectively. If (4) spans CL, it is called
a Gabor frame. The number of elements in (g, a, b) according to (4) is P =
MN = L2/ab and if (g, a, b) is a frame, we have ab < L. Good time-frequency
resolution of a signal with respect to a Gabor frame, depends on appropriately
choosing a, b. This challenge can only be treated by numerically experimenting
with different values of a, b with respect to L. Now, we associate to the Gabor
frame (g, a, b) the following operator.

Definition 1. Let Φg : CL 7→ CM×N denote the Gabor analysis operator –also
known as digital Gabor transform (DGT)– whose action on a signal x ∈ CL is
defined as

cm,n =

L−1∑
l=0

xlg(l − na)e−2πimbl/L, m ∈ [M ], n ∈ [N ]. (5)

Spark Deficient Gabor Frames: Let us first introduce some basic notions.

3 in terms of optimization, it is preferred to solve (2) instead of (3)
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Definition 2. The symplectic group SL(2,ZL) consists of all matrices

G =

(
α β
γ δ

)
(6)

such that α, β, γ, δ ∈ ZL and αδ − βγ ≡ 1(modL). To each such matrix corre-
sponds a unitary matrix given by the explicit formula [22]

UG =
eiθ√
L

L−1∑
u,v=0

τβ
−1(αv2−2uv+δu2)|u〉〈v|, (7)

where θ is an arbitrary phase, β−1 is the inverse4 of βmodL and τ = −e iπL .

Definition 3. The spark of a set F –denoted by sp(F )– of P vectors in CL is
the size of the smallest linearly dependent subset of F . A frame F is full spark if
and only if every set of L elements of F is a basis, or equivalently sp(F ) = L+1,
otherwise it is spark deficient.

Based on the previous definition, a Gabor frame with P = L2/ab elements of
the form (4) is full spark, if and only if every set of L of its elements is a basis.
Now, as proven in [23], almost all window vectors generate full spark Gabor
frames, so the SDGFs are generated by exceptional window vectors. Indeed, the
following theorem was proven in [22] and informally stated in [24], for the Zauner
matrix Z ∈ SL(2,ZL) given by

Z =

(
0 −1
1 −1

)
≡
(

0 L− 1
1 L− 1

)
. (8)

Theorem 1 ([22]). Let L ∈ Z such that 2 - L, 3 | L and L is square-free.
Then, any eigenvector of the Zauner unitary matrix UZ (produced by combining
(7) and (8)), generates a spark deficient Gabor frames for CL.

According to Theorem 1, since all the eigenvectors of UZ generate SDGFs, we
may choose without loss of generality an arbitrary one, call it star window vector
and denote it as g∗. We call star-DGT the analysis operator associated with a
SDGF produced by g∗, and denote it Φg∗ . We coin the term ”star”, due to the
slight resemblance of this DGT to a star when plotted in MATLAB.

Remark 1. A simple way to choose L, is by considering its prime factorization:
take k prime numbers pα1

1 , . . . , pαkk , with α1, . . . , αk not all a multiple of 2 and
p1 = 3, pi 6= 2, i = 2, . . . , k, such that L = 3α1pα2

2 · · · · ·p
αk
k . Since a, b | L, we may

also choose a = 1 and b = pαii , i = 1, . . . , k. Otherwise, both a, b may be one, or
a multiplication of more than one, prime numbers from the prime factorization
of L. We have seen empirically that this method for fixing (L, a, b) produces
satisfying results, as it is illustrated in the figures of the upcoming pages.

4 bb−1 ≡ 1(modL)
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4 Numerical Experiments

Signals’ description and preprocessing: We experiment with 3 synthetic
data and 6 real-world speech signals, taken from Wavelab package [25] and
TIMIT corpus [26], respectively. All signals are real-valued; the real-world data
are sampled at 16 kHz. The true ambient dimension of each real-world signal
does not usually match the conditions of Theorem 1. Hence, we use Remark 1
to cut-off each speech signal to a specific ambient dimension L, being as closer
as it gets to its true dimension, in order to both capture a meaningful part of
the signal and meet the conditions of Theorem 1. For the synthetic data, we use
again Theorem 1 and Remark 1 to fix each signal’s ambient dimension L.

Table 1: Signals’ details and summary of parameters
Labels Samples (L, a, b) x0 µi, i = 1, 2, 3, ∗
Cusp 33 (33, 1, 11) zero vector ‖Φix‖∞
Ramp 33 (33, 1, 11) zero vector ‖Φix‖∞
Sing 45 (45, 1, 9) zero vector ‖Φix‖∞

SI1899 22938 (20349, 19, 21) ATAx 10−1‖Φix‖∞
SI1948 27680 (27531, 19, 23) ATAx 10−1‖Φix‖∞
SI2141 42800 (41769, 21, 17) ATAx 10−1‖Φix‖∞

SX5 24167 (23205, 17, 13) ATAx 10−1‖Φix‖∞
SX224 25805 (24633, 23, 21) ATAx 10−1‖Φix‖∞
SI1716 25908 (24633, 23, 21) ATAx ‖Φix‖∞

Proposed framework for each signal: We choose a, b according to Remark
1. We consider a vector K of 1000 evenly spaced points in [1, L] and use it as
the measurements’ interval. We use the power iteration method [27] which yields
the largest in magnitude eigenvalue and corresponding eigenvector of UZ , then
set this eigenvector to be the star window vector. We use the MATLAB pack-
age LTFAT [28], to generate four different Gabor frames, with their associated
analysis operators/DGTs: Φg1 , Φg2 , Φg3 and Φg∗ , corresponding to a Gaussian,
a Hann, a Hamming [21] and the star window vector, respectively. Since we pro-
cess real-valued signals, we alter the four analysis operators to compute only the
DGT coefficients of positive frequencies. For each choice of K in the measure-
ments’ interval, we set up a randomly subsampled identity operator A ∈ RK×L
and determine the noisy measurements y = Ax + e, with e being zero-mean
Gaussian noise with standard deviation σ = 0.001. We employ the MATLAB
package TFOCS [20] to solve four different instances of (3), one for each of the
four DGTs. For each Φgi , i = 1, 2, 3, ∗, we set µi = C‖Φix‖∞, C > 0, since we
noticed an improved performance of the algorithm when µ is a function of Φi
(the constant C and the function ‖·‖∞ are simply chosen empirically). From the
aforementioned procedure, we obtain four different estimators of x, namely x̂1,
x̂2, x̂3, x̂∗ and their corresponding relative errors ‖x− x̂i‖2/‖x‖2, i = 1, 2, 3, ∗.
Discussion of the results: The labels of all signals, along with short descrip-
tion and some key characteristics of the application of our framework to all
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(a) Cusp with
(L, a, b) = (33, 1, 11)

(b) Ramp with
(L, a, b) = (33, 1, 11)

(c) Sing with
(L, a, b) = (45, 1, 9)

(d) SI1716 with (L, a, b) = (24633, 23, 21) (e) SI1899 with (L, a, b) = (20349, 19, 21)

(f) SI1948 with (L, a, b) = (24633, 21, 23) (g) SI2141 with (L, a, b) = (21735, 21, 23)

(h) SX5 with (L, a, b) = (23205, 17, 13) (i) SX224 with (L, a, b) = (24633, 23, 21)

Fig. 1: Rate of approximate success for synthetic ((a)-(c)) and real-world
((d)-(i)) signals for different parameters (L, a, b). Red: Gaussian, magenta:

Hann, black: Hamming, blue: proposed.

signals, can be found in Table 1. The resulting figures show the relative re-
construction error decay as the number of measurements increases. Fig. 1a–1c
demonstrate the success rate of our proposed DGT (blue line), outperforming
the rest of DGTs for the synthetic data. Similarly, for the real-world speech
signals, Fig. 1d–1i indicate that our method (again blue line) achieves state-of-
the-art performance in the first 15 − 20% of the measurements and from this



SDGF provides a novel analysis operator for CS 7

point on, star-DGT outperforms the rest of DGTs. Moreover, the TFOCS algo-
rithm needed only one iteration to reconstruct the signal of interest when our
proposed star-DGT was employed; for the rest 3 DGTs, the algorithm needed
at least three iterations. This behaviour confirms improved performance when a
DGT associated with a SDGF is applied to analysis CS.

5 Conclusion and Future Work

In the present paper, we took advantage of a window vector to generate a spark
deficient Gabor frame and introduced a novel redundant analysis operator/DGT,
namely the star DGT, associated with this SDGF. We then applied the star
DGT to analysis Compressed Sensing, along with three other DGTs generated
by state-of-the-art window vectors in the field of Gabor Analysis. Our experi-
ments confirm improved performance: the increased amount of linear dependen-
cies provided by this SDGF, yields in all cases lower relative reconstruction error
for both synthetic and real-world data, as the number of measurements increases.
Future directions will be the extension of the present framework to largescale
problems (e.g. images or videos). Additionally, it would be interesting to com-
pare this star-DGT to other similar choices of redundant analysis operators (e.g.
redundant wavelet transform, shearlets [29] etc.).
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