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Preface

As the end of Moore’s law seems closer than ever, computer scientists have been
exploring to build machines as complex and efficient as our brain, dealing with
power density and clock frequency challenges of the conventional architecture. Our
brain works entirely differently compared to traditional von Neumann architecture.
There are many secrets behind how the human brain works. We know that it
distributes computation and memory among more than 100 billion biological
neurons, and each of them is connected with thousands of others via synapses.
Neurons communicate with each other through spikes (i.e., short electrical pulses).
The brain is a powerful computation system that helps us survive, adapt, and predict,
while consuming tens of watts.

Brain-inspired or neuromorphic computing is a biologically inspired approach
created from highly connected neurons to model neuroscience theories and solve
machine learning problems. The term neuromorphic was first introduced by Carver
Mead in 1990, where it referred to very-large-scale integration (VLSI) with analog
components to mimic biological neural systems. Such systems can be categorized
into non-spiking and spiking approaches. First, the non-spiking approach is referred
to as the implementation of traditional artificial neural networks (ANNSs) which aims
to improve the throughput over the power consumption (or acceleration purpose).
In recent years, ANNs have shown a remarkable improvement in terms of accuracy
for large-scale visual/auditory recognition and classification tasks. Notably, the
convolution neural network (CNN) and recurrent neural network (RNN) have shown
to be promising tools for a wide range of applications such as image, video, and
speech. They are typically trained by using graphic processing units (GPUs) or on
the cloud side. The state-of-the-art neural networks tend to increase their number of
layers and size (i.e., deep learning). However, this leads to challenges for hardware
systems in terms of computation, memory, and communication resources.

The neuromorphic computing systems promises to drastically improve the
efficiency of critical computational tasks such as decision making and perception.
Unlike the typical artificial neural networks (ANNSs), where neurons fire at each
propagation cycle, the neurons in a brain-inspired neural networks model, named
spiking neural networks (SNNs), fire only when a membrane potential reaches
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a specific value. Spiking neurons are only activated when sufficient signals are
integrated from other neurons, which leads to sparse neural activities at the network
level. Hence, the large spike sparsity and simple synaptic operations in the network
enable SNNs to outperform ANNSs in terms of energy efficiency.

This book stands independent and is organized into nine chapters. We have
made every attempt to make each chapter self-contained. Chapter 1 introduces the
neuromorphic computing system and explores the fundamental concepts of artificial
neural networks. We first discuss biological neurons and the dynamics that are
abstracted from them to model artificial neurons. Next, we discuss artificial neurons
and how they have evolved in their representation of biological neuronal dynamics.
Afterward, we discuss implementing these neural networks in terms of neuron
models, storage technologies, inter-neuron communication networks, learning, and
various design approaches.

Chapter 2 presents the fundamental design principle to build an efficient neu-
romorphic system in hardware. The challenges that need to be solved toward
building in hardware a spiking neural network architecture (neuromorphic) with
many synapses include building a small-sized massively parallel architecture with
low-power consumption, efficient neuron coding scheme, and lightweight on-chip
learning algorithm. The other major challenge is the on-chip communication and
routing network, which allows data to be communicated between neurocores and
off-chip data to be transferred to the cores. The constraints mentioned above make
the deployment of such a brain-like IC a challenging on-chip interconnect problem.

Chapter 3 presents how learning in neuromorphic computing systems is con-
ducted. Neuromorphic hardware’s primary goal is to emulate brain-like neural
networks to solve real-world problems. However, training on neuromorphic systems
is challenging to the required non-local computations of gradient-based learning
algorithms. Spiking neural networks gained popularity by incorporating learning.
In these neural networks, there are two fundamental modes: Inference and learning.
The learning phase, which minimizes a particular cost (loss) function, is a complex
process of acquiring the parameters to output the correct inference results. In
contrast, inference is computing the output values based on the given input and
the network parameters.

To design a neuromorphic system on hardware, it is imperative to develop
artificial neurons that mimic biological neurons and artificial synapses that emulate
biological synapses. Recently, numerous efforts have been made to realize artificial
synapses using post-CMOS devices, including resistive random access memory
(ReRAM), ferroelectric field-effect transistor (FeFET), phase change memory
devices, magnetoresistive random access memory (MRAM). A non-CMOS neuron
based on emerging devices has also been investigated. Chapter 4 discusses the
major emerging memory technologies that promise neuromorphic computing and
highlight some recent significant progress on device studies. The advantages and
challenges for each device technology are also discussed.

The brain connectivity is generally described at several levels of scale, including
individual synaptic connections that link individual neurons at the microscale, net-
works connecting neuronal populations at the mesoscale, and brain regions linked
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by fiber pathways at the macroscale. Since each neuron is connected to many others,
high bandwidth is required. Moreover, since the spike times are used to encode
information, very low communication latency is also needed. Chapter 5 presents
the circuits and architectures used for communication in neuromorphic systems. In
particular, the Network-on-Chip fabric is introduced for receiving and transmitting
spikes following the Address Event Representation (AER) protocol and the memory
accessing method. First, the chapter describes the interconnect method for inter-
neurons communication. Second, the interconnect design principle is covered to
help understand the overall concept of on-chip and off-chip communication. The
remaining parts cover advanced on-chip interconnect technologies, including si-
photonic three-dimensional interconnects and fault-tolerant routing algorithms.

To develop such emerging systems, designers use large-scale models on dedi-
cated hardware platforms, such as FPGAs, GPUs, or ASICs. The designers need
a long time to collect datasets, train, and design accelerators to keep the trained
models private and reliable. However, with the growing complexity of neuromorphic
systems, there are severe vulnerabilities in the hardware implementations. An
attacker who does not know the details of structures and designs inside these
accelerators can effectively reverse engineer the neural networks by leveraging
various side-channel information. Moreover, as neuromorphic systems are complex
and integrate large number of neurons and synapses, the fault probability is
accumulated and can threaten system reliability. Chapter 6 covers the main threats
of reliability, and discusses several recovery methods.

Chapter 7 presents the architecture and hardware design of a reconfigurable
spiking neuromorphic system. The architecture implements a Multi-Layer Percep-
tron (MLP) that can be reconfigured to recover from faults with suitable methods
that use an FPGA without being dependent on FPGA intellectual property (IP).
This approach makes possible its implementation in application-specific integrated
circuits (ASICs). Most spiking neuromorphic designs mainly focused on fixed
functionality using available off-the-shelf components. Such an approach is lacking
the flexibility to adapt to various computing environments. A reconfigurable
design approach supports multiple target applications via dynamic reconfigurability,
network topology independence, and network expandability.

Chapter 8 presents a real hardware-software design of a reliable three-
dimensional digital neuromorphic processor geared explicitly toward the 3D-ICs
biological brain’s three-dimensional structure. The platform enables high
integration density and slight spike delay of spiking networks and features a
scalable design. R-NASH is a design based on the through-silicon-via (TSV)
technology, facilitating spiking neural network implementation on clustered
neurons based on network-on-chip (NoC). The system provides a memory interface
with the host CPU, allowing for online training and inference of spiking neural
networks. Moreover, R-NASH supports fault detection and recovery with graceful
performance degradation.

Chapter 9 presents a comprehensive survey of the research of neuromorphic
computing systems. First, the chapter gives the motivations of neuromorphic
computing. Then, it describes significant research works in the field, which we
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categorize as software emulation approach, digital hardware approach, and analog
and mixed-signal hardware approaches. This chapter aims to provide an exhaustive
review of the research conducted in neuromorphic computing and illuminates the
gaps in the field where new research is needed.

The neuromorphic computing principles and organization book is an excellent
resource for researchers, scientists, graduate students, and hardware-software engi-
neers dealing with the ever-increasing demands on fault-tolerance, scalability, and
low power consumption. It is also an excellent resource for teaching advanced
undergraduate and graduate students about the fundamentals concepts, organiza-
tion, and actual hardware-software design of reliable neuromorphic systems with
learning and fault-tolerance capabilities.
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Engineering

Spike Timing Synaptic Plasticity
Spike-Timing-Dependent-Plasticity
Spin-Transfer Torque RAM

Time-Division Multiplexing
Time-Division-Multiple-Access

Transactions on Embedded Computing Systems
Triple Modular Redundancy

Transactions on Design Automation of Electronic Systems
Through Silicon Vias

Time-To-First-Spike

Thermal Variations

User Interface

United States of America

Universal Serial Bus

Vertically Cavity Surface Emitting Laser
Visual Geometry Group Network
Very-Large-Scale Integration

VLSI Test Symposium

Wavelength Division Multiplexing

Write Enable

Word Line

Worst Loss

Winner-Take-All

Exclusive OR
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