Skip to main content

Contagion Dynamics in Complex Networks

  • Chapter
  • First Online:
Automata and Complexity

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 42))

Abstract

Models of spreading processes in networks can help to provide insights into phenomena such as epidemic outbreaks, opinion formation, and failure propagation. Many contagion models are based on the idea that spreading occurs from an “infected” source to “non-infected” components, which may recover. In the case of social opinion formation, external factors such as media influence have to be taken into account, and in some cases multiple infectious sources are necessary to sustain spreading (complex contagion). In this chapter, I provide a brief overview of common models of contagious processes and show that many of them can be treated as special cases of a general contagion model. Interestingly, despite its general formulation, the stationary behavior of the model is characterized by only three distinct classes. As an application of the general contagion model, I discuss its ability to describe activist-voter interactions in election campaigns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keeling MJ, Rohani P (2008) Modeling infectious diseases in humans and animals. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  2. Hethcote HW (2000) SIAM Rev 42(4):599

    Article  MathSciNet  Google Scholar 

  3. Kermack WO, McKendrick AG (1927) Proc R Soc Ser A 115(772):700

    Google Scholar 

  4. Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A (2015) Rev Mod Phys 87(3):925

    Article  Google Scholar 

  5. Böttcher L, Woolley-Meza O, Goles E, Helbing D, Herrmann HJ (2016) Phys Rev E 93(4):042315

    Google Scholar 

  6. Marro J, Dickman R (2005) Nonequilibrium phase transitions in lattice models. Cambridge University Press, Cambridge, United Kingdom

    Google Scholar 

  7. Henkel M, Hinrichsen H, Lübeck S (2008) Non-equilibrium phase transitions volume I: Absorbing phase transitions. Springer

    Google Scholar 

  8. Coleman J, Katz E, Menzel H (1957) Sociometry 20(4):253

    Article  Google Scholar 

  9. Rogers EM (2010) Diffusion of innovations. Simon and Schuster

    Google Scholar 

  10. Chwe MSY (1999) Am J Soc 105(1):128

    Article  MathSciNet  Google Scholar 

  11. Böttcher L, Woolley-Meza O, Brockmann D (2017) PloS One 12(5):e0178062

    Google Scholar 

  12. Leskovec J, Adamic LA, Huberman BA (2007) ACM Trans Web (TWEB) 1(1):5

    Article  Google Scholar 

  13. Easley D, Kleinberg J (2010) Networks, crowds, and markets: Reasoning about a highly connected world. Cambridge University Press, Cambridge, United Kingdom

    Google Scholar 

  14. Granovetter M (1978) Am J Soc, pp 1420–1443

    Google Scholar 

  15. Centola D, Macy M (2007) Am J Soc 113(3):702

    Article  Google Scholar 

  16. Böttcher L, Luković M, Nagler J, Havlin S, Herrmann H (2017) Sci Rep 7:41729

    Article  Google Scholar 

  17. Böttcher L, Nagler J, Herrmann HJ (2017) Phys Rev Lett 118:088301

    Google Scholar 

  18. Majdandzic A, Podobnik B, Buldyrev SV, Kenett DY, Havlin S, Stanley HE (2014) Nat Phys 10:34

    Article  Google Scholar 

  19. Strogatz SH (2014) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Westview Press, Boulder, Colorado

    Google Scholar 

  20. Ludwig D, Jones DD, Holling CS et al (1978) J Anim Ecol 47(1):315

    Article  Google Scholar 

  21. Zeeman EC (1979) Catastrophe theory. Springer, Berlin/Heidelberg, Germany

    Google Scholar 

  22. Helbing D (2013) Nature 497(7447):51

    Article  Google Scholar 

  23. Böttcher L, Woolley-Meza O, Araújo NA, Herrmann HJ, Helbing D (2015) Sci Rep 5:16571

    Google Scholar 

  24. Böttcher L, Herrmann HJ, Gersbach H (2018) PloS One 13(3):e0193199

    Google Scholar 

  25. Hoferer M, Böttcher L, Herrmann HJ, Gersbach H (2020) Physica A 538:122795

    Article  MathSciNet  Google Scholar 

  26. Durrett R (1999) SIAM Rev 41(4):677

    Article  MathSciNet  Google Scholar 

  27. Grassberger P (1982) Z Phys B 47(365–374)

    Google Scholar 

  28. Ghanbarnejad F, Gerlach M, Miotto JM, Altmann EG (2014) J R Soc Interface 11(101):20141044

    Article  Google Scholar 

  29. Crane R, Sornette D (2008) Proc Natl Acad Sci 105(41):15649

    Article  Google Scholar 

  30. Schlögl F (1972) Zeitschrift für Physik 253(2):147

    Article  Google Scholar 

  31. Harris TE (1974) Contact interactions on a lattice. Ann Probab 2(6):969–988

    Google Scholar 

  32. Grassberger P, De La Torre A (1979) Ann Phys 122(2):373

    Article  Google Scholar 

  33. Cardy JL, Sugar R (1980) J Phys A 13:L423

    Article  Google Scholar 

  34. Bass FM (1969) Manag Sci 15(5):215

    Article  Google Scholar 

  35. Tomé T, De Oliveira MJ (2015) Stochastic dynamics and irreversibility. Springer, Berlin/Heidelberg, Germany

    Google Scholar 

  36. Centola D (2010) Science 329(5996):1194

    Article  Google Scholar 

  37. Watts DJ (2002) Proc Natl Acad Sci 99(9):5766

    Article  MathSciNet  Google Scholar 

  38. López-Pintado D (2008) Game Econ Behav 62:573

    Article  Google Scholar 

  39. Gleeson JP (2013) Phys Rev X 3(2):021004

    Google Scholar 

  40. Böttcher L, Herrmann HJ, Henkel M (2018) J Phys A 51(12):125003

    Google Scholar 

  41. Richter P, Henkel M, Böttcher L (2020) Aging and equilibration in bistable contagion dynamics. Phys Rev E 102(4):042308. https://doi.org/10.1103/PhysRevE.102.042308

  42. Xu S, Böttcher L, Chou T (2020) Diversity in biology: definitions, quantification and models. Phys Biol 17(3):031001

    Google Scholar 

  43. Böttcher L, Montealegre P, Goles E, Gersbach H (2019) Physica A, p 123713

    Google Scholar 

  44. Böttcher L, Gersbach H (2020) The great divide: drivers of polarization in the US public. EPJ Data Sci 9(1):1–13. https://doi.org/10.1140/epjds/s13688-020-00249-4

Download references

Acknowledgements

The author acknowledges financial support from the Swiss National Fund grant Multispecies interacting stochastic systems in biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Böttcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Böttcher, L. (2022). Contagion Dynamics in Complex Networks. In: Adamatzky, A. (eds) Automata and Complexity. Emergence, Complexity and Computation, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-030-92551-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92551-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92550-5

  • Online ISBN: 978-3-030-92551-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics