Skip to main content

Fine-Grained Spatial-Temporal Representation Learning with Missing Data Completion for Traffic Flow Prediction

  • Conference paper
  • First Online:
Book cover Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2021)

Abstract

Spatial-temporal traffic flow prediction is beneficial for controlling traffic and saving traffic time. Researchers have proposed prediction models based on spatial-temporal representation learning. Although these models have achieved better performance than traditional methods, they seldom consider several essential aspects: 1) distances and directions from the spatial aspect, 2) the bi-relation among historical time intervals from the temporal aspect, and 3) missing historical traffic data, which leads to an imprecise spatial-temporal features extraction. To this end, we propose Fine-Grained Features learning based on Transformer-encoder and Graph convolutional networks (FGFTG) to improve the performance of traffic flow prediction in a missing data scenario. FGFTG consists of two components: feature extractors and a data completer. The feature extractors learn fine-grained spatial-temporal representations from spatial and temporal perspectives. They extract smoother representation with the information of distance and direction from a spatial perspective based on graph convolutional networks and node2vec and achieve bidirectional learning for temporal perspective utilizing transformer encoder. The data completer simulates the traffic flow data distribution and generates reliable data to fill in missing data based on generative adversarial networks. Experiments on two public datasets demonstrate the effectiveness of our approach over the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, A., Rajabioun, T., Ioannou, P.A.: Traffic flow prediction for road transportation networks with limited traffic data. IEEE Trans. Intell. Transp. Syst 16(2), 653–662 (2015)

    Google Scholar 

  2. Ang, A., Piazzesi, M.: A no-arbitrage vector autoregression of term structure dynamics with macroeconomic and latent variables. J. Monet. Econ. 50(4), 745–787 (1999)

    Article  Google Scholar 

  3. Beirão, G., Cabral, J.S.: Understanding attitudes towards public transport and private car: a qualitative study. Transp. policy 14(6), 478–489 (2007)

    Article  Google Scholar 

  4. Cao, L., Ma, K., Cao, B., Fan, J.: Forecasting long-term call traffic based on seasonal dependencies. In: Wang, X., Gao, H., Iqbal, M., Min, G. (eds.) CollaborateCom 2019. LNICST, vol. 292, pp. 231–246. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30146-0_16

    Chapter  Google Scholar 

  5. Chen, C., Wang, Y., Li, L., Hu, J., Zhang, Z.: The retrieval of intra-day trend and its influence on traffic prediction. Transp. Res. Part C Emerg. Technol 22, 103–118 (2012)

    Article  Google Scholar 

  6. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  7. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. arXiv preprint arXiv:1606.09375 (2016)

  8. Deng, D., Shahabi, C., Demiryurek, U., Zhu, L., Yan, L.: Latent space model for road networks to predict time-varying traffic. In: ACM Sigkdd International Conference (2016)

    Google Scholar 

  9. Drew, D.R.: Traffic flow theory and control. McGraw-Hill Series in Transportation 316 (1968)

    Google Scholar 

  10. Fan, Z., Xuan, S., Shibasaki, R., Adachi, R.: Citymomentum: an online approach for crowd behavior prediction at a citywide level. In: the 2015 ACM International Joint Conference (2015)

    Google Scholar 

  11. Feng, N., Guo, S., Song, C., Zhu, Q., Wan, H.: Multi-component spatial-temporal graph convolution networks for traffic flow forecasting. J. Softw 30(3), 759–769 (2019)

    Google Scholar 

  12. Fu, R., Zhang, Z., Li, L.: Using LSTM and GRU neural network methods for traffic flow prediction. In: 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp. 324–328. IEEE (2016)

    Google Scholar 

  13. Geng, X., Li, Y., Wang, L., Zhang, L., Liu, Y.: Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3656–3663 (2019)

    Google Scholar 

  14. Ghahramani, Z., Jordan, M.I.: Supervised learning from incomplete data via an em approach. In: Advances in Neural Information Processing Systems, pp. 120–127 (1994)

    Google Scholar 

  15. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: The 22nd ACM SIGKDD International Conference (2016)

    Google Scholar 

  16. Hoang, M.X., Yu, Z., Singh, A.K.: FCCF: forecasting citywide crowd flows based on big data. In: the 24th ACM SIGSPATIAL International Conference (2016)

    Google Scholar 

  17. Kang, D., Lv, Y., Chen, Y.Y.: Short-term traffic flow prediction with LSTM recurrent neural network. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 1–6. IEEE (2017)

    Google Scholar 

  18. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks (2017). https://openreview.net/forum?id=SJU4ayYgl

  19. Klema, V., Laub, A.: The singular value decomposition: its computation and some applications. IEEE Trans. Autom. Control 25(2), 164–176 (1980)

    Article  MathSciNet  Google Scholar 

  20. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  21. Li, L., Li, Y., Li, Z.: Efficient missing data imputing for traffic flow by considering temporal and spatial dependence. Transp. Res. Part C Emerg. Technol. 34, 108–120 (2013)

    Article  Google Scholar 

  22. Li, T., Zhang, J., Bao, K., Liang, Y., Li, Y., Zheng, Y.: Autost: efficient neural architecture search for spatio-temporal prediction. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 794–802 (2020)

    Google Scholar 

  23. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting (2017)

    Google Scholar 

  24. Li, Y., Zheng, Y., Zhang, H., Chen, L.: Traffic prediction in a bike-sharing system. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 1–10 (2015)

    Google Scholar 

  25. Lin, Z., Feng, J., Lu, Z., Li, Y., Jin, D.: Deepstn+: context-aware spatial-temporal neural network for crowd flow prediction in metropolis. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1020–1027 (2019)

    Google Scholar 

  26. Lippi, M., Bertini, M., Frasconi, P.: Short-term traffic flow forecasting: an experimental comparison of time-series analysis and supervised learning. IEEE Trans. Intell. Transp. Syst. 14(2), 871–882 (2013)

    Article  Google Scholar 

  27. Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.Y.: Traffic flow prediction with big data: a deep learning approach. IEEE Trans. Intell. Transp. Syst. 16(2), 865–873 (2015)

    Google Scholar 

  28. Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.Y.: Traffic flow prediction with big data: a deep learning approach. IEEE Trans. Intell. Transp. Syst. 16(2), 865–873 (2014)

    Google Scholar 

  29. Ma, X., Zhuang, D., He, Z., Ma, J., Wang, Y.: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors 17(4), 818 (2017)

    Article  Google Scholar 

  30. Moreira-Matias, L., Gama, J., Ferreira, M., Mendes-Moreira, J.: Predicting taxi-passenger demand using streaming data. IEEE Trans. Intell. Transp. Syst. 14(3), 1393–1402 (2013)

    Article  Google Scholar 

  31. Polson, N.G., Sokolov, V.O.: Deep learning for short-term traffic flow prediction. Transp. Res. Part C Emerg. Technol. 79, 1–17 (2017)

    Article  Google Scholar 

  32. Shekhar, S., Williams, B.M.: Adaptive seasonal time series models for forecasting short-term traffic flow. Transp. Res. Rec. 2024(1), 116–125 (2007)

    Article  Google Scholar 

  33. Silva, R., Kang, S.M., Airoldi, E.M.: Predicting traffic volumes and estimating the effects of shocks in massive transportation systems. Proc. Natl. Acad. Sci. United States Am. 112(18), 5643–8 (2015)

    Article  MathSciNet  Google Scholar 

  34. Sun, J., Zhang, J., Li, Q., Yi, X., Zheng, Y.: Predicting citywide crowd flows in irregular regions using multi-view graph convolutional networks. IEEE Trans. Knowl. Data Eng. (99), 1 (2020)

    Google Scholar 

  35. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  36. Wei, L., Zheng, Y., Chawla, S., Yuan, J., Xing, X.: Discovering spatio-temporal causal interactions in traffic data streams (2011)

    Google Scholar 

  37. Wei, W., Wu, H., Ma, H.: An autoencoder and LSTM-based traffic flow prediction method. Sensors 19(13), 2946 (2019)

    Article  Google Scholar 

  38. Li, X., et al.: Prediction of urban human mobility using large-scale taxi traces and its applications. Front. Comput. Sci. 6(001), 111–121 (2012)

    MathSciNet  Google Scholar 

  39. Xu, J., Zhang, Y., Jia, Y., Xing, C.: An efficient traffic prediction model using deep spatial-temporal network. In: Gao, H., Wang, X., Yin, Y., Iqbal, M. (eds.) CollaborateCom 2018. LNICST, vol. 268, pp. 386–399. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12981-1_27

    Chapter  Google Scholar 

  40. Xu, Y., Kong, Q.J., Klette, R., Liu, Y.: Accurate and interpretable bayesian mars for traffic flow prediction. IEEE Trans. Intell. Transp. Syst 15(6), 2457–2469 (2014)

    Article  Google Scholar 

  41. Xuan, S., Zhang, Q., Sekimoto, Y., Shibasaki, R.: Prediction of human emergency behavior and their mobility following large-scale disaster. ACM (2014)

    Google Scholar 

  42. Yang, B., Sun, S., Li, J., Lin, X., Tian, Y.: Traffic flow prediction using LSTM with feature enhancement. Neurocomputing 332, 320–327 (2019)

    Article  Google Scholar 

  43. Yao, H., Fei, W., Ke, J., Tang, X., Ye, J.: Deep multi-view spatial-temporal network for taxi demand prediction (2018)

    Google Scholar 

  44. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting (2017)

    Google Scholar 

  45. Yu, H.F., Rao, N., Dhillon, I.S.: Temporal regularized matrix factorization for high-dimensional time series prediction. In: NIPS, pp. 847–855 (2016)

    Google Scholar 

  46. Yu, R., Li, Y., Shahabi, C., Demiryurek, U., Yan, L.: Deep Learning: a generic approach for extreme condition traffic forecasting. In: Proceedings of the 2017 SIAM International Conference on Data Mining (2017)

    Google Scholar 

  47. Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. In: Thirty-first AAAI conference on artificial intelligence (2017)

    Google Scholar 

  48. Zhang, N., Wang, F.Y., Zhu, F., Zhao, D., Tang, S.: Dynacas: computational experiments and decision support for ITS. IEEE Intell. Syst 23(6), 19–23 (2008)

    Article  Google Scholar 

  49. Zheng, C., Fan, X., Wang, C., Qi, J.: Gman: a graph multi-attention network for traffic prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 1234–1241 (2020)

    Google Scholar 

  50. Zheng, Z., Yang, Y., Liu, J., Dai, H.N., Zhang, Y.: Deep and embedded learning approach for traffic flow prediction in urban informatics. IEEE Trans. Intell. Transp. Syst. 20(10), 3927–3939 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Key Research and Development Program of China (2020YFB1712903), the Research Program of Chongqing Technology Innovation and Application Development (CSTC2019jscx-zdztzxX0031 and cstc2020kqjscx-phxm1304), and the Overseas Returnees Innovation and Entrepreneurship Support Program of Chongqing (cx2020097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Gao, M., Wang, Z., Wang, J., Wu, F., Wen, J. (2021). Fine-Grained Spatial-Temporal Representation Learning with Missing Data Completion for Traffic Flow Prediction. In: Gao, H., Wang, X. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 406. Springer, Cham. https://doi.org/10.1007/978-3-030-92635-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92635-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92634-2

  • Online ISBN: 978-3-030-92635-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics