Skip to main content

Geographic and Temporal Deep Learning Method for Traffic Flow Prediction in Highway Network

  • Conference paper
  • First Online:
  • 775 Accesses

Abstract

Traffic congestion has become an inevitable situation faced by all countries and the prediction accuracy of traffic flow, as one of the means to solve this problem, still needs to be improved. Most studies lack the consideration of the influence of multiple factors such as spatial factors, time series factors and other external factors, which makes the prediction effect of traffic flow unsatisfactory. In this paper a method is proposed based on deep learning that can capture the geographic spatial relationship among toll stations, the dynamic temporal relationship of historical traffic flow, extreme weather and calendar types. On the three metrics of MAPE, MAE, and RMSE, the prediction effect of our model has increased by 30% compared with KNN, GBRT and LSTM models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ding, W., Wang, X., Zhao, Z.: CO-STAR: a collaborative prediction service for short-term trends on continuous spatio-temporal data. Futur. Gener. Comput. Syst. 102, 481–493 (2020)

    Article  Google Scholar 

  2. Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical world. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery Data Mining (KDD), pp. 316–324 (2011)

    Google Scholar 

  3. Hamed, M.M., Al-Masaeid, H.R., Said, Z.M.B.: Short-term prediction of traffic volume in urban arterials. J. Transp. Eng. 121(3), 249–254 (1995)

    Article  Google Scholar 

  4. Lingras, P., Sharma, S.C., Osborne, P., Kalyar, I.: Traffic volume time-series analysis according to the type of road use. Comput.-Aided Civil Infrastruct. Eng. 15(5), 365–373 (2000)

    Article  Google Scholar 

  5. Zivot, E., Wang, J.: Vector autoregressive models for multivariate time series. In: Zivot, E., Wang, J. (eds.) Modeling Financial Time Series with S-Plus R, pp. 385–429. Springer, New York (2006). https://doi.org/10.1007/978-0-387-32348-0_11

    Chapter  MATH  Google Scholar 

  6. Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.Y.: Traffic flow prediction with big data: a deep learning approach. IEEE Trans. Intell. Transp. Syst. 16(2), 865–873 (2015)

    Google Scholar 

  7. Wu, C.-H., Ho, J.-M., Lee, D.T.: Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst. 5(4), 276–281 (2004)

    Article  Google Scholar 

  8. Zhang, X., He, G., Lu, H.: Short-term traffic flow forecasting based on K-nearest neighbors non-parametric regression. J. Syst. Eng. 24(2), 178–183 (2009)

    MATH  Google Scholar 

  9. Sun, S., Zhang, C., Yu, G.: A Bayesian network approach to traffic flow forecasting. IEEE Trans. Intell. Transp. Syst. 7(1), 124–132 (2006)

    Article  Google Scholar 

  10. Anacleto, O., Queen, C., Albers, C.J.: Multivariate forecasting of road traffic flows in the presence of heteroscedasticity and measurement errors. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 62(2), 251–270 (2013)

    Article  Google Scholar 

  11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  13. Larochelle, H., Bengio, Y., Louradour, J., Lamblin, P.: Exploring strategies for training deep neural networks. J. Mach. Learn. Res. 10(Jan), 1–40 (2009)

    MATH  Google Scholar 

  14. Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 922–929 (2019)

    Google Scholar 

  15. Cui, Z., Henrickson, K., Ke, R., Wang, Y.: Traffic graph convolutional recurrent neural network: a deep learning framework for network-scale traffic learning and forecasting. IEEE Trans. Intell. Transp. Syst. 21(11), 4883–4894 (2019)

    Article  Google Scholar 

  16. Luo, Y., Cai, X., Zhang, Y., Xu, J., et al.: Multivariate time series imputation with generative adversarial networks. In: Advances in Neural Information Processing Systems, pp. 1596–1607 (2018)

    Google Scholar 

  17. Rangapuram, S.S., Seeger, M.W., Gasthaus, J., Stella, L., Wang, Y., Januschowski, T.: Deep state space models for time series forecasting. In: Advances in Neural Information Processing Systems, pp. 7785–7794 (2018)

    Google Scholar 

  18. Cao, W., Wang, D., Li, J., Zhou, H., Li, L., Li, Y.: Brits: bidirectional recurrent imputation for time series. In: Advances in Neural Information Processing Systems, pp. 6775–6785 (2018)

    Google Scholar 

  19. Lai, G., Chang, W.-C., Yang, Y., Liu, H.: Modeling long-and short-term temporal patterns with deep neural networks. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 95–104 (2018)

    Google Scholar 

  20. Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X.: DNN-based prediction model for spatio-temporal data. In: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 1–4 (2016)

    Google Scholar 

  21. Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  22. Bai, L., Yao, L., Kanhere, S.S., Yang, Z., Chu, J., Wang, X.: Passenger demand forecasting with multi-task convolutional recurrent neural networks. In: Yang, Q., Zhou, Z.-H., Gong, Z., Zhang, M.-L., Huang, S.-J. (eds.) PAKDD 2019. LNCS (LNAI), vol. 11440, pp. 29–42. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16145-3_3

    Chapter  Google Scholar 

  23. Yao, H., et al.: Deep multi-view spatial-temporal network for taxi demand prediction. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  24. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)

    Google Scholar 

  25. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  26. Chen, C., et al.: Gated residual recurrent graph neural networks for traffic prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 485–492 (2019)

    Google Scholar 

  27. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural networks: data-driven traffic forecasting. In: Proceedings of the International Conference on Learning Representations (2018)

    Google Scholar 

  28. Song, C., Lin, Y., Guo, S., Wan, H.: Spatial-temporal sychronous graph convolutional networks: a new framework for spatial-temporal network data forecasting (2020). https://github.com/wanhuaiyu/STSGCN/blob/master/paper/AAAI2020-STSGCN.pdf

  29. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph wavenet for deep spatial-temporal graph modeling. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 1907–1913. AAAI Press (2019)

    Google Scholar 

  30. Chen, W., Chen, L., Xie, Y., Cao, W., Gao, Y., Feng, X.: Multirange attentive bicomponent graph convolutional network for traffic forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence (2020)

    Google Scholar 

  31. Diao, Z., Wang, X., Zhang, D., Liu, Y., Xie, K., He, S.: Dynamic spatial-temporal graph convolutional neural networks for traffic forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 890–897 (2019)

    Google Scholar 

  32. Ding, W., et al.: An ensemble-learning method for potential traffic hotspots detection on heterogeneous spatio-temporal data in highway domain. J. Cloud Comput. Adv. Syst. Appl. 9, 1–11 (2020)

    Article  Google Scholar 

  33. Ding, W., Zhao, Z.: DS-harmonizer: a harmonization service on spatiotemporal data stream in edge computing environment. Wirel. Commun. Mob. Comput. 2018, Article ID 9354273, 12 p (2018). https://doi.org/10.1155/2018/9354273

  34. Ding, W., Zou, J., Zhao, Z.: A multidimensional service template for data analysis in highway domain. Int. J. Internet Manuf. Serv. 7(4), 290 (2020)

    Google Scholar 

  35. Zhou, J., Ding, W.: An evolutionary service solution for spatio-temporal data analysis in highway domain. Int. J. Intell. Internet Things Comput. 1(1), 43–52 (2019)

    Article  Google Scholar 

  36. Kip, F.T.N., Welling, M.: Semi-Supervised Classification with Graph Convolutional Networks (2016)

    Google Scholar 

  37. Zhou, J., Ding, W., Zhao, Z., Li, H.: SMART: a service-oriented statistical analysis framework on spatio-temporal big data (short paper). In: Wang, X., Gao, H., Iqbal, M., Min, G. (eds.) CollaborateCom 2019. LNICSSITE, vol. 292, pp. 91–100. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30146-0_7

    Chapter  Google Scholar 

  38. Wang, Z., Ding, W., Wang, H.: A hybrid deep learning approach for traffic flow prediction in highway domain. In: Gao, H., Wang, X., Iqbal, M., Yin, Y., Yin, J., Gu, N. (eds.) CollaborateCom 2020. LNICSSITE, vol. 350, pp. 253–267. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67540-0_15

    Chapter  Google Scholar 

  39. Ding, W., Wang, Z., Zhao, Z.: A platform service for passenger volume analysis on massive smart card data in public transportation domain. In: Wang, X., Gao, H., Iqbal, M., Min, G. (eds.) CollaborateCom 2019. LNICSSITE, vol. 292, pp. 681–697. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30146-0_46

    Chapter  Google Scholar 

  40. Ding, W., Zhao, Z., Li, H., Cao, Y., Xu, Y.: A passenger flow analysis method through ride behaviors on massive smart card data. In: Romdhani, I., Shu, L., Takahiro, H., Zhou, Z., Gordon, T., Zeng, D. (eds.) CollaborateCom 2017. LNICSSITE, vol. 252, pp. 374–382. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00916-8_35

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 61702014), Beijing Municipal Natural Science Foundation (No. 4192020) and 2020 “Shipei Plan” Project for the Cultivation of High-level Talents in Beijing Colleges and Universities (No. 21XN217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weilong Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, T., Ding, W., Xing, M., Chen, J., Du, Y., Liang, Y. (2021). Geographic and Temporal Deep Learning Method for Traffic Flow Prediction in Highway Network. In: Gao, H., Wang, X. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 407. Springer, Cham. https://doi.org/10.1007/978-3-030-92638-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92638-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92637-3

  • Online ISBN: 978-3-030-92638-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics