
ar
X

iv
:2

00
5.

07
57

7v
1

 [
cs

.I
T

]
 1

5
M

ay
 2

02
0

Batch Codes from Affine Cartesian Codes and Quotient Spaces∗

Baumbaugh, Travis Alan Colgate Haley Jackman, Timothy

Manganiello, Felice

May 2020

Abstract

Affine Cartesian codes are defined by evaluating multivariate polynomials at a cartesian
product of finite subsets of a finite field. In this work we examine properties of these codes as
batch codes. We consider the recovery sets to be defined by points aligned on a specific direction
and the buckets to be derived from cosets of a subspace of the ambient space of the evaluation
points. We are able to prove that under these conditions, an affine Cartesian code is able to
satisfy a query of size up to one more than the dimension of the space of the ambient space.

1 Introduction

Batch codes may be used in information retrieval when multiple users want to access potentially
overlapping requests from a set of devices while achieving a balance between minimizing the load
on each device and minimizing the number of devices used. We can view the buckets as servers and
the symbols used from each bucket as the load on each server. In the original scenario, a single user
is trying to reconstruct t bits of information. This definition naturally generalizes to the concept
of multiset batch codes which have nearly the same definition, but where the indices chosen for
reconstruction are not necessarily distinct.

The family of codes known as batch codes was introduced in [7]. They were originally studied
as a scheme for distributing data across multiple devices and minimizing the load on each device
and total amount of storage consumed. In this paper, we study [n, k, t,m, τ] batch codes, where n
is the code length, k is the dimension of the code, t is the number of entries we wish to retrieve,
m is the number of buckets, and τ is the maximum number of symbols used from each bucket for
any reconstruction of t entries. We seek to minimize the load on each device while maximizing the
amount of reconstructed data. That is, we want to minimize τ while maximizing t.

This corresponds to t users who each wish to reconstruct a single element, among which there
may be duplicates. This is similar to Private information retrieval (PIR) codes, which differ in
that t duplicates of the same element must be reconstructed. Other schemes dealing with multiple
requests are addressed in [11]. For batch and PIR codes where the queries do not all necessarily
occur at the same time, see [12]. Restricted recovery set sizes are considered in [15]. Another
notable type of batch code defined in [7] is a primitive multiset batch code where the number of
buckets is m = n.

∗The research was partially supported by the National Science Foundation under grant DMS-

1547399.

1

http://arxiv.org/abs/2005.07577v1

Much of the related research involves primitive multiset batch codes with a systematic generator
matrix. In [7], the authors give results for some multiset batch codes using subcube codes and Reed-
Muller codes. They use a systematic generator matrix, which often allows for better parameters.
Their goal was to maximize the efficiency of the code for a fixed number of queries t. The focus of
research on batch codes then shifted to combinatorial batch codes. These were first introduced by
[10]. They are replication-based codes using various combinatorial objects that allow for efficient
decoding procedures. We do not consider combinatorial batch codes, but some relevant results can
be found in [10], [4], [3], and [13].

In order to reduce wait time for multiple users, we may look at locally repairable codes with
availability as noted in [5]. A locally repairable code, with locality r and availability δ, provides
us the opportunity to reconstruct a particular bit of data using δ disjoint sets of size at most r
[14]. When we only need to reconstruct this one bit multiple times, this gives us properties of the
code as a private Information Retrieval (PIR) code. However, the research in this paper covers the
scenario in which some bits may differ.

The Hamming weights of affine Cartesian codes are studied in [2]. This is a generalization of
work in [6], and in a similar fashion, the work in this paper aims to expand the study of batch
properties from Reed-Muller codes as studied in [1] to the broader class of affine Cartesian codes. In
the same manner, we begin by examining codes with τ = 1. The even broader family of generalized
affine Cartesian codes, specifically those with complementary duals, are studied in [8].

This work focuses on studying the properties of affine Cartesian codes as batch codes. In Section
2, we formally introduce batch codes and affine Cartesian codes. In Section 3, we define the special
recovery sets for affine Cartesian codes based on the points in the direction of a coordinate. The
main body is Section 4; there we define the building blocks of a batch code - the buckets. In this
work we suggest the buckets to be cosets of a subset V of Fµ

q . Under several equivalent conditions,
we show in Theorem 4.8 that a maximal length affine Cartesian code can satisfy queries of size up
to t = n+1. The specific case with V = 〈(1, 1, . . . , 1)〉 is considered in Subsection 4.1. We conclude
by generalizing the result to any affine Cartesian code.

2 Background

Batch codes were introduced in [7]. Throughout this work, by batch codes we refer specifically
to multiset batch codes, defined by [7]. To build up to this definition, we first introduce several
notions. For a given linear code C ⊆ F

n
q , where Fq represents the finite field of q elements, and the

index set [n] := {1, . . . , n} we give the following definitions.

Definition 2.1. A bucket configuration B1, . . . , Bm is a partition on index set [n]. For each
k ∈ [m], the Bk is referred to as a bucket.

Definition 2.2. For any index i ∈ [n], a recovery set Ri for the index i is a set such that, for any
codeword c ∈ C, the value of ci may be recovered by reading the symbols {cj | j ∈ Ri}.

At this point, we note two distinct categories of recovery sets. If Ri = {i}, then we refer to Ri

as direct access. If instead i /∈ Ri, then we refer to Ri as an indirect recovery set. We also note that
while any set containing a recovery set is technically a recovery set, these shall not be considered
proper recovery sets in the remainder of the paper. Now we deal with multiple recovery sets at the
same time for a query of indices that are not necessarily distinct.

2

Definition 2.3. Given a query Q = (i1, . . . , it) ∈ [n]t, we say that a set of recovery sets RQ =
{Ri1 , . . . , Rit} is a query recovery set with property τ for Q if

1.
∣

∣

(
⋃t

s=1Ris

)

∩Bk

∣

∣ ≤ τ ∀ k ∈ [m], and

2. Rir ∩Ris = ∅ ∀ r, s ∈ [t] where r 6= s.

Definition 2.4. We say that a bucket configuration B1, . . . , Bm is t, τ valid if, for all queries
Q = (i1, . . . , it) ∈ [n]t, there exists a query recovery set RQ with property τ .

Now, with the building blocks in place, we may more rigorously define batch codes.

Definition 2.5. A [n, k, t,m, τ] linear batch code C over Fq is a linear code C of length n and
dimension k, together with a t, τ valid bucket configuration B1, . . . , Bm.

Throughout this work, we will focus on the case τ = 1. The following lemma, proven in [7],
allows us to do this.

Lemma 2.6. Any [n, k, t,m, 1] batch code is also an [n, k, t, ⌈m
τ
⌉, τ] batch code.

An affine Cartesian code is defined as follows.

Definition 2.7. Let Fq be an arbitrary field, and A1, . . . , Aµ ⊆ F1 be non-empty subsets. Define
X to be the cartesian product A1 × . . . × Aµ ⊆ F

µ
q . Let S = Fq[x1, . . . , xµ] be a multivariate

polynomial ring and S≤ρ be the subspace of S of all polynomials with total degree at most ρ. Let
X = {p1, . . . , pn}. The affine Cartesian code CX(ρ) of degree ρ is

CX(ρ) =
{

(f(p1), . . . , f(pn)) | f ∈ S≤ρ
}

,

meaning the image of the evaluation map:

evρ : S≤ρ → F
n
q

f 7→ (f(p1), . . . , f(pn)).

The affine Cartesian code CX(ρ) is an [n, ρ+1]-linear code. The distance of such codes is studied
in [9]. Note that affine Cartesian codes are a generalization of Reed-Muller codes since C

F
µ
q
(ρ) is

a Reed-Muller code. For these codes, the index set of the code corresponds X. This is important
in the construction of batch codes based on affine Cartesian codes as the entries of the codewords
correspond to the evaluations polynomials in the points of X.

In the following section, we investigate the recovery sets for an affine Cartesian code that arise
from using the structure of the set X.

3 Recovery Sets

This section focuses on the characterization of some recovery sets for CX(ρ). It is well known that a
univariate polynomial of degree ρ− 1 is uniquely determined by ρ of its evaluations. Furthermore,
one can find the polynomial starting from the evaluations by using Lagrange interpolation. The
following holds.

3

Lemma 3.1. Let X = A1 × · · · ×Aµ. For p = (a1, . . . , aµ) ∈ X, and i ∈ [µ], let

Rp,i = {(b1, . . . , bµ) | bi ∈ Ai, bj = aj if j 6= i} \ {p}.

If ρ+ 1 < |Ai|, then for any f ∈ S≤ρ, the value of f(p) can be recovered using the values f(Rp,i).

Proof. Let f ∈ S≤ρ, where ρ+1 ≤ |Ai|. By evaluating the multivariate polynomial f in all but the
ith of the coordinates of p, we obtain the univariate polynomial fi(xi) = f(a1, . . . , ai−1, xi, ai+1, . . . , aµ) ∈
Fq[xi]. By the construction of Rp,i, we have that f(Rp,i) = fi(Ai \ {ai}). Since f is a polynomial
of total degree at most ρ, fi(xi) is a polynomial of degree at most ρ in xi. If ρ + 1 < |Ai|, then
ρ ≤ |Ai| − 2, so fi is of degree at most |Ai| − 2. By Lagrange interpolation, we may find a unique
polynomial g(xi) ∈ Fq[xi] of degree at most |Ai \ {ai}| − 1 = |Ai| − 2 such that g(a) = fi(a) for all
a ∈ Ai \ {ai}, and so we must have g = fi. We find that g(ai) = fi(ai) = f(a1, . . . , aµ) = f(p), and
so we can recover f(p).

We already recalled that affine Cartesian codes are a generalization of Reed-Muller codes. For
simplicity of notation, the remainder of this section and the next section focus on Reed-Muller
codes. It is only at the end of the paper that we generalize the results to affine Cartesian codes.
We thus initially consider C

F
µ
q
(ρ) and ρ < q − 1.

From to the previous lemma, we obtain the following characterization of some recovery sets for
C
F
µ
q
(ρ).

Corollary 3.2. For a p ∈ F
µ
q , the sets Rp,i = (p + 〈ei〉) \ {p} for i ∈ [µ] are recovery sets for p in

CFµ
q
(ρ).

As in Section 2, we refer to Rp,i for i ∈ [µ] as an indirect recovery of p. These sets are in
correspondence with one-dimensional affine spaces of Fµ

q , where i corresponds to the only index
that has varying entries. The direct access of p is represented by Rp,0 = {p}.

Corollary 3.3. For any query Q = (p1, . . . , pµ+1) ∈ (Fµ
q)µ+1, using the indices in a query recovery

set RQ = {Rp1,i1 , . . . , Rpµ+1,iµ+1
}, it is possible to recover f(p1), . . . , f(pµ+1), where f ∈ S≤ρ.

Proof. For any s ∈ [µ+1] such that is = 0, we note that Rps,is = Rps,0 = {ps}, and so this is direct
access, and we may simply calculate f(ps). That these are recovery sets for ps such that is 6= 0
follows from Lemma 3.1, noting that with X = F

µ
q , the two definitions of Rpj ,ij coincide.

Note that for the previous corollary τ is not necessary equal to 1.
For the rest of the work we will consider query recovery sets consisting only of Rp,i recovery sets

for i = 0, . . . , µ. We will leave off the Q in RQ when the context makes the query unambiguous.
To be more precise about batch properties, we restate the conditions that every query recovery set
must satisfy for a bucket configuration to be valid with t = µ + 1 and τ = 1, the parameters we
will be using in the following section:

∣

∣

∣

∣

∣

(

µ+1
⋃

s=1

Rps,is

)

∩Bk

∣

∣

∣

∣

∣

≤ 1 ∀k ≤ m, (1)

Rpr ,ir ∩Rps,is = ∅ ∀r, s ∈ [µ + 1], r 6= s. (2)

The first condition corresponds to using at most τ = 1 indices in any given bucket, while the
second corresponds to having non-overlapping recovery sets.

4

4 Quotient-Space Bucket configuration

With requirements for valid bucket configurations addressed, we now define the bucket configuration
used in this paper.

Definition 4.1. For any subspace V of F
µ
q , consider the quotient space F

µ
q /V. The equivalence

classes [p] = p + V partition F
µ
q . We define a quotient-space bucket configuration to be one where

the buckets are these equivalence classes.

Note that although the notation [·] is used both for equivalence classes and index sets, its use
will be clear from context.

Definition 4.2. We denote by ∼ the equivalence relation on F
µ
q induced by V, that is, p1 ∼ p2 if

and only if p1 − p2 ∈ V.

With this bucket configuration, we have m = qµ−dimV . This configuration provides us with a
great deal of symmetry and structure, which allows us to approach determining the validity of a
given quotient-space bucket configuration with the following tools.

For any p ∈ F
µ
q , the set [p] = p + V is all elements in the same bucket as p by definition. For

any subset U ⊆ F
n
q , [U] = {[p] | p ∈ U} is the set of all buckets corresponding to points in U . With

this notation, we now note an important result with respect to recovery sets for equivalent points.

Lemma 4.3. With the subspace construction, if p1 ∼ p2, then [Rp1,i] = [Rp2,i] for all i ∈ [µ].

Proof. For all i ∈ [µ] and any α ∈ Fq, (p1+αei)−(p2+αei) = p1−p2 ∈ V, so [p1+αei] = [p2+αei].
Thus we may write

[Rp1,i] = {[p1 + αei] | α ∈ Fq \ {0}} = {[p2 + αei] | α ∈ Fq \ {0}} = [Rp2,i].

This means that under the equivalence relation, the recovery sets for elements in the same
bucket are the same. This identical use of buckets for the recovery sets leads to the following:

Corollary 4.4. Let Q = (p1, . . . , pµ+1) ∈ (Fµ
q)µ+1 be a query such that pi1 ∼ pi2 for some i1 6= i2.

Let Q′ = (p′1, . . . , p
′
µ+1) be a query where p′i2 = pi1 and p′i = pi for i 6= i2. Then R is a query

recovery set for Q′ if and only if it is a query recovery set for Q.

In other words, we may effectively treat recovering multiple equivalent points in the same bucket
as recovering the same point multiple times. This leads naturally to notation for all recovery sets
of a point.

Definition 4.5. For p ∈ F
n
q , define Rp = {Rp,0, . . . , Rp,µ} and Ep =

⋃µ
i=0Rp,i.

We now reach the central theorem which will be used to verify the validity of quotient-space
bucket configurations.

Theorem 4.6. The following are equivalent:

i) V ∩ 〈ei, ej〉 = {0} ∀i, j ∈ [µ].

ii) For p ∈ F
µ
q , if a, b ∈ Ep are distinct, then [a] 6= [b].

5

iii) For p ∈ F
µ
q , Rp is a query recovery set for Q = (p, . . . , p).

Proof. We proceed with proving the equivalences.

i) ⇒ ii) Let a, b ∈ Ep be distinct elements for some p ∈ F
µ
q . Then, a = p + αei and b = p + βej for

some i, j ∈ [µ]. Since a 6= b, it holds that a− b = αei − βej 6= 0 which implies that a− b 6∈ V
as per i), implying that [a] 6= [b].

ii) ⇒ i) We prove this implication by contraposition. Suppose that there exist α, β ∈ Fq not both zero
such that αei −βej ∈ V with i 6= j. For arbitrary p ∈ F

µ
q , define a = p+αei and b = p+ βej .

Then a 6= b, but since a− b = αei − βej ∈ V, we have [a] = [b].

(ii) ⇔ (iii) Since Ep is the union of the sets in Rp = {Rp,i | 0 ≤ i ≤ µ}, suppose Rp is a query recovery
set. Given that τ = 1, by Condition (1) each point in the union of these sets must be in
a separate bucket. So for all a, b ∈ Ep, a 6= b =⇒ [a] 6= [b]. Similarly, if each point in
Ep is in a different bucket, then Condition (1) is satisfied, and the sets Rp,0, . . . , Rp,µ are all
disjoint by construction, so Condition (2) is satisfied. This makes Rp a query recovery set for
Q = (p, . . . , p).

Note that the first condition of this lemma implies that we need µ ≥ 3. These equivalent
conditions lead to some important necessary conditions.

Corollary 4.7. An affine Cartesian code C
F
µ
q
(ρ) is a valid batch code with quotient-space bucket

configuration induced by V ⊂ F
µ
q only if V ∩ 〈ei, ej〉 = {0} ∀i, j ∈ [µ].

Next, we specify a way that a batch code over Fµ−1
q may be expanded to a batch code over Fµ

q .
This is then used in constructing a bucket configuration for affine Cartesian codes by induction.

Theorem 4.8. Consider the puncturing function φ : F
µ
q → F

µ−1
q defined by φ((a1, . . . , aµ)) =

(a1, . . . , aµ−1) and let C = C
F
µ
q
(ρ) and C = C

F
µ−1
q

(ρ). Let V ⊆ F
µ
q and V ⊆ F

µ−1
q be subspaces

such that φ(V) = V and V ∩ 〈ei, ej〉 = {0} ∀i, j ∈ [µ]. If C is a batch code with quotient-space
bucket configuration induced by V and t = µ, then C is a batch code with quotient-space bucket
configuration induced by V and t = µ+ 1.

Proof. We claim that for a ∈ F
µ
q , it holds that φ([a]) ⊆ [φ(a)]. If b ∈ [a], it holds that a − b ∈ V.

This means that φ(a − b) ∈ φ(V) = V, and by linearity of φ, we have φ(a) − φ(b) ∈ V . This in
turn means φ(b) ∈ [φ(a)]. Since this is true for φ(b) ∈ φ([a]), we have that φ([a]) ⊆ [φ(a)]. From
this, we see that a ∼ b ⇒ [b] = [a] ⇒ φ([b]) ⊂ [φ(a)]. In particular, φ(b) ∈ φ([b]), and since
φ(b) ∈ [φ(a)] ⇒ [φ(a)] = [φ(b)], we have that a ∼ b ⇒ φ(a) ∼ φ(b).

Now consider any queryQ = (p1, . . . , pµ, pµ+1) of points in F
µ
q . The multisetQ′ = (φ(p1), . . . , φ(pµ))

is a query of µ elements in F
µ−1
q . For any a ∈ F

µ
q , let a = φ(a) ∈ F

µ−1
q . Then we may write

Q′ = (p1, . . . , pµ), and since C is a batch code that can satisfy any query of size t = µ, there exists
some query recovery set R = {Rp1,i1 , . . . , Rpµ,iµ} such that

1. |(
⋃n

s=1Rps,iℓ) ∩ [b]| ≤ 1 ∀ [b] ∈ F
n−1
q /V

2. Rpr,ir ∩Rps,is = ∅ ∀ r, s ∈ [µ] where r 6= s.

6

Now let E = ∪µ
s=1Rps,is . If there exists some z ∈ E such that z ∼ pµ+1, then let iµ+1 = µ,

otherwise let iµ+1 = 0. We claim that

R = {Rp1,i1 , . . . , Rpµ,iµ , Rpµ+1,iµ+1
}

is a valid recovery set for the query Q = (p1, . . . , pµ+1).
First, we check Condition (1) for R. Assume by contradiction that for some some [c] ∈ F

µ
q /V,

there exist distinct a, b ∈
⋃µ+1

ℓ=1 Rps,is ∩ [c]. Since a, b ∈ [c], we have a ∼ b. As seen before, this
means that φ(a) ∼ φ(b). We consider two cases: φ(a) = φ(b) or φ(a) 6= φ(b).

If φ(a) = φ(b), then by definition of φ, we see that a− b ∈ 〈en〉. This means that b ∈ Ea. Since
V ∩ 〈ei, ej〉 = {0} ∀i, j ∈ [µ], part ii) of Theorem 4.6 implies that [a] 6= [b], a contradiction.

Thus, instead, we must have φ(a) 6= φ(b), which we write as a 6= b. This leads to a few
possibilities. Ab before, we differentiate two cases: either a, b ∈ E =

⋃µ
s=1Rps,is or without loss of

generality a ∈ E and b ∈ Rpµ+1,iµ+1
.

If a, b ∈ E =
⋃µ

s=1Rps,is , then a, b ∈
⋃µ

s=1Rps,is . This leads to a contradiction to Condition
(1) for R, as a and b are in the same bucket. By construction, φ(Rpµ+1,iµ+1

) = {φ(pµ+1)}, so

a, b ∈ Rpµ+1,iµ+1
implies a, b ∈ φ(Rpµ+1,iµ+1

) = {φ(pµ+1)}, or a = b = φ(pµ+1), and we would have

a contradiction to a 6= b.
Thus, we suppose without loss of generality that a ∈ E, and b ∈ Rpµ+1,iµ+1

. There are two
possibilities. If iµ+1 = 0, then by our selection of iµ+1, there is no z ∈ E such that pµ+1 ∼ z, but
b ∈ Rpµ+1,0 = {pµ+1}, so b = pµ+1, which means a ∼ b = pµ+1, a contradiction. If instead iµ+1 = µ,
this means ∃z ∈ E such that z ∼ pµ+1. Then there is some r ∈ [µ] such that z ∈ Rpr ,ir , and since
a ∈ E, we also have some s ∈ [µ] such that a ∈ Rps,is . This again leads to two possibilities: either
s = r or s 6= r.

Suppose s = r. Since b ∈ Rpµ+1,iµ+1
, we have that b 6= pµ+1 and also b ∈ Epµ+1

. We also have
pµ+1 ∈ Epµ+1

, so b 6= pµ+1 =⇒ b 6∼ pµ+1 by Theorem 4.6. Since z ∼ pµ+1, we must have b 6∼ z, or
transitivity of ∼ would break down. Since a ∼ b, this also means that a 6∼ z, so certainly z 6= a.
Since s = r, we have a, z ∈ Rpr,ir = Rps,is , so a − z = αeir for some α ∈ Fq \ {0}. We also have
b = pµ+1 + βeµ for some β ∈ Fq \ {0}, and we consider that a ∼ b and z ∼ pµ+1. We may combine
these as a− z ∼ b− pµ+1, or αeir ∼ βeµ. But this means that αeir − βeµ ∈ V. The only way this
would not be a contradiction to V ∩ 〈ei, ej〉 = {0} ∀i, j ∈ [µ] is if αeir = βeµ, but that would mean
ir = µ, which is impossible given our construction.

Thus, we consider s 6= r. If a = z, then a ∈ Rps,is , and a = z ∈ Rpr,ir , so a ∈ Rpr,ir ∩ Rps,is .
This is a contradiction to (2) for R. If instead a 6= z, note that b = pµ+1 ∼ z. This means that
a ∼ b ∼ z, so a ∼ z, and this is a contradiction to Condition (1) for R.

This concludes the proof that Condition (1) holds for R. Next, we show that Condition (2)
holds for R.

Again, consider the possibilities for a contradiction. If Rpr,ir ∩Rps,is 6= ∅ for some r, s ∈ [µ+1]
such that r 6= s, then there are two possibilities: either r, s ∈ [µ] or without loss of generality r ∈ [µ]
and s = µ+ 1.

If r, s ∈ [µ], then this would mean that there exists some p ∈ F
µ
q such that p ∈ Rpr,ir ∩ Rps,is .

But then p ∈ Rpr ,jr and p ∈ Rps,is , a contradiction to Condition (2) for R.
Thus, without loss of generality, we have r ∈ [µ] and s = µ+1. There are again two possibilities:

either iµ+1 = 0 or iµ+1 = µ.
If iµ+1 = 0, this means Rps,is = Rpµ+1,0 = {pµ+1}, and so the intersection must be {pµ+1}. This

would mean pµ+1 ∈ Rpr ,ir and so pµ+1 ∈ E. Since pµ+1 ∼ pµ+1 by the reflexive property of ∼, it is

7

a z ∈ E such that z ∼ pµ+1, a contradiction to iµ+1 = 0.
If instead iµ+1 = µ, we have some z ∈ E such that z ∼ pµ+1, so z ∈ Rpk,ik for some k ∈ [µ].

Since Rpr,ir ∩ Rpµ+1,iµ+1
6= ∅, we also have some a ∈ Rpµ+1,µ such that a ∈ Rpr,ir . As before, if

k = r, we have a−z = αek for some α ∈ Fq \{0}, and we have a−pµ+1 = βeµ for some β ∈ Fq \{0}.
But then a− z ∼ a− pµ+1, so αek ∼ βeµ, which leads to a contradiction as before.

This leaves k 6= r. Again, if a = z, this leads to a contradiction to (2) for R, and if a 6= z,
we still have a ∈ Rpµ+1,µ, so a ∈ φ(Rpµ+1,µ) = {pµ+1}, which means a = pµ+1 ∼ z, and so this
contradicts Condition (1) for R.

We have once again contradicted all alternatives, so Condition (2) must be satisfied for R.
Because R satisfies both conditions, R is a valid query recovery set. Since this holds for any query
Q = (p1, . . . , pµ+1) of µ+1 elements in F

µ
q , C is a batch code that can satisfy t = µ+1 requests.

4.1 The Case of a Diagonal Subspace

Using the subspace V = 〈(1, . . . , 1)〉 ⊂ F
µ
q , we are able to generate a valid bucket configuration as

long as q ≥ 3 and µ ≥ 3:

Theorem 4.9. Let q ≥ 3, µ ≥ 3 and V = 〈(1, . . . , 1)〉 ⊂ F
µ
q . Then C

F
µ
q
(ρ) is a batch code with

quotient-space bucket configuration induced by V and with properties m = qµ−1, τ = 1, and t = µ+1.

Proof. With this configuration, since dim(V) = 1, we have m = qµ−1.
We begin with the base case µ = 3, where V = 〈(1, 1, 1)〉, and t = 4. Since V ∩ 〈ei, ej〉 =

{0} ∀i, j ∈ [µ], recovering four copies of any one point is possible, and by Corollary 4.4, so is
recovering any four points in the same bucket. Recovering four query points in different buckets
is trivial using all direct access. This leaves the cases where the queries belong to either 2 or 3
distinct buckets. Without loss of generality and by Corollary 4.4, we need to address the queries
Q = (a, a, a, b), Q = (a, a, b, c), or Q = (a, a, b, b), where a, b, c ∈ F

3
q such that [a], [b], and [c] are all

distinct. We handle each of these separately:

1. Consider Q = (a, a, a, b). If [b] /∈ [Ea], then any three recovery sets may be used for a, and b
may be directly accessed. Otherwise, there is one value i ∈ [µ] such that [b] ∈ [Ra,i], and we
can satisfy the request using R = {Ra,0, Ra,j1 , Ra,j2 , Rb,0} such that j1, j2 ∈ [µ] \ i.

2. Recovering Q = (a, a, b, c) is similar to the first case, using Rb,0 and Rc,0. Since these eliminate
at most 2 recovery sets of a through intersection with [Ea], there will be at least one remaining
recovery set of a besides the direct access.

3. Consider Q = (a, a, b, b). Utilize Ra,0 and Rb,0. If [b] ∈ [Ra,i] for some i ∈ [µ], let j ∈ [µ] \ i,
otherwise let j be any j ∈ [µ]. This means that [b] /∈ [Ra,j] by construction. To see that
we can use both Ra,j and Rb,j , assume by way of contradiction that there exists some [p] ∈
[Ra,j] ∩ [Rb,j]. Then

[p] = [a+ αej] = [b+ βej],

where α, β ∈ Fq \{0}. This means (a+αej)− (b+βej) = a+(α−β)ej − b ∈ V, which in turn
means [a+ (α− β)ej] = [b]. Either α = β, so [a] = [b], a contradiction, or [b] ∈ [Ra,j], also a
contradiction. Therefore [Ra,j] ∩ [Rb,j] = ∅. Thus we may use R = {Ra,0, Ra,j , Rb,0, Rb,j}.

8

Now, assume that for some µ > 3, V = 〈(1, . . . , 1)〉 ⊂ F
µ−1
q generates a valid batch code with

t = µ. Then by Theorem 4.8, since V = 〈(1, . . . , 1)〉 ∈ F
µ
q satisfies V ∩ 〈ei, ej〉 = {0} ∀i, j ∈ [µ],

we can extend the batch code with quotient-space buckets configuration induced by V into a batch
code with quotient-space bucket configuration induced by V that can satisfy any query of t = µ+1
elements. By induction, we then have that for any µ ≥ 3, V = 〈(1, . . . , 1)〉 ⊂ F

µ
q generates buckets

for a batch code with t = µ+ 1.

5 Affine Cartesian Codes

Finally, we want to apply the techniques we have developed so far to all of the affine Cartesian
codes.

Theorem 5.1. Let CX(ρ) be an affine Cartesian code with X = A1 × · · · × Aµ of degree ρ where
µ ≥ 3. Let ν(ρ) := |{i ∈ [µ] | ρ + 1 < |Ai|}|. If ν(ρ) ≥ 3, then CX(ρ) is a batch code capable of
satisfying any t = ν(ρ) + 1.

Proof. For simplicity of notation, let ν := ν(ρ). Without loss of generality, under a change of
variable, we can consider {i ∈ [µ] | ρ+ 1 < |Ai|} = [ν]. Consider the puncturing function φ : Fµ

q →
F
ν
q that is obtained by puncturing the coordinates in the subset [µ] \ [ν]. Let V = 〈(1, . . . , 1)〉 ⊆ F

µ
q

and define the buckets for Cφ(X)(ρ) to be the sets [p̃]φ(X) := [p̃] ∩ φ(X) for p̃ ∈ φ(X) and where
[p̃] ∈ F

ν
q/φ(V). We will show that for a query Q = (p1, . . . , pν+1) ∈ Xν+1 ⊆ (Fµ

q)ν+1 for which
we wish to recover f(p1), . . . , f(pν+1), there exists a valid recovery set {Rp1,i1 , . . . Rpν+1,iν+1

} where
Rpℓ,iℓ ⊆ X with iℓ ∈ I ∪ {0} for all ℓ ∈ [ν + 1].

Consider the affine Cartesian code Cφ(X)(ρ). We show that this code has the same batch
properties as the code CFν

q
(ρ). Let

φ(Q) = (φ(p1), . . . , φ(pν+1)) ⊆ (φ(X))ν+1 ⊆ (Fν
q)

ν+1

by Theorem 4.9 there exists a query recovery set Rφ(Q) = {Rφ(p1),i1 , . . . , Rφ(pν+1),iν+1
} for φ(Q) in

CFν
q
with Rφ(ps),is ⊆ F

ν
q as in Definition 3.2 and i1, . . . , iν+1 ∈ [ν] ∪ {0}.

For all s ∈ [ν + 1], R
φ(X)
φ(ps),is

= Rφ(ps),is ∩ φ(X) matches the definition in Lemma 3.1. Since

ρ+ 1 < |Ai| for all i ∈ [ν], by that lemma the values of f(R
φ(X)
φ(pℓ),iℓ

) are enough to recover f(φ(pℓ)),

for any ℓ ∈ [ν + 1] and f ∈ Fq[x1, . . . , xν]
≤ρ. This means that

Rφ(Q) = {R
φ(X)
φ(p1),i1

, . . . , R
φ(X)
φ(pν+1),iν+1

}

is a query recovery set for φ(Q) in Cφ(X)(ρ). Furthermore, we have that by Condition (1) for CFν
q
(ρ),

it holds that

∣

∣

∣

∣

∣

(

µ+1
⋃

s=1

R
φ(X)
φ(ps),is

)

∩ [p̃]φ(X)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

µ+1
⋃

s=1

Rφ(ps),is

)

∩ [p̃] ∩ φ(X)

∣

∣

∣

∣

∣

≤ 1

for all p̃ ∈ φ(X) and by Condition (2) for CFν
q
(ρ) it holds that

R
φ(X)
φ(pr),ir

∩R
φ(X)
φ(ps),is

= Rφ(pr),ir ∩Rφ(ps),is ∩ φ(X) = ∅

9

for all r, s ∈ [ν + 1] with r 6= s.
We have thus shown that the query φ(Q) = {φ(p1), . . . , φ(pν+1)} ⊆ φ(X) can be recovered in

Cφ(X)(ρ) using the recovery sets

{R
φ(X)
φ(p1),i1

, . . . , R
φ(X)
φ(pν+1),iν+1

}. (3)

We state that the set {RX
p1,i1

, . . . , RX
pν+1,iν+1

} is a valid recovery set for Q in CX(ρ). Let RQ =

{Rp1,i1 , . . . , Rpν+1,iν+1
} be the set of recovery sets in F

µ
q where the indices correspond to the ones of

Equation (3). Let Q be a query obtained by appending µ−ν points of Fµ
q to Q. Using Theorem 4.8,

a query recovery set RQ can be constructed recursively by starting from Rφ(Q) such that RQ ⊆ RQ

and by taking only the recovery set for the points in Q and restricting them to X we obtain the
set RQ.

6 Conclusions

The work in this paper focuses on the study of batch properties of affine Cartesian codes. For affine
Cartesian codes, given a subspace V ⊆ F

µ
q , we define a bucket configuration where each bucket is a

cosets of V in the quotient space V ⊂ F
µ
q . We show that for such bucket configuration to define a

batch code, one needs to have that the intersection V ∩ 〈ei, ej〉 is trivial for all i 6= j. By choosing
V = 〈(1, . . . , 1)〉, we demonstrate that the affine Cartesian code C

F
µ
q
ρ can satisfy queries of length

t = µ+1 for any µ ≥ 3. We also able to extend the result for any affine Cartesian code, where the
size of the query depends on the total degree and the size of the subsets defining the code.

References

[1] T. Baumbaugh, Y. Diaz, S. Friesenhahn, F. Manganiello, and A. Vetter, Batch
codes from Hamming and Reed-Muller codes, J. Algebra Comb. Discrete Struct. Appl., 5
(2018), pp. 153–165.

[2] P. Beelen and M. Datta, Generalized Hamming weights of affine Cartesian codes, Finite
Fields Appl., 51 (2018), pp. 130–145.

[3] S. Bhattacharya, S. Ruj, and B. Roy, Combinatorial batch codes: a lower bound and
optimal constructions, Adv. Math. Commun., 6 (2012), pp. 165–174.

[4] C. Bujtás and Z. Tuza, Optimal combinatorial batch codes derived from dual systems,
Miskolc Math. Notes, 12 (2011), pp. 11–23.

[5] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, A survey on network codes for
distributed storage, Proceedings of the IEEE, 99 (2011), pp. 476–489.

[6] P. Heijnen and R. Pellikaan, Generalized Hamming weights of q-ary Reed-Muller codes,
IEEE Trans. Inform. Theory, 44 (1998), pp. 181–196.

[7] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, Batch codes and their applica-
tions, in Proceedings of the 36th Annual ACM Symposium on Theory of Computing, ACM,
New York, 2004, pp. 262–271.

10

[8] H. H. López, F. Manganiello, and G. L. Matthews, Affine Cartesian codes with com-
plementary duals, Finite Fields Appl., 57 (2019), pp. 13–28.

[9] H. H. López, C. Renteŕıa-Márquez, and R. H. Villarreal, Affine Cartesian codes,
Des. Codes Cryptogr., 71 (2014), pp. 5–19.

[10] M. B. Paterson, D. R. Stinson, and R. Wei, Combinatorial batch codes, Adv. Math.
Commun., 3 (2009), pp. 13–27.

[11] P. Ramakrishnan and M. Wootters, On taking advantage of multiple requests in error
correcting codes, CoRR, abs/1802.00875 (2018).

[12] A.-E. Riet, V. Skachek, and E. K. Thomas, Asynchronous Batch and PIR Codes from
Hypergraphs, ArXiv e-prints, (2018).

[13] N. Silberstein and A. Gál, Optimal combinatorial batch codes based on block designs, Des.
Codes Cryptogr., 78 (2016), pp. 409–424.

[14] V. Skachek, Batch and PIR codes and their connections to locally repairable codes, in Network
coding and subspace designs, Signals Commun. Technol., Springer, Cham, 2018, pp. 427–442.

[15] E. K. Thomas and V. Skachek, Constructions and bounds for batch codes with small
parameters, in Coding theory and applications, vol. 10495 of Lecture Notes in Comput. Sci.,
Springer, Cham, 2017, pp. 283–295.

11

