Skip to main content

Quantifying Uncertainty of Image Labelings Using Assignment Flows

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13024))

Abstract

This paper introduces a novel approach to uncertainty quantification of image labelings determined by assignment flows. Local uncertainties caused by ambiguous data and noise are estimated by fitting Dirichlet distributions and pushed forward to the tangent space. The resulting first- and second-order moments are then propagated using a linear ODE parametrization of assignment flows. The corresponding moment evolution equations can be solved in closed form and numerically evaluated using iterative Krylov subspace techniques and low-rank approximation. This results in a faithful representation and quantification of uncertainty in the output space of image labelings, which is important in all applications where confidence in pixelwise decisions matters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdar, M., et al.: A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inf. Fusion 76, 243–297 (2021)

    Google Scholar 

  2. Amari, S.I., Nagaoka, H.: Methods of Information Geometry. American Mathematical Society and Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  3. Ambrosio, L., Tortorelli, V.M.: Approximation of functional depending on jumps by elliptic functional via \(\Gamma \)-convergence. Comm. Pure Appl. Math. 43(8), 999–1036 (1990)

    Article  MathSciNet  Google Scholar 

  4. Åström, F., Petra, S., Schmitzer, B., Schnörr, C.: Image labeling by assignment. J. Math. Imaging Vis. 58(2), 211–238 (2017). https://doi.org/10.1007/s10851-016-0702-4

    Article  MathSciNet  MATH  Google Scholar 

  5. Barndorff-Nielsen, O.E.: Information and Exponential Families in Statistical Theory. Wiley, Chichester (1978)

    MATH  Google Scholar 

  6. Behr, M., Benner, P., Heiland, J.: Solution formulas for differential Sylvester and Lyapunov equations. Calcolo 56(4), 1–33 (2019)

    Article  MathSciNet  Google Scholar 

  7. Bertozzi, A., Luo, X., Stuart, A., Zygalakis, K.: Uncertainty quantification in graph-based classification of high dimensional data. SIAM/ASA J. Uncertain. Quantif. 6(2), 568–595 (2018)

    Article  MathSciNet  Google Scholar 

  8. Bishop, C.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  9. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)

    Article  MathSciNet  Google Scholar 

  10. Brown, L.D.: Fundamentals of Statistical Exponential Families. Institute of Mathematical Statistics, Hayward (1986)

    MATH  Google Scholar 

  11. Buades, A., Coll, B., Morel, J.M.: Image denoising methods. A new nonlocal principle. SIAM Rev. 52(1), 113–147 (2010)

    Article  MathSciNet  Google Scholar 

  12. Chung, F.: Spectral Graph Theory. American Mathematical Society (1997)

    Google Scholar 

  13. Grünwald, P., van Ommen, T.: Inconsistency of Bayesian inference for misspecified linear models, and a proposal for repairing it. Bayesian Anal. 12(4), 1069–1103 (2017)

    Article  MathSciNet  Google Scholar 

  14. Hochbruck, M., Lubich, C.: On Krylov Subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34(5), 1911–1925 (1997)

    Article  MathSciNet  Google Scholar 

  15. Huang, J.: Maximum likelihood estimation of Dirichlet distribution parameters. CMU Technique report (2005)

    Google Scholar 

  16. Johnson, N.L., Kemp, A.W., Kotz, S.: Univariate Discrete Distributions, 3rd edn. Wiley-Interscience, Hoboken (2005)

    Book  Google Scholar 

  17. Kotz, S., Balakrishnan, N., Johnson, N.L.: Continuous Multivariate Distributions: Models and Applications, vol. 1, 2nd edn. Wiley, Hoboken (2000)

    Book  Google Scholar 

  18. Marzouk, Y., Moselhy, T., Parno, M., Spantini, A.: An introduction to sampling via measure transport. In: Handbook of Uncertainty Quantification, pp. 1–41. Springer, Heidelberg (2017)

    Google Scholar 

  19. Minaee, S., Boykov, Y.Y., Porikli, F., Plaza, A.J., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2021). https://ieeexplore.ieee.org/document/9356353

  20. Owhadi, H., Scovel, C.: Brittleness of Bayesian inference under finite information in a continuous world. Electr. J. Stat. 9, 1–79 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Papamakarios, G., Nalisnick, E., Rezende, D.J., Mohamed, S., Lakshminarayanan, B.: Normalizing flows for probabilistic modeling and inference. J. Mach. Learn. Res. 22(57), 1–64 (2021)

    MathSciNet  MATH  Google Scholar 

  22. Pätz, T., Kirby, R.M., Preusser, T.: Ambrosio-Tortorelli segmentation of stochastic images: model extensions, theoretical investigations and numerical methods. Int. J. Comput. Vis. 103, 190–212 (2013)

    Article  MathSciNet  Google Scholar 

  23. Rasmussen, C.E., Williams, C.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  24. Risken, H.: The Fokker-Planck Equation: Methods of Solution and Applications, 2nd edn. Springer, Heidelberg (1989)

    Book  Google Scholar 

  25. Ronning, G.: Maximum likelihood estimation of Dirichlet distributions. J. Stat. Comput. Simul. 32(4), 215–221 (1989)

    Article  Google Scholar 

  26. Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications. CRC Press (2005)

    Google Scholar 

  27. Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29(1), 209–228 (1992)

    Article  MathSciNet  Google Scholar 

  28. Särkkä, S., Solin, A.: Applied Stochastic Differential Equations, vol. 10. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  29. Savarino, F., Schnörr, C.: Continuous-domain assignment flows. Eur. J. Appl. Math. 32(3), 570–597 (2021)

    Article  MathSciNet  Google Scholar 

  30. Schnörr, C.: Assignment flows. In: Grohs, P., Holler, M., Weinmann, A. (eds.) Variational Methods for Nonlinear Geometric Data and Applications, pp. 235–260. Springer, Heidelberg (2020)

    Google Scholar 

  31. Sitenko, D., Boll, B., Schnörr, C.: Assignment flow for order-constrained OCT segmentation. In: GCPR (2020)

    Google Scholar 

  32. Sitenko, D., Boll, B., Schnörr, C.: Assignment flow for order-constrained OCT segmentation. Int. J. Comput. Vis. 129, 3088–3118 (2021). https://link.springer.com/content/pdf/10.1007/s11263-021-01520-5.pdf

  33. Teschl, G.: Ordinary Differential Equations and Dynamical Systems, Grad. Studies Mathematics, vol. 140. American Mathematical Society (2012)

    Google Scholar 

  34. Van Loan, C.F.: The ubiquitous Kronecker product. J. Comput. Appl. Math. 123, 85–100 (2000)

    Article  MathSciNet  Google Scholar 

  35. Wainwright, M., Jordan, M.: Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn. 1(1–2), 1–305 (2008)

    Article  Google Scholar 

  36. Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MathSciNet  Google Scholar 

  37. Zeilmann, A., Petra, S., Schnörr, C.: Learning linear assignment flows for image labeling via exponential integration. In: Elmoataz, A., Fadili, J., Quéau, Y., Rabin, J., Simon, L. (eds.) SSVM 2021. LNCS, vol. 12679, pp. 385–397. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75549-2_31

    Chapter  Google Scholar 

  38. Zeilmann, A., Savarino, F., Petra, S., Schnörr, C.: Geometric numerical integration of the assignment flow. Inverse Probl. 36(3), 034004 (2020). (33pp)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2181/1 - 390900948 (the Heidelberg STRUCTURES Excellence Cluster).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Gonzalez-Alvarado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gonzalez-Alvarado, D., Zeilmann, A., Schnörr, C. (2021). Quantifying Uncertainty of Image Labelings Using Assignment Flows. In: Bauckhage, C., Gall, J., Schwing, A. (eds) Pattern Recognition. DAGM GCPR 2021. Lecture Notes in Computer Science(), vol 13024. Springer, Cham. https://doi.org/10.1007/978-3-030-92659-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92659-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92658-8

  • Online ISBN: 978-3-030-92659-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics