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Abstract. We propose a decentralized algorithm to collaboratively trans-
port arbitrarily shaped objects using a swarm of robots. Our approach
starts with a task allocation phase that sequentially distributes loca-
tions around the object to be transported starting from a seed robot
that makes first contact with the object. Our approach does not require
previous knowledge of the shape of the object to ensure caging. To push
the object to a goal location, we estimate the robots required to apply
force on the object based on the angular difference between the target
and the object. During transport, the robots follow a sequence of inter-
mediate goal locations specifying the required pose of the object at that
location. We evaluate our approach in a physics-based simulator with
up to 100 robots, using three generic paths. Experiments using a group
of KheperaIV robots demonstrate the effectiveness of our approach in a
real setting.

Keywords: Collaborative transport, Task Allocation, Caging, Robot
Swarms

1 Introduction

Several insect species exhibit an incredible level of coordination to lift and carry
heavy objects to their nest, whether for building materials or food. Paratrechina
longicornis can collectively transport heavy food from a source location to its
nest purely through local interaction with neighboring ants [10]. These ants are
capable of carrying an object of arbitrary shape and ten times heavier than their
bodies by collaborating in an effective manner. Designing approaches to realize
collaborative transport using a group of robots can find its application in ware-
house management [19] and collaborative construction of structures [14]. In this
work, we take inspiration from these natural insect species to design an approach
to collaboratively transport heavy objects (i.e. that cannot be carried by a sin-
gle robot) of arbitrary shape using a swarm of robots. The main challenges of
this type of collective transport are: 1. the effective placement of robots around
the transported object, 2. the effective application of force around the object
to avoid tugs-of-war, and 3. adapting to the objects center-of-mass movement
and the alignment of forces between neighbors. Our approach starts with a task
allocation phase, where the robots are sequentially deployed around the object,
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Fig. 1: Illustration of the process of object transpiration, with the robots starting
from a deployment cluster, caging the object and transporting the object.

a process known as caging [23]. Completing the task allocation phase, the robots
transport the object towards a target location as shown in fig. 1.

Collaborative transport is a well-studied topic: some approaches use ground
robots [14,24,7,3] for cooperative manipulation either with explicit communica-
tion [8] or force based coordination [9], while others use quadcopters carrying
a cable-suspended [5] or rigidly attached [27] object that is heavier than one
robot’s maximum payload.

Many of the approaches discussed earlier do not explicitly consider robot’s
interaction with other robots to continuously maintain cage formation, while
including an obstacle avoidance mechanism within their control framework. This
latter is particularly limiting when the perimeter of the pushed object is small,
as it might prevent the robots to get close to the object to apply an effective
force. In our approach, we design a sequential placement of robots to avoid this
scenario and maintain the initial formation continuously while moving.

Approaches like [2] assume that the position and shape of the object is either
continuously known or periodically updated using a central system. Measuring
the position and shape of the object in a real world scenarios might be difficult
and would limit the use of the transport system to some indoor applications.
Furthermore, some approaches either assume that the robots are readily placed
around the object to be manipulated [20] and design control strategies for the
manipulation of the object. A few approaches provide emphasis on caging or
design a control policy for a specific type of caging [13]. In this paper, we design
a complete system that allows the robots to start from a deployment cluster and
take up positions around the object to be transported, in a way that is simi-
lar to [7]. Our approach periodically estimates the centroid of the object using
only the relative positional information shared by neighboring robots, avoiding
the need to have continuous external measurements. Our task allocation allows
heterogeneous robots with varying capabilities (e.g. path planning), as well as
provides a way to addressing robot failures [22]. We provide sufficient conditions
for the convergence of our caging, and show that our approach terminates for
convex objects.
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2 Related Work

The concept of caging was first introduced by Rimon and Blake [18] for a finger
gripper. Caging is a concept of trapping the object to be manipulated by a
gripping actuator, in our work we use a group of robots to act as a single entity
to grip the object using form closure as in [23]. A simple form of caging and
leader-follower based strategies [26] are employed to push the object by sensing
the resultant forces. The main constraint of these works is that the robots cannot
follow paths with sharp turns.

Pereira et al. [13] introduce a new type of caging called object closure, in
which the object to be transported is loosely caged until the configuration sat-
isfies certain conditions in an imaginary closure configuration space. Each robot
in the team has to estimate the orientation and position of the object to use
this approach. Wan et al. [23] propose robust caging to minimize the number
of robots to form closure using translation and rotation constraints. Wan et al.
also extended their work for polygons, balls and cylinders to be transported on
a slope [24]. This approach requires continuous positional updates from an ex-
ternal system and uses a central system to compute the minimum number of
robots required.

An approach to caging L-shaped objects is proposed in [7]: the robots switch
between different behavioral states to approach the object and achieve potential
caging. This approach requires the robots to know certain properties of the object
beforehand, such as the minimum and maximum diameter of the caged object.
A caging strategy for polygonal convex objects is proposed in [6], the approach
uses a sliding mode fuzzy controller to traverse predefined paths. A leader robot
coordinates the transportation using the relative position of all the other robots.

Gerkey et. al. [11] propose a strategy for pushing an object by assigning
“pushers” and “watchers”. Watchers monitor the position of the object and
other robots, while pushers perform the pushing task. The approach provides
fault tolerance to robot failures and relies heavily on the performance of the
watchers. Chen et al. [3] propose an approach in which the robots are placed
around an object that occludes the transportation destination: the robots that
do not see the destination are the ones that push the object. The intuition behind
this placement is that the location that is most effective for pushing the object
is the occluded region, i.e. the opposite side of the direction of movement. Our
strategy is similar to [3], where we estimate the angular difference between the
object and the goal using the proximity sensor, and only the robots that are
below a threshold apply a force to the object. Our approach places robots all
around the object to adjust and follow a sequence of changing target location,
as opposed to only placing robots in the occluded region [3].

The work in [25] combines reinforcement learning and evolutionary algo-
rithms to coordinate 3 types of agents to learn to push an object. “Vision robots”
estimate the positions of the object and other robots, “evolutionary learning
agents” generate plans for the “worker robots”, and these latter execute the
plan to push the object. Alkilabi et al. [1] use an evolutionary algorithm to tune
a recurrent neural network controller that allows a group of e-puck robots to col-



4 V Vardharajan

Init Caging
Stop

Caging
Path

Consensus
Pushing Rotating Target

Reached
Stop

Barrier not reached

τp not reached τr not reached

Barrier Barrier

τi = τi + 1

Fig. 2: High level state diagram

laboratively transport a heavy object. The robots use an optical flow sensor to
determine and achieve an alignment of forces. The authors demonstrate that the
approach works well for different object sizes and shapes, however, the proper
functioning of the algorithm relies heavily on the performance of the optical flow
sensors.

3 Methodology

Fig. 2 shows the high level state machine used in our collaborative transport
behavior. At initialization, the robots enter into a sequence of task allocation
rounds allowing the robots to take up positions around the object to be trans-
ported with a desired inter-robot distance. Once caging is complete, the robots
that are a part of the object cage agree on the desired object path and start push-
ing and rotating the object. The path is represented as a sequence of points, and
all the robots in the cage use a barrier (i.e. they wait for consensus) to go through
each intermediate point.

3.1 Problem Formulation

Let Co(t) ∈ R2 be the centroid of an arbitrary shaped object at time t, xi(t) ∈ R2

the position of robot i at time t, and X(t) = {x1(t), x2(t), ..., xn(t)} the set
containing the positions of the robots at time t. Let So be a closed, convex set
representing the perimeter of the object to be transported. Given a sequence of
target locations T = {τ1, τ2, ..., τn} the task of the robots is to take up locations
around the perimeter of the object So with a desired inter-robot distance Id ∈ R
and drive the centroid of the object Co from a known initial state Co(0) to a
final state Co(tf ) at some time tf , passing through the target locations in T.

We assume that the robots can perceive the goal in the environment and know
an estimate of the initial centroid location Co(0) of the object to be transported.
The mass of the object is assumed to be proportional to the size with a minimum
density for the object. We also assume that the line connecting two subsequent
targets τx−1 and τx does not go through obstacles and the perimeter of the object
So to be transported is greater than 3 ∗ Id. We consider a point mass model for
the robots (ẋi(t) = ui) and assume that the robots are fully controllable with
ui. The robots are assumed to be equipped with a range and bearing sensor to
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determine the relative positional information and communicate with neighboring
robots within a small fixed communication range dC . In our experiments, we used
KheperaIV robots that are equipped with 8 proximity sensors at equal angles
around the robot, and we assume similar capabilities in general.

Co
Co

Stopping Distance

Seed Robot

Left Branch

Right Branch

New Task

New Task

Deployment Cluster

Edge following path

ut

utds

Id

dT

l1

r1
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(a) (b)

sp

tpln

rn

Fig. 3: Illustration of the process of task allocation based caging (a) illustrate
the process of edge following to reach the new target (b) the stopping condition
to terminate caging.

3.2 Task Allocation based Caging

Consider a group of robots randomly distributed in a cluster and a known initial
position of the object. The goal of the robots is to deploy to suitable location
around the perimeter of the object Co to guarantee object closure while respect-
ing the required inter-robot distance Id.

The caging process starts with the allocation of the first task (an estimation
of the centroid of the object) to a seed robot (closest robot to the object, elected
via bidding) as shown in Figure 3 (a). The seed robot moves towards the center of
the object until it detects the object with its on-board proximity sensors. As the
seed robot touches the object, it creates two target locations (one to its left and
one to its right, called branches). The robots bid for these new target locations
and continue the process of spawning the new targets along their branch until
the minimum distance between robots in the two branches is smaller than dT .

Our task allocation algorithm performs the role of determining the appropri-
ate target around the object for each robot, the caging targets. We consider a
Single Allocation (SA) problem [4], where every robot is assigned a single task.
The caging targets are sequentially available to the robots, i.e. a new target be-
comes available after a robot has reached its target. Note that these targets are
considered to be approximate (created by establishing a local coordinate system
like in [21]), hence they are refined by the robots using their proximity sensors
and the position of the closest robot in the branch on reaching the assigned tar-
get. The approach of sequential caging is particularly appropriate for scenarios
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where the shape of the object is initially or continuously unknown, the robots
sequentially assign robots to the closure and enclose the transported object.

We use a bidding algorithm [22] (described in the supplementary material
3): the robots locally compute bids for a task and recover the lowest bid of
the team from a distributed, shared tuple space [16]. The robots update the
tuple space if the local bid is lower, with conflicts resolved using the procedure
outlined in [22]). After a predetermined allocation time (Ta), the lowest bid in
the tuple space is declared as the winner. Ta has to be selected considering the
communication topology and delays to avoid premature allocation as detailed
in [22].

To reach the assigned target, the robots edge-follow the neighbors in their
target branch. The control inputs (ui) are generated using range and bearing
information from neighbors: the robots find their closest neighbor and create a
neighbor vector xn using the range and bearing information. The control inputs
are then ui = (⊥ xn) + (||xn|| − Id) ∗ xn; the first term makes sure the robot or-
bits the neighbor and the second term applies a pulling or pushing force to keep
the robot at distance Id. On reaching the target (detected using the proximity
sensors), the robot measure the distance to the closest neighbor of the branch
and apply a distance correction to keep the inter-robot caging distance to be Id.

The robot creates an obstacle vector using the proximity values: xo =
∑

i∈P pi
|P | ,

with P = {p0, .., p7}, pi ∈ R2 being the set containing the individual proxim-
ity readings as vectors. The inter-robot distance correction control inputs are
generated using: ui =⊥ xo. When there are not enough robots to complete the
caging, the robots can adapt by increasing Id and applying inter-robot distance
correction control until the termination condition is met.
Proposition 1 Consider two sets L and R denoting the left and right branch
respectively, L contains all the attachment points of the left branch robots to
the object, and R contains the attachment points on the right branch. The
caging terminates if ∃p ∈ L, q ∈ R such that dpq ≤ dT while dlr > dT ∀l ∈
L− {p} ∧ ∀r ∈ R− {q}.

Referring to fig. 3(b), consider two closed, convex sets, Lo = {l1, ..., ln} con-
taining all the points on the curve l1ln and Ro = {r1, ..., rn} containing all the
points on the curve r1rn. Set Lo and Ro are ordered and the distance between
the two constitutive points satisfy d(ln, ln− 1) > dT .

3.3 Behaviors for pushing and rotating

Once two robots around the perimeter of the object satisfy the termination
condition and a consensus is reached on the path, the robots initiate the target
following routine. The path is represented as a sequence of desired object centroid
target locations T and each entry τi = (τp, τr), with τp ∈ R2 and τr ∈ [0, 2π].
τp is the local target location and τr is the desired object orientation along the
z-axis (yaw) at that target location. The main intuition behind having these
local targets is to use a geometric path planner. One of the robot in the swarm

3 https://mistlab.ca/papers/CollectiveTransport/
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with the ability to compute a path to the user defined target τn compute the
path and share it as a sequence of states(targets) using virtual stigmergy [16].
The robots sequentially traverse the targets in T, on reaching a τp, the robots
rotate the object to τr. Each robot in caging computes ufp as in equ. 1 to exert
a forward force and push the object. Similarly, for rotating the object the robots
apply ufr as in equ. 2.

ufp = ut + uf + ucp, (1)

ufr = ur + uf + ucr (2)

where, ut and ur are a force to move the object towards the target by pushing,
and a torque to rotate the object to the desired angle, respectively. uf , as shown
in equ. 3, is the contribution that makes sure the robots stay in the same for-
mation. ucp (equ. 4) and ucr (equ. 5) are contributions that ensure the robots
stay in contact with the object during pushing and rotation.
Maintaining Formation The robot formation from the caging operation tends
to get distorted as a result of its application of pushing force on the object
to move it towards the target. The robots in the cage apply a force to stay
in this formation throughout the transportation task: they store a set Nf =
{(di, θi)|di ≤ k ∗ Id,∀i ∈ N} that contains the range and bearing measurements
of their neighbors, with k being a design parameter. The control input uf to
maintain formation is:

uf =
∑
∀i∈Nf

Kf (di − dcur)
di

[
di cos θi − cos θi−θcur

θi

di sin θi − sin θi−θcur

θi

]
(3)

The first term in the equ. 3 is the desired inter-agent distance correction, while
the second term applies the desired orientation correction. This formulation is
inspired from the commonly used edge potential to preserve a lattice structure
among the robots [12]. We apply this edge potential among adjacent robots in
a cage to preserve the formation and the desired inter-agent distance.
Maintaining contact with the Object The robots in the formation need to
determine if they need to apply a force and stay in contact with the object.
During pushing, the robots apply a control input to stay in contact with the
object, determining its effectiveness in pushing as in equ. 4. The effectiveness
of a robot’s pushing depends on the position of the robot with respect to the
object and the target.

The angle θp (a parameter) determines if the robot is an effective pusher:
if the angle between the object xo and the target τp is greater or equal to θp,
pushing is considered effective, and the robots apply an input ucp to maintain
contact. Similarly, the robots apply ucr to maintain contact during rotations:

ucp =

{
[0, 0]T , ∠(xo, τp) ≥ θp
Kcpxo

||xo|| , ∠(xo, τp) < θp
(4)

ucr =
Kcrxo
||xo||

(5)
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where xo is the proximity vector that determines the current object location in
robots coordinate system, and θp, Kcp and Kcr are design parameters. θp is a
design parameter that defines the effective pushing perimeter around the object,
as shown in fig. 4.
Applying forces The robots have to exert force in the right direction to move
and rotate the object according to the targets in T. The robots must apply force
in the desired angular window around the perimeter of the object to avoid tugs-
of-war. The control inputs ut and ur make sure the robots exert the force in the
right direction:

ut =

{
[0, 0]T , ||τpl − xi|| ≤ dtol
Kt[τpl−xi]

||τpl−xi|| , ||τpl − xi|| > dtol
(6)

ur =


[

0 −1

1 0

]
Kr(xi−Co)
||xi−Co|| , ∠(τp, Co) < θr

[0, 0]T , ∠(τp, Co) ≥ θr
(7)

where, dtol is a design parameter that defines the distance tolerance, τpl is the
local target computed by the robot using the centroid position and its position
along the perimeter of the object. On reaching an intermediate target τi the
robots share their approximate position with respect to a common coordinate
system computed as in [21] in a distributed, shared tuple space [16] with all the
other robots. The robots retrieve this positional information and compute the
centroid of the object Co, which is then used during the rotation of the object.

τp = (0, 0)

N

ut

ut

θtc

F
d

c

T

R uc

uc

θtc
θp

2π-θp

N

τp

2π-θp

θp

θtc

ut

d
c

R

T

F

uc

uc
ut

Fig. 4: Illustration of the resultant force and the angle of effective robots, the
effective pushing positions on the perimeter of the object is shown in green.

As in [3], we can prove that the object reaches the goal as t →∞, with the
difference being that the robots exerting force are not based on the occluded
perimeter of the object, but are instead the robots satisfying ∠(xo, τp) < θp.
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Theorem 1. The distance between the centroid of the object Co and the target
location τp strictly decreases if the velocity of the transported object is governed by
the translation dynamics equation of the object v̇o = kF . For t→∞, the center
of the object Co reaches τp, where v̇o is the derivative of the object velocity and
kF is the fraction of the force that is transfered to the object from the robots.

Proof. Fig. 4 shows the resultant F transferred from the robots to the object
and the effective angular window (along the curve cTd) on the perimeter of the
object to exert force. Consider all the robots along the curve cTd are applying
a force using a control input determined by the unit vector ut. The overall force
transferred to the object is F = (cx−cy)− (dx−dy), which is the tangent vector
(d− c) rotated by (π2 ) [3].

Consider the squared distance between the target τp = [0, 0]T and centroid

Co at time t to be dg(t) = ||τp − Co||2, taking the time derivative gives ḋg =

2k ∗ Co ∗ F , substituting F with the resultant force gives ḋg = k ∗ ((Coycx −
Coxcy) − (Coydx − Coxdy)). The distance dg(t) ≥ 0,∀t > 0, when the center
of the object lies outside the desired goal τp and since Co ∗ F < 0 is strictly

decreasing because of the force applied by the robots, we get limt→∞ ḋg = 0. In
other words, the center Co will eventually reach the goal τp.

4 Experiments

We performed a set of experiments in a physics-based simulator (ARGoS3 [17])
with a KheperaIV robot model under various conditions to study the perfor-
mance of our approach. We implemented our behavioral state machine for the
robots using Buzz [15]. We set the number of robots Nr ∈ {25, 50, 100} and adapt
the size S ∈ {[2, 2], [3.6, 6], [7.2, 12]}m and mass M ∈ {5.56, 30.024, 120.096}kg
of a cuboid object according to the number of robots. The mass of the object is
calculated assuming a constant density hollow material. In another set of exper-
iments, we used three irregular objects: cloud, box rotation, and clover. We set
the design parameters of the algorithm to the values shown in Tab. 1. We choose
the gain parameters for maintaining formation(kf ), contact with object(kcp) and
force application (kt) based on several rounds of trail-and-error simulations. The
tolerance parameters dtol and Orient. tol. are chosen to fit our non-holonomic
robots: a large part of the error shown in fig. 7 is due to the non-holonomic
nature of our robots. We evaluate the various performance metrics over three
benchmark paths: a straight line, a zigzag, and straight line with two 90° rota-
tions (straight rot in Fig. 5). All the paths consists of 9 waypoints (WPs) and
straight rot has its rotations at WP 3 and 6. Each experiment is repeated 30
times with random initial conditions.
Results We assess the performance of the algorithm observing the time taken
to cage the object and push it along the benchmark paths, plotted in Fig. 6. The
time to cage the object increases with the perimeter of the object: the median
times to cage are 247 s, 779 s and 2753 s for 25, 50 and 100 robots, respectively
transporting objects of size {2, 2}, {3.6, 6}, {7.2, 12}. The 3 irregular shapes took
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Table 1: Experimental parameters
Caging

ds 0.35m

Id 0.45m

dtol 0.05m

dT 1.85Id
Kt 30

Prox. thres. 0.7

Pushing

θp 115◦

Kcp 40(< 115◦), 20(≥ 115◦)

dtol 0.1m

Kf 40

Kt 60

Barrier 90%

Rotating

Kcr 450

Orient. tol. 5.72◦

Kf 400

Kr 600

Barrier 90%
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Fig. 5: Trajectory taken by the centroid of the object vs the desired path in the
three benchmarking paths.

around 300 s to cage when using 30 robots. The time taken to push the object
is approximately 100 s for the straight path (regardless of the object size) and
about 160 s for the zigzag with 25 and 50 robots.

When using 100 robots for the straight line and the zigzag, the system was
slightly faster, which could be explained by the higher cumulative force exerted
by the robots. The time taken following a straight path with rotations increases
sub-linearly with the number of robots with median times being 135 s, 155 s and
200 s for 25, 50 and 100 robots, respectively. Fig. 7 shows the centroid estimation
error, position error and orientation error on each row from left to right. The
centroid estimation error increases as the robots progress along the path, which
can be explained by the distortion in formation as the robots progress towards
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Fig. 6: Time to complete caging (left) and push an object along 3 paths (right).
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Fig. 9: Trajectories taken by the robots (left) and the inter-robot distance be-
tween the two adjacent robot in the cage (right).

the final target. The centroid estimation error for 100 robots is relatively large
and shows some variability, which could be largely influenced by the communi-
cation topology during the centroid estimation process, as detailed in sec. 3. The
object position error computed using the difference between the desired position
and the ground truth position appears stable around 0.1m, which is within our
design tolerance (dtol). In the straightrot case with 100 robots, the position er-
ror drastically increases around the final WPs, likely due to the drift induced
by the second rotation. The orientation error accumulates slowly for the other
paths, likely because the pushing force applied towards the target induces a small
torque. Without global positioning, the error accumulates at every rotation.

Fig. 8 shows the number of effective robots for pushing and rotating the
transported object, computed using 4. The number of effective pushers appears
to increase slowly as the robots progress towards the final target in all cases,
which could be due to distortions of the caging formation. The number of effec-
tive rotators stays constant for most of the cases, but increases during rotations,
due to the robots either getting closer to the corners or the mid point of the
object. This could be caused by the large error in the estimation of the centroid
resulting in a generation of biased control input to rotate the object.

Robot Experiments We perform a small set of experiments using a group
of 6 KheperaIV robots. The robots use a hub to compute and transmit the
range and bearing information from a motion capture system, for more details
on the experimental setup, we refer the reader to [22]. We performed two sets
of experiments with robots transporting a foam box of size (0.285, 0.435)m:
without any payload, and with 4 kg of LiPo battery on the object. Fig. 9 shows
the trajectories followed by the robots and the inter-robot distance during the 3
runs without any payload and one run with the payload. It can be observed that
the robots were able to consistently reach the target (0,0.9) by following the 3
WPs placed at every 0.3m. The inter-robot distance between the two adjacent
robots in a cage approximates well the desired Id = 0.45m at caging and it is
maintained consistently during pushing in all runs with a maximum standard
deviation of 0.1m.
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5 Conclusions

We propose a decentralized algorithm to cage an arbitrary-shaped object and
transport it along a desired path consisting of a set of object poses. The robots
periodically estimate the centroid of the object based on the positional informa-
tion shared by the robots caging the object, and use this information to trans-
port the object. We study the performance of our algorithm using a large set
of simulation experiments with up to 100 robots traversing 3 benchmark paths
and a small set of experiments on KheperaIV robots. As future work, we plan to
implement a path planner to provide the object path in a cluttered environment.
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