
Process Instance Query Language
and the Process Querying Framework

Jose Miguel Pérez Álvarez, Antonio Cancela Díaz, Luisa Parody, Antonia M. 
Reina Quintero, and María Teresa Gómez-López

Abstract The use of Business ProcessManagement Systems (BPMSs) allows com-
panies to manage the data that flows through process models (business instances)
and to monitor all the information and actions concerning a process execution. In
general, the retrieval of this information is used not only to measure whether the pro-
cess works as expected but also to enable assistance in future process improvements
by means of a postmortem analysis. This chapter shows how the measures extracted
from the process instances can be employed to adapt business process executions
according to other instances or other processes, thereby facilitating the adjustment
of the process behavior at run-time to the organization needs. A language, named
Process Instance Query Language (PIQL), is introduced. This language allows
business users to query the process instance measures at run-time. These measures
may be used both inside and outside the business processes. As a consequence, PIQL
might be used in various scenarios, such as in the enrichment of the information used
in Decision Model and Notation tables, in the determination of the most suitable
business process to execute at run-time, and in the query of the instance measures
from a dashboard. Finally, an example is introduced to demonstrate PIQL.

J. M. Pérez Álvarez (�)
NAVER LABS Europe, Meylan, France
e-mail: jm.perez@naverlabs.com

A. C. Díaz · A. M. R. Quintero · M. T. Gómez-López
Dto. Lenguajes y Sistemas Informáticos, Universidad de Sevilla, Sevilla, Spain
e-mail: acancela@us.es; reinaqu@us.es; maytegomez@us.es

L. Parody
Dto. Métodos Cuantitativos, Universidad Loyola Andalucía, Dos Hermanas, Spain
e-mail: mlparody@uloyola.es

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92875-9_4&domain=pdf
mailto:jm.perez@naverlabs.com
mailto:acancela@us.es
mailto:reinaqu@us.es
mailto:maytegomez@us.es
mailto:mlparody@uloyola.es
https://doi.org/10.1007/978-3-030-92875-9_4


1 Introduction

The management of the information regarding the current and past status of an
organization is crucial. The analysis of this information can be essential for different
purposes, such as to determine whether the objectives of the organization are
achieved, to ascertain whether the company evolves as was planned, to verify
whether decision-making processes must modify company’s evolution [5], and to
study how the management of the company can be improved. In this respect, it
could be stated that the sooner the state of the company is ascertained, the sooner
the decisions to “redirect” the company could be made. The status of an organization
is reflected in the information systems used to support its operations and, frequently,
by the BPMSs that are often used in business process-oriented organizations.

A BPMS enables the company’s activities to be assisted by means of automating
and monitoring the technical environment to achieve the defined objectives. In this
context, the status of the organization can be extracted from the data generated
during the execution of its activities, both stored in external repositories or by the
BPMSs [4]. Although the extraction of knowledge from external data repositories
is usually performed through SQL as the standard language that queries relational
data, the extraction of the status of the organization from a BPMS according to
the process executions has no standard form. However, BPMSs also help experts
to extract information about processes: how many instances of a process have been
executed, how many instances of a process are currently being executed, how the
process was executed (when it was started, finished, and/or canceled), and how
the activities of a process instance have been executed (who executed it, when it
was executed, the specific values of the data consumed and generated, or whether
the activity was canceled). In other words, BPMSs allow measuring how a specific
process works.

The state of executions of the processes can be inferred from measures of the
process instances, and consequently, these measures enable the improvement of
processes themselves. Note, however, that these measurements enable not only the
process execution improvement or a process model redesign but also the adaptation
of the current process instances according to the rest of the instances and available
resources at any given moment. These two different usages of measures are aligned
with the two types of monitoring at run-time: active and passive monitoring [6]. On
the one hand, active monitoring implies the automatic evaluation of measurements
since the system includes the adequate tools to detect deviations and notify them
at run-time. On the other hand, passive monitoring does not evaluate metrics
automatically, but it is the user who proactively requests their evaluation. The
monitoring of processes allows companies to ascertain whether certain performance
indicators, such as Key Performance Indicators (KPIs) and Process Performance
Indicators (PPIs), support the achievement of companies’ goals. KPIs represent the
companies’ business goals and are described in their strategic plans [7], whereas
PPIs are related to the processes instantiated in the companies to achieve their goals.
The incorporation of measures regarding the process instances into the business



process execution can be crucial since it allows the adaptation of the process
execution according to the performance of other business process instances at any
given moment.

To measure the degree of efficiency of the process output and also the level of
achievement of the company goals supported by KPIs and PPIs, the involved mea-
sures must be queried. This chapter introduces Process Instance Query Language
(PIQL) as a mechanism to query these measures regarding the business process
status, thereby making it possible to adapt the current execution of the instances
based on the obtained measures. This language has been designed to be easily
understandable for nontechnical people, since the managers may not be familiar
with complex query languages. PIQL is close to the natural language and brings
flexibility and agility to organizations because it empowers the managers to adapt
many aspects of the organization by themselves.

The measures obtained by means of PIQL queries are useful in many scenarios,
e.g., internally, within the process instance under execution to make decisions based
on its status, or externally, in third-party applications that show the measured values
in a dashboard. For example, PIQL allows business experts to extract measures to
decide the assignment of a task to a person, depending on the number of activities
executed by him/her in the past, decide when a processmust be started or stopped, or
determine whether a process evolves as expected. We have foreseen three scenarios
where the use of PIQL can be useful: decision-making using Decision Model and
Notation (DMN) [9], monitoring the evolution of the processes by means of external
dashboards, and management of business processes to decide the most suitable
process to execute and when it should be executed.

In order to illustrate a case where PIQL is used, an example is employed that
consists of a set of business processes related to component assembly in industry.
The example highlights the need to incorporate information about the instances of
other processes to adapt the execution of the current process according to the needs
and available resources at various moments.

The chapter is organized as follows: Firstly, Sect. 2 defines the main concepts
needed to understand the rest of the chapter. Secondly, Sect. 3 explains a scenario to
show the applicability of PIQL. Thirdly, Sect. 4 describes PIQL. Section 5 then
details the implementation of PIQL. Section 6 applies PIQL to the motivating
scenario, and Sect. 7 relates PIQL to the Process Querying Framework (PQF)
introduced in [11]. Finally, conclusions are drawn and future work is proposed in
Sect. 8.

2 Background

Processes of companies can be described using business process models. These
models represent the activities of a company, and they can be automated by means
of a Business Process Management System (BPMS). To lay the foundations of the



basic business process terminology used in the chapter, we adopt the following
definitions provided by Weske in [12]:

Definition 2.1 A business process consists of a set of activities that are performed
in coordination in an organizational and technical environment.

Definition 2.2 A Business Process Management System (BPMS) is a generic
software system that is driven by explicit process representations to coordinate the
enactment of business processes.

Definition 2.3 A business process model is an abstract representation of a business
process that consists of a set of activity models and execution constraints between
them.

Definition 2.4 A business process instance represents a specific case of an opera-
tional business of a company and consists of a sequence of activity instances.

Activities in business processes can be manual activities (that is, not supported
by information systems), user interaction activities (performed by workers using
information systems), or system activities (which are executed by information
systems without any human involvement). Activities can also be classified into
atomic, those that cannot be decomposed, and non-atomic. An activity instance is
a specific case of an activity model. In other words, business process models act as
blueprints for business process instances, while activity models act as blueprints for
activity instances.

Definition 2.5 A task is an activity that cannot be decomposed.

BPMSs help companies to monitor the execution of business processes by means
of performance measures or indicators. These performance measures are usually
graphically represented in dashboards, which are software tools that help experts
to analyze data, detect business problems, and make decisions. KPIs and PPIs
are two kinds of performance indicators. KPIs are employed to describe what the
company wants to achieve (e.g., increase in the number of assembled components
by 10%). When the indicators are related to the measurements of the processes
of the organization, PPIs are used (e.g., reduce by 15% the time of the assembly
process). Several of these by measures, above all those related to PPIs, are usually
stored by BPMSs and can be obtained by observing processes and analyzing these
observations [1, 2]. The aforementioned notions can be defined as follows:

Definition 2.6 A dashboard is a tool commonly used in business to visually
represent the indicators that are related to business goal achievements.

Definition 2.7 A Key Performance Indicator (KPI) is an indicator that measures
the performance of key activities and initiatives that lead to the success of business
goals. A KPI often involves financial and customer metrics to describe what the
company wants. Achievement of KPIs indicates whether the company is attaining
its strategic goals or not.



Definition 2.8 A Process Performance Indicator (PPI) is an indicator that involves
measures of the performance of the instances of the executed business processes.
PPIs are also related to the goals of the company but involve the measurement of
processes used to achieve them.

In order to support business process execution, every BPMS includes the follow-
ing components, as shown in the classical architecture published in [3]: an execution
engine, a process modeling tool, a worklist handler, and an administration and
monitoring tools. The external services represent external application or services
that are involved in the execution of a business process. The execution engine is
responsible for enacting executable process instances, distributing work to process
participants, and retrieving and storing data required for the execution of processes.
The process modeling tool is the component that allows users to create and modify
process models, annotate them with data elements, and store these models in or
retrieve them from a process model repository. The worklist handler is in charge
of offering work items to process participants and committing the participants to
work lists. Finally, the administration and monitoring tools administer and monitor
all the operational matters of a BPMS. These components retrieve and store data
from two repositories: the processmodel repository and the execution log repository.
The former stores process models, while the latter stores events related to process
execution. Note that in the classical architecture, there is no connection between
the data of the execution logs and the modeling module. In our approach, the PIQL
engine is the component in charge of connecting the administration and monitoring
tools and the process modeling tools. As a consequence, the modeler can execute
queries to evaluate the status of business process executions. In addition, the PIQL
engine is connected to execution engine, since the measures can be used internally in
the execution of other processes, and it is also connected to external services since
its measures can be used for different purposes, such as to monitor the status of the
BPMS in an external dashboard. Figure 1 shows the classical architecture with the
PIQL engine included.

Definition 2.9 Process Instance Query Language (PIQL) is a domain-specific
language (DSL) to query process and task instances in order to obtain measures
based on historical process executions.

Process modeling tools can use various notations to represent process models.
The de facto standard notation used for modeling business processes is Business
Process Model and Notation (BPMN), which supports business process modeling
by providing a notation that, on the one hand, is comprehensible to business users,
and, on the other hand, represents complex process semantics for technical users [8].

BPMN is not well-suited for modeling the decision logic since decisions are
often intermingledwith the control flow of processmodels. The ObjectManagement
Group (OMG) proposed DMN to decouple decision specifications from process
models. The goal of DMN is to provide a common notation that is readily
understandable by all business users in order to bridge the gap between the business
decision design and its implementation [9]. In other words, DMN can be seen as a



External services

Process 
modelling tools

Administra�on & 
monitoring tools

Execu�on 
engine

Worklist 
handler

Process model 
repository

Execu�on logs

External servicesExternal 
services

BPMS

PIQL Engine

Fig. 1 Architecture of a BPMS that includes a PIQL engine

tool that allows business users to describe repeatable decisions within organizations.
DMN provides two levels of modeling: the decision requirement level and the logic
level. The former is modeled by means of a Decision Requirement Diagram (DRD),
which shows how the decision is structured and what data is needed to make the
decision. The latter is modeled using decision tables, which is the standard way of
modeling complex business rules.

Definition 2.10 A decision table is a visual representation of a specification of
actions to be performed depending on certain conditions. A decision table consists
of a set of rules that specifies causes (business rule conditions) and effects (business
rule actions and expected results); it specifies which inputs lead to which outputs.

A decision table is represented by means of a table, where one column represents
one condition. For example, Table 1 shows a decision table that specifies which
assembly station should be used depending on the kind of available pieces and the
availability of the stations.

In Table 1, decision #1 states that if there are two or more #1657 pieces, five or
more #6472 pieces, and at least one #2471 piece, and only Station 6 is available,
then the component should be assembled in Station 6. Another example is Decision
#3 that results in the assembly of the component in Station 15. The letter “F” marked
with an “*” means “First” [9], and the decision engine will evaluate the rules in the
proposed order and stop once it has found a rule that applies.



Table 1 Example DMN table for selecting a task based on the availability of resources

F* Input Output

No of pieces No. of pieces No of pieces Is Station 6 Is Station 12 Is Station 15
code #1657 code #6472 code #2471 available? available? available? Station

#ID (int) (int) (int) (Boolean) (Boolean) (Boolean) (string)
#1 >= 2 >= 5 >= 1 True False False Station 6
#2 >= 1 >= 2 >= 6 False True False Station 12
#3 >= 7 Any >= 1 False False True Station 15
. . . . . . . . . . . . . . . . . . . . . . . .

3 Motivating Scenario

In order to show the applicability of PIQL in a real-world context, we introduce
a motivating scenario related to the assembly process in a factory, similar to the
ones used in the automobile and aerospace industries. A factory produces a set of
Components in a production line. The production line is composed of a set of actions
defined as the Line of Pieces. Each Line of Piece is executed in a factory Station and
combines a set of Pieces. Figure 2 depicts a conceptual model of this scenario using
the Unified Modeling Language (UML) [10]. The conceptual model includes the
elements that are the most relevant elements to the assembly process.

The decision regarding which Components to assemble depends on the cus-
tomers’ requirements and the availability of the Pieces and Stations at the time. A
specific Piece can be used in various Components. As a consequence, when a Piece
is available, different assembly processes could be set up at that moment. Moreover,
the same Station can be used in different assembly processes, and therefore the
manager has to control the availability of the Station in each case. The management
of Stations and Pieces involves a set of crucial and risky decisions for the company.

Component

code
name
descrip�on

Piece

code
name
descrip�on
number
loca�on

Line of Pieces

consumed �me

combinesSta�on

name 
loca�on

is assembled in 
1 **

*

*

Provider

name 
id

is supplied by

1

*

Fig. 2 Conceptual model of assembly process in UML notation [10]



Considering that there is a good amount of stock and that there are always Pieces
available, then the main problem is in making decisions about the Stations. These
decisions depend on all the running process instances, that is, Components that are
being assembled in parallel, Components that are waiting for the assembly to start,
or Components whose assembly is finishing.

Figure 3 shows two business processes related to the assembly of two different
types of components. These processes model the sequence of stations visited by
a component for its assembly. Although in both processes the components have to
pass through a number of stations, the order and requirements vary. On the one hand,
a “Type A Component” assembly must always pass through the three stations 6, 12,
and 15, although the order does not matter (hence the processmodel does not require
to visit all the three stations). On the other hand, a “Type B Component” assembly
varies according to the requirements of the component at any given time; it may visit
both stations, 12 and 15, or only visit one of the two. Finally, validation of “Type
A Component” is automated by checking if the component has visited all stations,
whereas validation of “Type B Component” requires expert supervision. The deci-
sions that route the execution from one station to the other can be seen in Table 1.

Querying data related to the status of the company, such as the number of
instances executed or availability of stations, is crucial in different contexts. The
following subsections introduce some of the contexts in which these queries are
essential.

Context 1: Dashboards
Business experts monitor and manage the evolution of the company’s business
processes, commonly by means of a dashboard. A dashboard visualizes several
indicators to help experts carry out correct management. For instance, the “increase
of the number of Type A Components by 24%” is an example of KPI defined for
measuring the goal “increase market share.” Meanwhile, “the number of instances
successfully executed” and “the instantiation time of the ‘Assembly of Type B
Component’ process” are examples of PPI. In order to obtain these indicators,
various measures should be defined: the number of executions of the “Assembly
of Type A Component” process indicates whether the KPI “increase of the number
of Type A Components by 24%” is reached, whereas the number of executions of
the “Assembly of Type B Component” process that have not been canceled solves
the PPI detailed above. To obtain the execution time of an instance, its start and
end times must be analyzed. In all these cases, the use of PIQL in obtaining these
measures is essential.

Context 2: DMN Tables
Another context in which PIQL is crucial is at decision points. In Fig. 3, both
diagrams contain decision tasks, such as the “Decide the tasks according to the
availability” task in the “Assembly of Type A Components” process. This task takes
into account the availability of Stations 6, 12, and 15 to decide which station should
be used to continue with the assembly of the component. The decision logic related
to this task can be modeled with a DMN table. In fact, Table 1 shows an example
logic behind the decision of the “Decide the tasks according to the availability”



Assembly of Type 
A Components

Assembly of Type 
B Components

As
se

m
bl

e 
in

St
a�

on
 3

As
se

m
bl

e 
in

St
a�

on
 5

   
  D

ec
id

e 
th

e 
ta

sk
s a

cc
or

di
ng

 
to

 th
e 

av
ai

la
bi

lit
y

Va
lid

at
e 

Pr
oc

es
s 

As
se

m
bl

e 
in

St
a�

on
 1

   
   

  D
ec

id
e 

th
e 

ta
sk

s a
cc

or
di

ng
 to

th
e 

co
m

po
ne

nt
Va

lid
at

e 
Co

m
po

ne
nt

As
se

m
bl

e 
in

St
a�

on
 1

1

As
se

m
bl

e 
in

 S
ta

�o
n 

6

As
se

m
bl

e 
in

 S
ta

�o
n 

12

As
se

m
bl

e 
in

 S
ta

�o
n 

15

As
se

m
bl

e 
in

 S
ta

�o
n 

2

As
se

m
bl

e 
in

 S
ta

�o
n 

12

As
se

m
bl

e 
in

 S
ta

�o
n 

15

W
ai

t u
n�

l t
he

 p
er

so
n 

in
 

ch
ar

ge
 o

f t
he

 in
st

an
ce

 
is 

av
ai

la
bl

e 
ex

cl
us

iv
el

y

F
ig

.3
B
us
in
es
s
pr
oc
es
s
m
od
el
s
fo
r
th
e
as
se
m
bl
y
of

tw
o
co
m
po
ne
nt
s
ca
pt
ur
ed

in
B
PM

N
[8
]



task. Depending on the number of pieces, whose codes are #1657, #6472, and
#2471, and on the availability of the stations, the decision varies. The availability
of Stations 6, 12, and 15 can be checked by executing a PIQL query since it is
necessary to ascertain whether other process instances are using these stations.

Context 3: Dataflow in Business Process Management
Finally, another context where PIQL becomes decisive is in the kind of information
that flows through the process, that is, the dataflow. At certain points, the infor-
mation related to other instances or resources is vital and should be included as
part of the dataflow. Following on with the previous example, after the execution
of the “Assemble in Station 5” task in the “Assembly of Type A Components”
process, there is a conditional event. The event needs to ascertain whether the
person in charge of the process instance is executing some task. If the person is
performing another task, then the process should wait until this person is released.
This information can be obtained through the execution of a PIQL query.

4 Process Instance Query Language

This section explains the main components of PIQL: syntax, semantics, and
notation. Furthermore, as the envisioned users of PIQL are nontechnical people,
a set of Patterns and Predicates is defined in this section to help them write queries
in a language that resembles the natural language.

A Process Instance Query Expression (PIQE) (an expression) is used to represent
a PIQL query, which is evaluated within the context of processes (P) or tasks
(T). The context specifies whether the query recovers information about process
instances or about task instances. Note that the result of a PIQE execution is
always a measure, that is, a numeric value. For example, Listing 1 shows a PIQE
that retrieves information about the number of process instances (note that the
expression starts with P to denote the process context). Furthermore, if we look
at the PIQE shown in Listing 1, we can find some other features such as (i) every
keyword or relation operator is written in uppercase letters and (ii) parentheses
could be used to group expressions.

Listing 1 Process instance query expression

P (ProcessName IS-EQUAL-TO "Assembly of Type A Components"
AND (Start IS-GREATER-THAN 2018-01-06)
AND (End IS-LOWER-OR-EQUAL-TO 2018-03-16));



4.1 Syntax

The syntax of PIQL is defined using the Extended Backus-Naur Form (EBNF) [13].
Thus, if x and y are symbols, x? denotes that x can appear zero times or once, x+
denotes that x can appear one or more times, x* denotes that x can appear zero or
more times, and finally, x | y represents that either x or y can appear. In addition, non-
terminal symbols are enclosed in < and >, and symbols and keywords are enclosed
in single quotes. For the sake of clarity, the definition of the non-terminal symbol
<String> has not been included in the grammar shown below, but it should be taken
into account that a String is a sequence of characters that starts and ends with double
quotes. For instance, "This is a String" is a String.

〈PIQE〉 ::= 〈Context〉 〈Disjunction〉 ‘;’
〈Context〉 ::= ‘P’ | ‘T’

〈Disjunction〉 ::= 〈Conjunction〉 (‘OR’ 〈Conjunction〉)*
〈Conjunction〉 ::= 〈Negation〉 (‘AND’ 〈Negation〉)*
〈Negation〉 ::= ‘NOT’? 〈Comparison〉
〈Comparison〉 ::= 〈Addition〉 (〈ComparisonOperator〉 〈Addition〉)*
〈ComparisonOperator〉 ::= ‘IS-EQUAL-TO’ | ‘IS-NOT-EQUAL-TO’

| ‘IS-LOWER-THAN’ | ‘IS-GREATER-THAN’
| ‘IS-LOWER-OR-EQUAL-TO’
| ‘IS-GREATER-OR-EQUAL-TO’

〈Addition〉 ::= 〈ArithmeticOperand〉 ((‘PLUS’ | ‘MINUS’) 〈ArithmeticOperand〉)*
〈ArithmeticOperand〉 ::= ‘(’? 〈Operand〉 ‘)’? ((‘MULTIPLIED-BY’

|‘DIVIDED-BY’) ‘(’? 〈Operand〉 ‘)’? ‘)’*
〈Operand〉 ::= ‘(’ 〈Disjunction〉 ‘)’ | 〈Property〉 | 〈Value〉 | 〈Variable〉
〈Property〉 ::= ‘ProcessName’ | ‘TaskName’ | ‘Start’ | ‘End’ | ‘Canceled’

| ‘Who’
〈Value〉 ::= 〈Number〉 | 〈String〉 | 〈Date〉 | 〈Boolean〉 | ‘NULL’
〈Date〉 ::= 〈Integer〉 ‘/’ 〈Integer〉 ‘/’ 〈Integer〉

| 〈Integer〉 ‘-’ 〈Integer〉 ‘-’ 〈Integer〉
〈Boolean〉 ::= ‘true’ | ‘false’

〈Number〉 ::= 〈Integer〉 | 〈Float〉
〈Float〉 ::= 〈Integer〉? ‘.’ 〈Digits〉
〈Integer〉 ::= ‘-’?〈Digits〉



〈Digits〉 ::= ‘(’‘0’..‘9’‘)’+

〈Variable〉 ::= ‘$’〈String〉

4.2 Semantics

The main concepts related to PIQL are detailed below.

Expression. An expression is a combination of one or more values, variables,
and operators. Each expression can be seen as one single query, and it should be
evaluated within a context: either the process or the task context.

Context. A context specifies whether one wants to retrieve information about
process instances (P) or task instances (T). The context determines the kind of
information and attributes that can be retrieved and/or used to define a query.

Process Instance Context. A process instance is described by a tuple

< CaseId,ProcessName, Start,End,Canceled,Who,ListOfGlobalData >,

where

• CaseId is an identifier that describes the process instance in an unequivocal way.
It is assigned by the BPMS when the instance is created.

• ProcessName is the name of the instantiated process model.
• Start is the date and time when the instance started.
• End is the date and time when the instance finished. If the instance has not

ended, this attribute is set to null.
• Canceled is the date and time when the instance was canceled. If the instance

has not been canceled, this attribute is set to null.
• Who is the person who has started the execution of the instance. If the instance

has been started by the system, this attribute is set to system.
• ListOfGlobalData is a collection of the process model global variables. The

instantiation of these variables can be crucial at decision points.

Task Instance Context. A task instance represents the information related to the
execution of a specific task within a process instance. It is described by the tuple:

< CaseId,TaskId,TaskName,ProcessName, Start,End,Canceled,Who >,

where the elements have the following meaning:

• CaseId is the identifier of the process instance of the activity being executed.
• TaskId is an identifier that describes the task instance in an unequivocal way. It

is assigned by the BPMS when the instance is created.
• TaskName is the name of the task.



• ProcessName is the name of the process model that contains the task. Note
that this property is derived from CaseId (by querying the process whose id is
CaseId).

• Start is the date and time when the task started. If the task has not started, then
this attribute is set to null.

• End is the date and time when the task finished. If the task has not finished, then
this property is set to null.

• Canceled is the date and time when the execution of the task was canceled. If
the task has not been canceled, then this property is set to null.

• Who is the person who has started the execution of the task instance. If the
instance was started by the system, this attribute is set to system.

As already stated, the result of a PIQE is a measure, that is, a numeric value.
PIQE supports three types of operators to filter instances: Logical, Comparison, and
Arithmetic. Operators are modeled using uppercase letters and the hyphens symbol.
The operators supported by PIQL, and grouped by types, are described below.

Logical Operators combine two Boolean values. The following logical operators
are defined in PIQL:

• NOT: logical negation, it reverses the true/false outcome of the expression that
immediately follows.

• OR: it performs the logic operation of disjunction.
• AND: it performs the logic operation of conjunction.

Comparison Operators define comparisons between two entities. These com-
parison operators are applied to the data types specified in the grammar: Date,
Number, Float, Integer, and String. For numeric data types, natural sort order
is applied; for Date type, chronological order is applied; and the comparison
of String data is performed in alphabetical order. The following comparison
operators are defined in PIQL:

• IS-EQUAL-TO evaluates whether two elements have the same value.
• IS-NOT-EQUAL-TO evaluates whether two elements have different values.
• IS-GREATER-THAN evaluates to true if the first element of the expression has

a greater value than the second. For Dates, this means that the first date is later
than the second one.

• IS-GREATER-OR-EQUAL-TO returns false when the second element of the
expression has a higher value than the first one; otherwise, it returns true.

• IS-LOWER-THAN is the inverse of the previous operator. It returns true when
the first element of an expression has a lower value than that of the second
element; otherwise, it returns false. For Dates, this means that the first date is
earlier than the second one.

• IS-LOWER-OR-EQUAL-TO is the inverse of IS-GREATER-THAN operator.



Table 2 Precedence of PIQL
operators

Precedence Operators Associativity

5 () Left to right

4 MULTIPLIED-BY Left to right

DIVIDED-BY

3 PLUS Left to right

MINUS

2 IS-EQUAL-TO Left to right

IS-NOT-EQUAL-TO

IS-LOWER-THAN

IS-GREATER-THAN

IS-LOWER-OR-EQUAL-TO

IS-GREATER-OR-EQUAL-TO

1 NOT Left to right

OR

AND

Arithmetic Operators are binary operators that define mathematical operations
between two entities. These operators are applied to numerical data. The
following arithmetic operators are defined in PIQL:

• PLUS: it performs the addition of the elements surrounding this operator.
• MINUS: in the A MINUS B expression, the MINUS operator performs the

subtraction of B from A.
• MULTIPLIED-BY: it performs the multiplication of the first and second

elements of the expression.
• DIVIDED-BY: it performs the division of the first element by the second

element.

Table 2 shows the precedence and associativity of the different operators defined
in PIQL. The column Precedence holds numbers that specify the precedence
of the operator specified in the row. The greater the number is, the higher
precedence the operators have.

Variable. A variable can be seen as a placeholder, as it is replaced with a specific
value at run-time. A variable can be used to write PIQEs in a more flexible way.
The value of a variable needs to be specified by the user at run-time. However,
there is also a set of system variables that do not need to be specified, which are:

• $yesterday evaluates to the day before the current date.
• $today or $current_date evaluates to the current date.
• $this_instant evaluates to the current timestamp.
• $tomorrow evaluates to the day after the current date.



Two special symbols used in the PIQL grammar are composed of:

• “$”: this operator is used to indicate a variable.
• “;”: the semicolon operator marks the end of a PIQE.

4.3 Patterns and Predicates

Since we envision that the main users of PIQL will be nontechnical people, PIQL
is enriched with a set of patterns and predicates that help users to write queries in
a language that resembles the natural language. The patterns and predicates could
easily be defined for several languages. Thus, for example, there could be a set of
patterns for English speakers, another set for Spanish speakers, and so on. In this
chapter, the set of patterns for English speakers is defined, as shown in Tables 3
and 4. These patterns and predicates can be automatically translated into PIQEs.
Therefore, these patterns and predicates are not only the mechanisms that make
PIQL more friendly to nontechnical people but also the mechanisms that make the
language more flexible, because the patterns can be easily adapted to be closer to
the modeler’s mother tongue.

A pattern is a mapping between a sentence, or part of a sentence written in the
expert’s mother tongue, and an element of the PIQL grammar. For example, the
pattern “The number of instances of processes” is mapped to the Process Instance
Context element, in the case of the English language. This means that a nontechnical
user can start a query by writing “The number of instances of processes” instead
of just writing “P” to specify the context in which the query must be evaluated.
Table 3 shows the PIQL patterns defined for English speakers and their relation to
the grammar elements.

A predicate is a pattern that represents a Boolean-valued function written in
a natural language. For example, instead of writing “The number of instances of
processes whose end date is not equal to Null,” the user can write “The number
of instances of processes that are not finalized.” Predicates are transformed into
patterns, and then these patterns are transformed into PIQEs, written according
to the grammar introduced in Sect. 4.1. A set of predefined predicates and their
mappings to patterns is shown in Table 4.

Finally, note that the use of patterns and predicates is not mandatory. Thus,
third-party applications or technical users can also use the “raw” language (without
patterns and predicates).



Table 3 PIQL patterns for English language

Grammar component Pattern

Process instance context The number of instances of processes

Task instance context The number of instances of tasks

Properties Attributes Pattern syntax
idCase With the case id

Process_Name With the name

Task_Name With the name

Start With the start date and time

End With the end date and time

Canceled Canceled

Who Executed by the user

ARITHMETIC_OP Operator Pattern syntax
PLUS Plus

MINUS Minus

MULTIPLIED-BY Multiplied by

DIVIDED-BY Divided by

BOOLEAN_OP Operator Pattern syntax
NOT Not

AND And

OR Or

COMPARISON_OP Operator Pattern syntax
IS-EQUAL-TO Is equal to

IS-NOT-EQUAL-TO Is not equal to

IS-LOWER-THAN Is less than

IS-GREATER-THAN Is greater than

IS-LOWER-OR-EQUAL-TO Is less than or equal to

IS-GREATER-OR-EQUAL-TO Is greater than or equal to

Table 4 PIQL predicates for English language

Predicate Transformed pattern

That are finalized End date is not equal to Null

That are not finalized End date is equal to Null

That are canceled Canceled is not equal to Null

That are not canceled Canceled is equal to Null

That are executed by {name} The user is equal to {name}

With start before {date and time} A start date is less than {date and time}

With end before {date and time} An end date is less than {date and time}

With start after {date and time} A start date is greater than {date and time}

With end after {date and time} An end date is greater than {date and time}



5 Implementation

In order to validate the approach, an implementation of PIQL has been developed
using a set of mature technologies. The core element of the implementation is the
PIQL engine, which is in charge of executing queries and returning the results.1

Note that the PIQL engine can be connected to any system in order to integrate the
results of PIQEs in the various contexts in which PIQL may be used: dashboards,
DMN tables, and dataflows. Before going into the details of the PIQL engine
implementation, it should be mentioned that PIQL provides a dual format of a
query: a user format and a machine format, which is less verbose and better
processed by machines. The two formats and their relationships are depicted in
Fig. 4. Note that the user format is related to the set of patterns and predicates
introduced in the previous section, which helps users write queries in a language
closer to the natural language.

Figure 4 shows how the PIQL engine works. Firstly, a user writes a query using a
language close to English (user format). The PIQL engine then transforms the query
into a PIQE by means of a “Grammar preprocessor” (machine format). Note that a
PIQE does not contain any patterns or predicates and also that the “Grammar proces-
sor” is the component that allows the interaction with third-party applications that
may use the machine format. The “PIQL grammar processor” evaluates the PIQE by
extracting the information from the BPMS. Finally, the “Platform communication
interface” is the component that deals with different BPMS technologies by means
of different drivers. Figure 4 shows how the Camunda™ driver queries the BPMS
using a REST API.

As mentioned previously, PIQL can be used in different contexts: dashboards,
DMN tables, and dataflows. Hence, the PIQL engine should be integrated in each
context. As an example, Fig. 5 shows the architecture defined to include context
information in DMN tables. Since the integration of the PIQL engine in the other
contexts is similar to this model, the rest of the section details this example.

The BPMS chosen is that of Camunda™ since it is an open-source platform that
includes the workflow engine, the DMN evaluator, and the storage of logs for every
process, which are required to implement the proposed architecture. Camunda™
also includes a set of APIs, which is the mechanism employed to extract the
information regarding the processes and tasks needed for the evaluation of PIQEs.
The main components depicted in Fig. 5 are:

• REST Layer: This component is in charge of managing the communication
between Camunda™, the DMN evaluator, and the PIQL engine. This component
is implemented using a model—view—controller framework and it feeds the
DMN evaluator by means of a REST API that has been implemented using

1 The readers may test the PIQL engine at http://estigia.lsi.us.es:8099/piql-tester.

http://estigia.lsi.us.es:8099/piql-tester


Fig. 4 Query transformation example

Jersey.2 The data exchanged using this component is in JSON format.3 When a
DMN decision has to be evaluated, the BPMS requests the information using the
REST Layer component. This request is then managed by the “Controller” layer.

• Controller: This component receives a request from the REST Layer and is
in charge of using the Grammar Preprocessor, if needed, and later, the PIQE
Grammar Helpers. Note that if the query is not written in the user-friendly
notation, then the preprocessor is not needed.

• Grammar Preprocessor: This component handles the mapping of the user-
friendly PIQL notation to PIQEs.

• PIQE Grammar Helper: This component, together with the PIQL Engine, is
responsible for resolving the PIQEs. The technology employed to implement this
component is xText, an open-source framework for the development of textual
domain-specific languages.4

• PIQL Engine: This component analyzes the query by means of the PIQE
Grammar Helpers. It then calculates the information needed to solve the query
and extracts that information from the BPMS. Finally, it returns the value of the
PIQE to the controller in order to finalize the request. Note that this component
does not have direct communication with the platform (Camunda™ in this case)
since, to decouple the engine from the platform, a driver is introduced. This driver
acts as an abstract interface to access the real platforms.

2 https://jersey.github.io/.
3 https://www.json.org/.
4 https://www.eclipse.org/Xtext/.

https://jersey.github.io/
https://www.json.org/
https://www.eclipse.org/Xtext/


APIs
D

AO
La

ye
r

C
on

tro
lle

rs

Bu
sin

es
s

kn
ow

le
dg

e
Pr

oc
es

s
an

d
lo

g
st

or
ag

e

json

R
E

ST
La

ye
r

(A
PI

)

B
us

in
es

s
kn

ow
le

dg
e

m
od

el
le

r

BP
M

S

ca
m

un
da

BP
M

pl
a�

or
m

G
ra

m
m

ar
pr

e-
pr

oc
es

so
rs

DM
N

in
te

gr
a�

on

O
th

er
dr

iv
er

s

jso
n

P
IQ

L
E

ng
in

e

C
am

un
da

dr
iv

er

PI
Q
LA

rc
hi
te
ct
ur
e

In
te
gr
a�
on

w
ith

PI
Q
LA

rc
hi
te
ct
ur
e

P
IQ

E
gr

am
m

ar
H

el
pe

rs

F
ig

.5
PI
Q
L
ar
ch
it
ec
tu
re



• Driver: A driver is responsible for communicating with a real platform and this
is the component that knows the specific details of that platform. Note that every
system can accept different requests and return different responses. Even worse,
there are ad hoc systems which do not provide any API but do provide other ways
of retrieving information. This means that one PIQE has to be reformulated, and
the reformulation depends completely on the system being used. For example, in
some cases, the driver should carry out data processing before returning PIQL
data, while in other cases a PIQE needs to be translated into several API requests.

• Camunda Driver: In the case of Camunda™ the driver uses the Camunda history
service, which, in turn, uses Camunda™ REST APIs.

• DAO Layer: This component is responsible for storing the business knowledge.
Hibernate is the technology employed to implement and manage the object-
relational mapping.5

• Business Knowledge Modeler: This component allows users to handle PIQEs and
to manage the DMN tables. The implementation of this component has taken
advantage of the architecture revealed herein and constitutes a Web application
implemented using HTML, CSS, and AngularJS.

6 Application

The following subsections show examples of queries that are used in the three
contexts explained during the chapter. Note that each query is written in the two
PIQL notations: the user-friendly format and the machine format.

6.1 Dashboard Enriched with PIQL

A dashboard is composed of a set of measures that enables business experts to
easily visualize the state of the company by means of different KPIs and PPIs.
An example of KPI in the context of the motivating scenario introduced in Sect. 3
could be “increase in the number of Type A Components by 24%.” The following
PIQL queries should be executed to obtain the measures that allow the user to verify
whether the KPI is reached:

• Query 1: The number of process instances with the name “Assembly of Type A
Components” that start after 2017-12-31 and end before 2019-01-01.

/* PIQE using user-friendly notation */
The number of instances of processes with the name

’Assembly of Type A Components’ that start
after 2017-12-31 and end before 2019-01-01

5 http://hibernate.org.

http://hibernate.org


/* PIQE */
P ProcessName IS-EQUAL-TO ’Assembly of Type A Components

’ AND Start IS-GREATER-THAN 2017-12-31 AND End
IS-LOWER-THAN 2019-01-01;

• Query 2: The number of process instances with the name “Assembly of Type A
Components” that start after 2018-12-31 and end before today.

/* PIQE using user-friendly notation */
The number of instances of processes with the name ’

Assembly of Type A Components’ that start after 2018
-12-31 and end before $today

/* PIQE */
P ProcessName IS-EQUAL-TO ’Assembly of Type A Components

’ AND Start IS-GREATER-THAN 2018-12-31 AND End
IS-LOWER-THAN $today;

Note that the comparison of the results obtained from Query 1 and Query 2
determines whether the increase of 24% has been reached in 2019; if today is in
2019.

Additionally, an example of a PPI that could be shown in the dashboard is “the
number of successfully executed instances of the Assembly of Type B Component
process.” The corresponding PIQE calculates the number of process instances with
the name “Assembly of Type B Components” that are not canceled and that ended
before today.

/* PIQE using user-friendly notation */
The number of instances of processes with the name ’

Assembly of Type B Components’ that end before $today
and are not canceled

/* PIQE */
P ProcessName IS-EQUAL-TO ’Assembly of Type B Components’

AND End IS-LOWER-THAN $today AND Canceled IS-EQUAL-TO
null;

6.2 DMN Enriched with PIQL

In the DMN context, PIQL can be applied as an extension of the standard by means
of using expressions written in PIQL to define variables. These variables can be
included in decision tables. A decision table defines a set of input variables whose
values should be taken into account to make the decisions. In our approach, a PIQE



Table 5 Adaptation of DMN Table 1 with PIQL

F* Input Output

No of pieces No of pieces No of pieces

cod. #1657 cod. #6472 cod. #2471 $avSt6 $avSt12 $avSt15 Station

#ID (integer) (integer) (integer) (integer) (integer) (integer) (string)

#1 >= 2 >= 5 >= 1 0 – – Station 6

#2 >= 1 >= 2 >= 6 – 0 – Station 12

#3 >= 7 Any >= 1 – – 0 Station 15

. . . . . . . . . . . . . . . . . . . . . . . .

can be used to calculate the value of the input variable. For example, the DMN table
in Sect. 3 (see Table 1) models the requirements that decide which task must be exe-
cuted in accordance with the availability of pieces and stations in the context of the
motivating scenario. Note that to calculate the availability of the different stations,
we need to query not only the running instances of the “Assembly of Type A Com-
ponent Process” but also the running instances of all the other processes that use
Station 6, 12, or 15. These queries can be executed using the PIQL engine. Table 5
is an adaptation of the DMN, Table 1, that takes the advantages of using PIQL.

The main difference between Tables 1 and 5 is related to the use of PIQL to
answer the questions, “Is Station 6 available?”, “Is Station 12 available?”, and “Is
Station 15 available?”. In Table 1, the cells in the “Is Station 6 available?” column
hold Boolean values, while the same cells in Table 5 hold integer values. These
integer values are the results of the evaluation of PIQEs whose values are stored
in the “$avSt6” variable. Equally, the “Is Station 12 available?” and “Is Station
15 available?” columns are replaced with the values that hold the “$avSt12” and
“$avSt15” variables. Note that the change of the data type (fromBoolean to integer)
has been carried out because PIQEs always return numeric values. This requirement
is not a problem, because the availability of “Station 6” can be obtained by counting
the number of task instances with the name “Assemble in Station 6” and with a
null end date. If the result of this PIQE is 0, then the station 6 is available, that is,
nobody is using this station. In contrast, if the result of this PIQE is greater than or
equal to 1, then the station is not available. The PIQE that enables us to ascertain
whether station 6 is available, and whose value is stored in the “$avSt6” variable,
is formulated as follows:

/* PIQE using user-friendly notation */
The number of instances of tasks with the name ’Assemble in

Station 6’ that are not finalized

/* PIQE */
T TaskName IS-EQUAL-TO ’Assemble in Station 6’ AND End

IS-EQUAL-TO null;

Another place in which PIQL can be used is in the context of the “Validate
Process” task (see the “Assembly of Type A Components” process in Fig. 3). This



task checks whether the component satisfies all the requirements to be assembled.
For example, one of the main requirements may be that all Type A Components
have to pass through the three stations (6, 12, and 15), without a predefined order,
to finish the assembly process. Thus, to check this requirement, the corresponding
PIQE has to answer the following question: Has a specific process instance already
executed the “Assemble in Station 6”, “Assemble in Station 12”, and “Assemble in
Station 15” tasks? Note that this question makes sense in a DMN scenario in which
a decision has to be made. In order to answer this question, three different queries
should be evaluated:

1. The number of instances of tasks with a name that is equal to Assemble in
Station 6 and with a case id that is equal to $id

2. The number of instances of tasks with a name that is equal to Assemble in
Station 12 and with a case id that is equal to $id

3. The number of instances of tasks with a name that is equal to Assemble in
Station 15 and with a case id that is equal to $id

After evaluating the queries, the decision task should check that the three results
are greater than zero.

/* PIQE using user-friendly notation */
/* $Q_St6 */
The number of instances of tasks with the name ’Assemble in

Station 6’ with CaseId is equal to $id
/* $Q_St12 */
The number of instances of tasks with the name ’Assemble in

Station 12’ with CaseId is equal to $id
/* $Q_St15 */
The number of instances of tasks with the name ’Assemble in

Station 15’ with CaseId is equal to $id

/* PIQE */
/* $Q_St6 */
T TaskName IS-EQUAL-TO ’Assemble in Station 6’ AND CaseId

IS-EQUAL-TO $id;
/* $Q_St12 */
T TaskName IS-EQUAL-TO ’Assemble in Station 12’ AND CaseId

IS-EQUAL-TO $id;
/* $Q_St15 */
T TaskName IS-EQUAL-TO ’Assemble in Station 15’ AND CaseId

IS-EQUAL-TO $id;

6.3 Dataflow Enriched with PIQL

Following with the motivating scenario introduced in Sect. 3, the conditional event
of the “Assembly of Type A Components” process (see Fig. 3) needs to determine



whether the person in charge of the process instance is executing any task. The
availability of the person is stored in a variable of the process (whether local or
global), and its value can be obtained as a result of evaluating a PIQL expression.
Thus, the process uses the value of this variable to verify whether the event should be
thrown. The PIQE that is evaluated to calculate the value of the variable mentioned
previously should count the number of task instances executed by the user in charge
of the process instance that remain unfinished. Thus, if the user in charge of the
process is Lydia Friend, then the PIQE should be formulated as follows:

/* PIQE using user-friendly notation */
The number of instances of tasks executed by ’Lydia Friend’

that are not finalized

/* PIQE */
T Who IS-EQUAL-TO ’Lydia Friend’ AND End IS-EQUAL-TO null;

Remember that PIQEs return numeric values, and as a consequence, verification
of whether Lydia Friend is performing another task implies determiningwhether the
number of tasks that this person is executing is greater than zero or, in other words,
if the PIQE returns a number greater than zero.

7 Framework

Process Querying Framework (PQF) [11] establishes a set of components to be
configured to create a process querying method. As a query language, PIQL
implements some of these components. This section details these components and
how they relate to the framework. In addition, the answers to the decision questions
regarding the design that are implemented in PIQL, as suggested by the PQF, are
also included.

PIQL enables the extraction of information from process instances and the tasks
executed in these instances. During the execution of a specific process, not only the
information that flows through this process is crucial for making decisions about the
future evolution of the process, but also the information regarding the execution of
other processes. This dependency between process executions is due to information
and resources shared among them.

Therefore, since PIQL establishes a set of queries on top of the event log data
repository, the functional requirements become a set of Create, Read, Update, and
Delete (CRUD) operations over this repository. PIQL can read the system logs
at run-time to extract the necessary knowledge about past and current process
instances. Thus, the BPMS has to record the process and task executions and provide
a mechanism to query these executions, while PIQL establishes a set of “read
process” queries that isolates the user from technical details.

Figure 6 shows the main components of the PQF that PIQL supports. The
Model and Record active components denoted by rectangles are essential for



PIQL Engine

Event Log +
Running 

Instances
MeasurePIQE

Formatting

+ =

Event Log

Dynamic 
System 

1

Execute

Model, Simulate, Record 
and Correlate

Interpret
The Process
Querying

Framework

Recording
(BPMS)

• READ

PIQL Instructions

Query 
Intent

Query 
Condition 1

Query 
Condition 1

Query 
Conditions: 

PIQL Syntax

Monitoring

Running
Execution

Administration

Fig. 6 Instantiation of the process querying framework for PIQL

PIQL. Firstly, a process model is defined in a BPMS, and the event-log repository
is acquired automatically through the storage of the information generated by
process executions. This storage is carried out by the BPMS itself (see Fig. 1).
The majority of BPMSs enable the extraction of information about instances both
from past executions and from current executions (although the processes have not
finished). Therefore, this event-log repository includes information about finished
and unfinished processes. Section 4 defines the set of process querying instructions
supported by PIQL. PQF establishes that a Process Query Instruction is composed
of a process query intent and a set of process query conditions. The process query
intent of PIQL is to read in order to obtain a measurement (a specific quantity
value), and the process query conditions are its parameters, i.e., the inputs required
to execute a specific type of queries.

PIQL delegates the functionality of the “Prepare” component of the framework
to BPMSs, which internally have the necessary mechanisms for efficiently querying
the stored information and for providing the tools to take advantage of these
querying mechanisms. Once both the information stored and the queries are
established, the next step is the execution. As explained in Sect. 4, we define a
PIQL engine in order to execute the queries. At run-time, the PIQL engine links
the queries with the repositories and instantiates the specific values according to the
query under execution. The results of the PIQL queries are measurements that are
interpretable by users, which means the results may be integrated in a DMN table,
visualized in a dashboard, or used to enrich the dataflow, as seen in this Chapter.



Finally, PIQL answers the decision questions regarding the design proposed by
the PQF [11] in the following way:

• DD1. Which behavior models to support?
PIQL defines queries over process instances and tasks executed in these instances.
Not only is the information generated by completed processes, but also the data
generated by running processes is considered to be stored. When certain pro-
cesses share the same resources and execute the same activities, the information
related to the running instances becomes crucial. Therefore, this information is
stored and queried using PIQL.

• DD2. Which processes to support?
PIQL establishes queries on top of finite process semantics, where the collection
of processes lead to a terminate state. However, since during the execution of a
process the information included in the instance is recorded, PIQL can extract the
instance information without the need of finishing the process.

• DD3. Which process queries to support?
The intent of PIQL is the reading in order to obtain a measurement, that is,
a numerical value. The operations in PIQL enable a combination of logic,
comparative, and arithmetic operations. PIQL is capable of selecting specific
behavior, i.e., process instance from a process repository, and of establishing a
measurement.

8 Conclusions and Future Work

This chapter introduces a query language called Process Instance Query Language
(PIQL) and the corresponding execution engine. In combination, these enable
business experts to extract information from BPMSs. The syntax of the language
has been specified using the Extended Backus-Naur Form (EBNF) grammar and
its semantics has been specified. In order to validate the approach, various artifacts
have been developed using a set of mature technologies: an implementation of the
grammar, an engine that can be used to extract information from different platforms,
and a driver for the integration of the engine with the Camunda™BPMS platform.
The artifacts are part of a modular and extensible platform ready to be integrated
with other BPMS platforms.

In order to illustrate the potential of PIQL, a set of PIQL queries has been
presented. Furthermore, a real-world example of an assembly business process in
a factory has been introduced to demonstrate how PIQL may help nontechnical
people extract information about the status of the factory and, as a consequence,
improve the decision-making. The examples illustrate the flexibility of PIQL, and
how it can contribute to the organizations. Finally, we show how PIQL implements
the components of the PQF introduced in [11].

To conclude, future work will deal with (i) the extension of PIQL to enrich the
type of filters that can be included in queries with elements such as the use of



resources, execution times, business load, and security aspects, (ii) the inclusion
of other data models to be queried, such as business models or business data. Note
that currently only business instances can be queried by means of PIQL, and (iii)
the improvement of the PIQL engine performance using data caches, indexing, and
other similar mechanisms.

Reprint Figures 1 and 5 are reprinted with permission from J. M. Pérez-Álvarez,
M. T. Gómez López, L. Parody, and R. M. Gasca. Process Instance Query Language
to Include Process Performance Indicators in DMN. IEEE 20th International Enter-
prise Distributed Object Computing Workshop. IEEE, 2016. pp. 1–8 (“© IEEE”).

Acknowledgments This work was funded by Junta de Andalucia (European Regional Develop-
ment Fund ERD/FEDER) with the projects COPERNICA (P20_01224) and METAMORFOSIS
(FEDER_US-1381375).

References

1. del Río-Ortega, A., Resinas, M., Cabanillas, C., Cortés, A.R.: On the definition and design-
time analysis of process performance indicators. Inf. Syst. 38(4), 470–490 (2013). http://doi.
org/10.1016/j.is.2012.11.004

2. Dumas, M., García-Bañuelos, L., Polyvyanyy, A., Yang, Y., Zhang, L.: Aggregate quality of
service computation for composite services. In: Maglio, P.P., Weske, M., Yang, J., Fantinato,
M. (eds.) Service-Oriented Computing, pp. 213–227. Springer, Berlin, Heidelberg (2010)

3. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process
Management. Springer Publishing Company (2013)

4. Gómez-López, M.T., Borrego, D., Gasca, R.M.: Data state description for the migration to
activity-centric business process model maintaining legacy databases. In: BIS, pp. 86–97
(2014). http://doi.org/10.1007/978-3-319-06695-0_8

5. Gómez-López, M.T., Gasca, R.M., Pérez-Álvarez, J.M.: Decision-making support for the
correctness of input data at runtime in business processes. Int. J. Cooperative Inf. Syst. 23(4)
(2014)

6. González, O., Casallas, R., Deridder, D.: Monitoring and analysis concerns in workflow
applications: from conceptual specifications to concrete implementations. Int. J. Cooperative
Inf. Syst. 20(4), 371–404 (2011)

7. Maté, A., Trujillo, J., Mylopoulos, J.: Conceptualizing and specifying key performance indica-
tors in business strategy models. In: Conceptual Modeling - 31st International Conference ER
2012, Florence, Italy, October 15–18, 2012. Proceedings, pp. 282–291 (2012)

8. Object Management Group: Business Process Model and Notation (BPMN) Version 2.0. OMG
Standard (2011)

9. Object Management Group: Decision Model and Notation. Reference Manual. OMG Standard
(2014)

10. Object Management Group: Unified Modeling Language Reference Manual, Version 2.5.
OMG Standard (2015)

11. Polyvyanyy, A., Ouyang, C., Barros, A., van der Aalst, W.M.P.: Process querying: Enabling
business intelligence through query-based process analytics. Decis. Support Syst. 100, 41–56
(2017). https://doi.org/10.1016/j.dss.2017.04.011

12. Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer
(2012). http://doi.org/10.1007/978-3-642-28616-2

13. Wirth, N.: What can we do about the unnecessary diversity of notation for syntactic definitions?
Commun. ACM 20(11), 822–823 (1977). http://doi.acm.org/10.1145/359863.359883

http://doi.org/10.1016/j.is.2012.11.004
http://doi.org/10.1016/j.is.2012.11.004
http://doi.org/10.1007/978-3-319-06695-0_8
https://doi.org/10.1016/j.dss.2017.04.011
http://doi.org/10.1007/978-3-642-28616-2
http://doi.acm.org/10.1145/359863.359883

	Process Instance Query Language and the Process Querying Framework
	1 Introduction
	2 Background
	3 Motivating Scenario
	4 Process Instance Query Language
	4.1 Syntax
	4.2 Semantics
	4.3 Patterns and Predicates

	5 Implementation
	6 Application
	6.1 Dashboard Enriched with PIQL
	6.2 DMN Enriched with PIQL
	6.3 Dataflow Enriched with PIQL

	7 Framework
	8 Conclusions and Future Work
	References


