
Modelling Serverless Function Behaviours

Rafael Tolosana-Calasanz1, Gabriel G. Castañé2], José Á. Bañares1, and Omer
Rana3

1 Departamento de Informática e Ing. de Sistemas
Universidad de Zaragoza, Spain

2 Insight Centre for Data Analytics
University Collegue Cork, Ireland

3 School of Computer Science and Informatics
Cardiff University, UK

Abstract. The serverless computing model extends potential deploy-
ment options for cloud applications, by allowing users to focus on build-
ing and deploying their code without needing to configure or manage
the underlying computational resources. Cost and latency constraints in
stream processing user applications often push computations closer to
the sources of data, leading to challenges for dynamically distributing
stream operators across the edge/ fog/ cloud heterogeneous nodes and
the routing of data flows. Various approaches to support operator place-
ment across edge and cloud resources and data routing are beginning to
be addressed through the serverless model. Understanding how stream
processing operators can be mapped into serverless functions also of-
fers cost incentives for users – as charging is now on a subsecond basis
(rather than hourly). A dynamic Petri net model of serverless functions is
proposed in this work, which takes account of the computational require-
ments of functions, the resources on which these functions are hosted,
and key parameters that impact the behaviour of serverless functions –
such as warm/cold start up times. The model can be used by developers/
users of serverless functions to understand how deployment optimisation
can be used to reduce application time, and to analyse various scenarios
on choosing function granularity, data size and cost.

Keywords: Petri nets, Serverless economics, Dynamic models

1 Introduction & Motivation

Cloud computing has seen a transition over recent years, from virtual machines
to containers to functions. This transition has mainly been driven by reducing the
overhead of deploying user-based applications within a data centre. Increasing
demand for short running workloads has also driven this trend towards reducing
startup (referred to as cold start time) and deployment time. If the startup time
is significantly higher than execution time of a user application, understand-
ing how deployment optimisation can be used to reduce application execution
time remains an important challenge. Variation in demand (due to dynamically

changing input data streams) requires application resource scaling (up/ down),
forcing cloud providers to respond to this within a time-bounded manner.

Serverless computing generally refers to a cloud computing model that hides
the concept of a server, as a serverless computing platform allows users / develop-
ers to build and deploy their code without dealing with computational resources
(i.e. resource management activities). The unit of deployment is the code, which
is wrapped in several functions, subsequently invoked as a composition of func-
tions that form an application. Serverless computing provides a useful basis for
reacting to dynamically changing workloads in a cost-effective manner for a user.
User requests for computational resources within sub-second intervals provides
a more flexible way to access cloud resources, and enables better budgeting for
users. This also provides a useful business model for cloud providers to make
more effective use of resources that are not used for long running workloads. Us-
ing serverless based resource allocation, cloud providers are also able to utilise
their spare (under utilised) capacity in a more effective way.

Serverless computing and fog computing also benefit from increasing capa-
bility offered in user devices and sensor/actuators [5]. Cost and latency con-
straints prevent cloud-only processing, pushing computation closer to the sources
of data, and introducing important challenges for dynamically distributing op-
erators across heterogeneous edge/fog/cloud nodes [6], and routing of data flows
to the optimum computation node [7].

Understanding how stream processing operations can be mapped into (usu-
ally short running) functions at the edge/cloud layer, and the cost incentives
for users/ resource providers remains a significant challenge for serverless com-
puting. This paper proposes a dynamic Petri net model of serverless functions,
which considers the computational requirements of functions, resources on which
these functions are hosted, and key parameters that impact their behaviour –
such as warm/ cold start up times. The model can be exploited by developers/
users of serverless functions to understand how deployment optimisation can be
used to reduce application execution time, and to explore what-if scenarios for
choosing appropriate function granularity, data size and cost.

This paper is structured as follows: section 2 introduces estimated costs of
using functions across different vendors. Section 3 presents the key contribution
of this work – focusing on developing Petri net models of serverless functions,
taking account of the costing approach adopted by various existing cloud ven-
dors. Section 4 includes a description of how these models can be used, with
evaluation in section 5, followed by concluding remarks in section 6.

2 Serverless Function Economics

A number of vendors offer serverless functionality – ranging from Amazon AWS,
Google, Microsoft – to a number of additional vendors & open source systems
such as IBM Cloud Functions, Knative based on Kubernetes deployment, Apache
OpenWhisk-based function deployment, Cloudflare workers, Oracle functions,
etc. A single mechanism to compare costs across different serverless offerings

is very challenging, as the type of infrastructure (CPU type, execution speed),
memory supported (e.g. 128MB to 8GB), data transfer rates supported etc, dif-
fer widely across vendors. Azure and Lambda functions are generally integrated
with other services, making it challenging to do a feature to feature compari-
son across vendors. AWS offers the widest choice, offering serverless functions
with differing resource characteristics (different RAM and underlying processor
architectures). Figure 1 provides a costing undertaken on AWS Lambda using
a number of different variables (e.g. user authentication, number of pages pro-
cessed), and aligned with other AWS services (e.g. cloud monitoring and CDN
(CloudFront)). Google function allocation is based on the size of memory and
processor CPU speed, with compute time measured from the time a request
is received to the time that the function is signal to be completed (successful
termination, failure or a timeout). Compute time is measured in 100ms incre-
ments, rounded up to the nearest increment (e.g. a 170ms execution is billed as
200ms). For Microsoft Azure functions, billing is based on a per second resource
consumption basis (considering a vCPU) and number of executions carried out
within a time window. Consumption plan pricing includes a monthly free grant
of 1 million requests and 400,000 GBs of resource consumption per month per
subscription in pay-as-you-go pricing across all function apps in that subscrip-
tion.

Vendor Billable Unit (US$) Key considerations

Amazon Lamda
(128MB)

$0.0000000021 (1ms) Pricing based on requests and du-
ration

Amazon Lamda
(1024MB)

$0.0000000167 (1ms)

Amazon Lamda
(10240MB)

$0.0000001667 (1ms)

Google functions
(128MB, 200MHz
CPU)

$0.000000231
(100ms)

Pricing based on: compute time,
use of network capacity, number of
invocations

Google functions
(8192MB, 4.8GHz
CPU)

$0.000006800
(100ms)

MS-Azure functions $0.000016/GB-s Number of invocations

Table 1: Serverless Costs – based on [2–4]

Replacing existing container/VM-based provision with a function-based of-
fering (e.g. AWS Lambda) can lead to significant long term savings for a typical
hosting environment. For instance, consider that it takes 2s to serve a page view
based on the data from DynamoDB, we can calculate the total cost of serving
100K page requests. Even with a generous 1GB memory allocation and rela-
tively sluggish 2s processing time, the total cost for AWS Lambda would be less
than US$5 (calculated based on 1024MB AWS Lamda costs from table 1). A

key challenge in function-based deployments is the keep-alive time of these func-
tions between invocations. A cloud service provider may want to use synthetic
data to minimise the cold start time associated with starting up a function –
an important variable that influences both operational and energy costs for the
provider.

Fig. 1: Serverless Costs from Amazon AWS [1]

3 Serverless Models

We develop a serverless function model that can be hosted across different types
of resources – from data centre to edge nodes. The model can be used as a basis
to support capacity planning for serverless functions, enabling an application de-
signer to investigate their application requirements using the model. Petri nets
are a well-established formalism and have been used extensively to model con-
current and distributed systems. Reference nets are a specific type of Petri nets
that support greater levels of dynamism than ordinary Petri nets and support
Java code inscriptions. In this work, we make use of Reference nets and their
interpreter Renew to create dynamic serverless function models that can be con-
figured over a real system’s deployment. A quick introduction to the ordinary
Petri net theory can be found in [12]. An example of how Reference nets can be
applied to the modelling of applications and their mapping to cloud resources
can be found in [13].

Figure 2 depicts Petri net (shorted to net in the description below) patterns
to model a physical, hierarchical edge / cloud infrastructure. On the left, the net
represents a node that contains computational resources to execute functions.
The net in the center models data movement activity that connects two nodes,
or a data source (sink) and a node. The two nets on the right represent a data
source and a data sink. All these patterns can be combined to generate a model
of a hierarchical (layered) physical edge infrastructure, where the lowest layer

comprises IoT sensors and other user devices, and the topmost layer will repre-
sent the cloud data center. All intermediate nodes between the data sources and
the cloud data center represent different fog nodes, aligning with the systems
architecture proposed by the Open Fog Consortium4.

In our model, data is always transmitted across the infrastructure along
with a processing plan (or user application). The plan specifies a composition
of functions in the form of a Directed Acyclic Graph (DAG) that need to be
applied to its associated data. Furthermore, both the data and its plan are
modelled as tokens in the physical edge model. In our model, the plan specifies
the orchestration of the execution inside a node and across the nodes.

When data chunk and its associated processing plan arrive at a node, then
Transition t1 from Figure 2 is fired (triggering the invocation of the synchronous
channel begin of the node). Once all function invocations in the graph are ac-
complished, Transition t2 is fired and the processing plan (Variables app and the
data chunk d are obtained from that transition). Transitions i11, i12 and i13 of
the node are involved in its initialization. Transition i11 creates an instance of
the underlying serverless node components (faasnode net). The computational
resources of the node are initialized in Transition i12. The model could be pa-
rameterized from a configuration file, but to enhance the readability purpose,
we made the textual configuration visible within the model: We can see that 7
Raspberry Pi 2 devices with 1000MB and 1000MIPS are available for the node.
Transition i13 initializes the functions that a particular user wants to place at
that node. In this example, user id 1 places two functions f1 and f2 with the fol-
lowing parameters (from left to right): the first 4 numbers in the tuple represent
the function execution time, the function warm invocation time, the function
cold start time, and the time that the function will be idle in memory. The
next number is the cost per millisecond of invoking the function (aligning with
costs identified in Table 1), the last two numbers represent the computational
requirements, expressed in MIPS and the size of memory required, respectively.

The three main internal components of a node are depicted in Figure 3: user
application (the composition of functions to be applied to a data chunk), the user
functions available at the node that are managed by the function manager com-
ponent (Variable fm in the model), and the machine on which the functions will
be executed. As stated previously, when the pair: data chunk and its processing
plan arrive at a node, Transition t1 of Figure 2 is fired. During the firing, by
means of the synchronous channel begin, Transition t1 of Figure 2 synchronizes
with Transition t21 of Figure 3, and the token data chunk-plan is moved inside
the node for processing. Once all the required functions are invoked, Transition
t22 of Figure 3 will be synchronized with Transition t2 of Figure 2, taking the
data chunk and its processing plan out of the node. The invocations of functions
are accomplished by means of Transitions t23, which represents the start of an
invocation, and t24 which represents the end of an invocation in Figure 3. In
these two transitions, using synchronous channels, a composition plan (app in
the model) is paired with the function manager component (fm in the model).

4 https://opcfoundation.org/about/opc-technologies/opc-ua/

Fig. 2: Node Infrastructure Net Patterns: (left) FaaS-based edge / cloud node,
(center) data transfer representation, and (right) data source modelling

As these two transitions can be fired concurrently, a processing plan can invoke
functions concurrently in the model.

A function needs to meet some conditions to be invoked: (i) it needs to find a
computational resource with enough memory and CPU capacity, (ii) the function
needs to be loaded in memory. Transition t26 binds a computational resource
to a function, a computational resource that matches the function memory and
CPU requirements. It should be noticed that these constrains are enforced by
the inscription: guardmips >= mipsrq&mem >= memrq. This inscription will
only enable Transition t26 when there is a machine whose MIPS and memory are
enough to host the function. Transition t27 frees the computational resources,
it means that the function was removed from memory and placed back on disk.

From Figure 3, transition t27 enables users to deploy functions, transitions
t28 and t29 enable allocation and deallocation of computational resources re-
spectively. Computational resources are represented by a tuple comprising: (i)
resource identifier, (ii) resource CPU performance (in MIPS) and (iii) the mem-
ory size.

The dynamic behaviour is achieved through the function manager compo-
nent, which is inside the node (Figure 3). While multiple data chunks and their
processing plans can exist simultaneously inside the node model in Figure 3,
there is only one instance of the function manager component. This component
controls the life cycle of functions and manages their invocations. It consists of
two concurrent processes, the function as a service life cycle process (specified
in Figure 4) and the function invocation process (in Figure 5). A function is de-
ployed in the model at Transition t41 in Figure 4. This transition synchronizes
with Transition t25 in Figure 3 and with Transition i13 in Figure 2 simulta-
neously, by chaining different synchronous channels that enable the functions

Fig. 3: Node Modelling: a node consists of applications, functions and computa-
tional resources

to arrive from the model in Figure 2 to Figure 4. The deployed functions will
eventually arrive at the place “Compiled & Idle in Disk” in Figure 4, waiting for
an invocation. Once an invocation occurs, a function instance is loaded in mem-
ory (Transition t43 fires), this is called a cold start invocation. At that point, a
function in memory is ready to be called, the actual invocation happens when
Transition t45 is fired, and the invocation finishes when Transition t46 is fired.
In the model, after the call, the function remains in memory idle for some period
of time (function parameter t3), ready to be invoked again. In such a case, the
invocation is called warm function invocation, and it involves firing Transition
t44. If the period of time elapses without an invocation Transition t47 will be
fired.

Cold and warm function invocations can have significant impact on function
performance, and cold invocations typically have a higher time than warm in-
vocations. This is reflected in the model by the time inscriptions on the arcs
– the output arc of Transition t43 (cold invocation) has the time inscription
[uid, f, [tex, t1, t2, t3], ecost, hwrq]@t2, while the output arc of Transition t44
(warm invocation) has [uid, f, [tex, t1, t2, t3], ecost, hwrq]@t1. In both cases, a
token will be available after t2 and t1 units of time after the firing. The model
allows cold and warm times for each function to be parameterized. Similarly,
the actual function execution is modelled by the output arc of Transition t45,
[uid, f, [tex, t1, t2, t3], ecost, hwrq]@tex, which indicates that after the invoca-
tion, the token will be available after tex units of time. While all these time
inscriptions are on output arcs, the model also uses time inscriptions at input

Fig. 4: Function as a Service life cycle

arcs. Once a function is idle in memory, it will remain for a period of t3 units of
time. If no invocation occurs, the function will be removed from memory and the
computational resources freed. This is modelled by the input arc of Transition
t47: [uid, f, [tex, t1, t2, t3], ecost, hwrq]@t3. The effect of the time inscription at
the input arc is that once a function instance is idle in memory, Transition t47
will be only enabled after t3 units of time.

Another important aspect of the model in Figure 4 is the consideration of the
economic cost. Serverless infrastructures typically charge users on a per millisec-
ond basis. This is reflected in the model in Transition t45 that, once fired, in-
vokes Synchronous Channel this : chargecall(uid, f, ecost, tex). The callee chan-
nel is in Transition m49, which retrieves the accumulated cost for function f of
user uid ([uid, f, accCost]) and adds the incurred cost for the actual invocation
[uid, f, accCost+ ecost ∗ tex], where ecost is the cost associated with function f ,
and it is a parameter of the function in the model. This pricing model is based
on computing time on per millisecond basis, which one of the models described
on Section 2. Other models can be implemented by updating that cost formula.

Fig. 5: Function Invocation and Data Movement

When a function invocation occurs in the model of Figure 3, Transition t23
is fired. It involves invoking the synchronous channel startcall of the function
composition, and the synchronous channel ”startcall” of the function manager
component. In Figure 5, it corresponds to Transition t31, where the invoca-

tion process starts. At this point, the model considers two concurrent activities:
the function invocation, and the transmission of the arguments of the function
through the local area network links of the node. It is important to highlight
that the time elapsed in both activities will overlap.

The function invocation involves Transitions t32 and t33. Transition t32 will
only be enabled if there is any function instance f idle in memory in the net
of Figure 4 (warm invocation). Otherwise, Transition t33 will be enabled (cold
invocation). In case of a cold invocation, computational resources need to be
allocated. Transition t33 will allocate the required computational resources by
means of synchronous channel : allocate(r, hwrq). It will synchronize with Tran-
sition t26 of Figure 3, which was described previously.

The data movement activity may only have an impact on the function per-
formance time if the transmission time is significant, considering the argument
size and the LAN bandwidth. There is no need to move data if the functions
are hosted in the same machine. From the user function composition, the model
obtains the data dependencies for function f . All these dependencies are placed
at the input place of Transitions t34 / t35. If the origin function (f1) and the
destination function (f2) are hosted on the same machine (r), then there is no
data movement required, and Transition t34 will be fired. In contrast, if they are
in different machines, Transition t35 will be fired. This transition has an output
arc time inscription [f1, f2, size]@size/bw modelling that the data argument
will require size/bw units of time to arrive from f1 to f2, where size is the
data argument size and bw is the LAN effective bandwidth. Once all the data
arguments are available in f , the actual invocation can start, and Transition
t38 will be enabled. This transition synchronizes with Transition t48 of the net
model of Figure 4, which was described previously.

Therefore, when tokens move across all these net paths, time and economic
cost derived from processing accumulates, allowing the model to obtain end-
to-end latency for a user data chunk, and the processing bill. The economic
cost derived from data transmissions inter layers of the edge can also be easily
computed by counting the number of messages.

4 Related Work, Model Usage & Characterisation

Simulators are a widely used tool to explore what-if scenarios and costs - energy,
resource provider or user - in computer systems, however the core models that
the simulation engines allow to use to extract results is radically different. For
instance, different network simulator libraries and frameworks include NS-3 [?],
OMNET++ [?], and OPNET [?]. These tools focus on different network aspects
but lacking on details to simulate fine gran applications and workflows between
these on the application layer.

Similarly, and focused on computer-system architecture research are Sim-
ics [?], Gem5 [?], and Graphite [?] where the focus is given to multiple architec-
tures for CPU and GPU processors architecture and memory systems.

Different cloud and edge simulation frameworks also exist and there are two
strands. The network-based components layout focused on simulating the user
applications but supported by detail models of hardware and software interac-
tions in order to also estimate multiple parameters on energy, and resource util-
isation of the nodes. Foremost among these are: CloudSim [?], and iFogSim [?]
- as plugin of the former, iCanCloud [?], FogNetSim++ [?]. These simulators,
in spite to provide a high accuracy at every level, are build on top of network
simulators and it is not possible to deattach the hardware part easily from the
application level, therefore adding a additional overhead - from computation and
memory requirements - that in case of the serverless applications simulations is
unnecessary to the final user.

A second strand of cloud and edge simulators focuses on layered architectures
representing data center components. These model primarily the interactions
between components and abstracting hardware and/or network resources. Some
relevant simulators on this category are: Simulizar [?], model driven simulator
designed for self-adaptative systems to explore transient phases on load balancing
of workloads; and focused on the application layer, but the impact of bags of tasks
on heterogeneous large scale data centres, Cloudlightning Simulator provide high
scalable simulations simplifying the hardware and application models as authors
explain in their paper [?].

Modelling and simulation to support capacity planning for serverless and fog
systems provides significant benefit, to the best of our knowledge, this is the
first study that proposes a model for the serverless computing paradigm. The
work in [8] provides a survey of modelling and simulation tools for Fog systems,
covering mathematical models, including Petri nets and Markov Chains, and and
various cost parameters that need to be considered. The survey concludes that
only a few simulation tools take account of cost metrics, and that this aspect is
still in its infancy.

Performance and cost modeling of cloud computing has been extensively cov-
ered, but only recently the modelling of Serveless Function has received atten-
tion. In [9], limited user control over resources on FaaS platforms on the cloud is
emphasised, and a formal model of serverless workflows to estimate performance
and cost is proposed. However, Fog computing nodes have limited resources,
which can introduce an added complexity in the modelling of serverless func-
tion behaviors that now must consider the heterogeneity of cloud and edge/fog
nodes – with varying resource capacity. The need to represent the dependency of
serverless applications on data storage and other resources on the cloud is iden-
tified in [10]. In this paper, authors present a dependency graph for serverless
applications that helps to optimize an existing system by identifying hot spots,
supports the generation of test cases and can be used to monitor an existing
system. The problem of scheduling operators between the Cloud and the Fog is
also the focus of several research efforts – these consider both computational and
network resource usage costs [6, 11], and propose analytical models and opera-
tor placement strategies to reduce end-to-end latency, data transfer times and
messaging costs between edge and cloud systems.

The Reference/ Petri net models presented in Section 3 enables us to support
capacity and cost planning for deployment of serverless functions. By varying
costs and times associated with execution of functions, and the types of resources
on which these functions are hosted, it is possible for a user to plan their appli-
cation design and deployment. The models we propose go beyond existing cost
calculators provided by cloud providers, as we are able to derive a finer grained
analysis taking account of actual deployment and use – achieved by combining
the modelling and simulation capability made possible by the use of a Petri net
model.

5 Evaluation

In addition to the formal semantics provided by Petri nets, another advantage of
using Reference nets is that they can be interpreted by the Renew tool5. In order
to show how the model can be exploited, we provide an example of usage here in
this section. From two synthetic applications, we conducted different simulations
to analyse the impact of cold and warm function invocations on its performance
and the amount of computational resources required. We made use of simple
Reference nets, and the time inscriptions where simulated with action delays6.
For the physical infrastructure, we modeled two nodes: an edge node with up to
5 Raspberry Pi 2 devices, connected to a Cloud data center, with multiple Intel
Xeon servers. The edge node is connected to two data sources that generate data
continuously at constant rates (every 5s to 6.75s), having each data chunk a size
of 1 MB and remaining constant through the simulation.

We designed two synthetic streaming applications: f and g. Application f
is a sequential composition of 5 functions (f1 to f3, at the edge and f4 to f5
at the cloud) and it consumes data generated from a data source. The other
source of data is processed by application g, which consists of 3 functions (g1, g2
at the edge and g3 at the cloud). Table 3 summarizes the characterization and
requirements of the functions: the average execution time, the average memory
size requirements and the average amount of instructions that require its execu-
tion. We simulated 4 different scenarios with different combinations of warm /
cold function invocation times, and keep alive periods, as well as the number of
computational resources allocated to each application, as specified in Table 2.

Figure 6 depicts a graphical representation of the main idea of our simu-
lations, a chronograph corresponding to the edge of two possible scenarios of
applications f (f1 → f2 → f3) and g (g1 → g2): (a) on top, without keep alive
periods of time for functions, whenever a function finishes, the involved compu-
tational resources are released. Therefore, as the two applications are sequential
compositions, each application only requires one computational resource at a
time. In contrast, the case (b) reflects that when introducing keep alive periods

5 http://renew.de/
6 The models in Reference nets and the simulation environment are made available

through a Docker container with the aim of enhancing the reproducibility of exper-
iments: https://github.com/rtolosana/fog-modelling

of functions, as functions are kept in memory, the number of computational re-
sources required increases significantly (five at this early stage of execution of
applications f and g). Choosing between one or another option, or intermediate
alternatives will depend on the actual cold / warm function invocation times,
on the QoS to be enforced and on the computational capacity available, which
might be scarce at the edge.

Case
Warm

Invocation
Cold

Invocation
Keep
Alive

1 0.01 10 10
2 0.01 0.05 10
3 0.01 10 0
4 0.01 0.05 0

Table 2: Simulation Parameters
(in secs)

Fig. 6: Chronograph: (a) without keep-alive
(top) (b) with keep alive (down)

The results of the simulations can be seen in Figure 7. Although the simu-
lations involve the execution of compositions f and g, for clarity purposes and
space, Figure 7 only depicts the performance of composition f . On the x-axis, the
timeline, and on the y-axis, the end-to-end latency both in seconds. The end-
to-end latency includes processing times, waiting times, overheads, and data
transmissions. When the cold function invocation time is higher than the execu-
tion time (cases 1 and 3), it has a significant impact on performance time, unless
the function is kept alive in memory (case 3). Therefore, in case 3, the impact of
high cold invocations on performance only appears the first time the functions
are invoked. However, this is at the expense of consuming more computational
resources. As our models do not consider invocation overheads for the economic
cost, and they only include the actual invocation time, the 4 scenarios show the
same cost. For composition f for all the simulation time, the economic cost is
0.24 USD, as each function pricing tariff costs 0.0000083 USD per msec.

6 Conclusions

We develop a dynamic Petri net model of a serverless function, demonstrating
how a combination of these functions can be hosted across edge and cloud data
centre-based resources. With the significant flexibility that a serverless model
offers to users, in both costs of use and deployment, many see a transition to
serverless as a natural progression from VM and container based invocations.
The model proposed in this work includes a number of parameters that can be
characterised from a practical deployment, and can be used for designing an ap-
plication across different types of resources. Our proposed approach can be used

F Tex(secs) Mem(MB) MIPS

f1 0.2 600 600
f2 0.4 600 700
f3 0.6 600 800
f4 0.04 600 600
f5 0.04 600 600
g1 0.2 200 700
g2 0.4 300 500
g3 0.05 600 600

Table 3: Function Characterization

	1

	1.5

	2

	2.5

	3

	3.5

	4

	4.5

	5

	0 	20 	40 	60 	80 	100 	120

En
d-

to
-e

nd
	L

at
en

cy
	(m

in
ut

es
)

Execution	Timeline	(minutes)

exp	1,	5	resources,	with	keep	alive,	low	warm	up	time
exp	2,	5	resources,	with	keep	alive,	high	warm	up	time

exp	3,	2	resources,	no	keep	alive,	low	warm	up	time
exp	4,	2	resources,	no	keep	alive,	high	warm	up	time

Fig. 7: End-to-End Latency for f over time

to undertake a number of what-if scenarios to explore various configuration op-
tions available to a developer, ranging from: computational complexity of hosting
nodes (characterised as MIPS and memory), cold and warm start times associ-
ated with initiating a function, data size associated function execution, time to
move function executable to/from disk and computational requirements (also
modelled as MIPS and memory) of the function itself. This approach can also
be used to undertake comparison of executing the same function across differ-
ent cloud vendors – who may offer different pricing/power tradeoffs for function
developers.

References

1. X. Lefevre, “Is serverless cheaper for your use case? Find out with this
calculator” – Available at: https://medium.com/serverless-transformation/

is-serverless-cheaper-for-your-use-case-find-out-with-this-calculator-2f8a52fc6a68.
Last accessed: June 2021.

2. Microsoft, “Azure Function Pricing”. Available at: https://azure.microsoft.

com/en-gb/pricing/details/functions/. Last accessed: June 2021.

3. Amazon, “AWS Lambda Pricing”. Available at: https://aws.amazon.com/

lambda/pricing/. Last accessed: June 2021.

4. Google, “Google Function Pricing”. Available at: https://cloud.google.com/

functions/pricing. Last accessed: June 2021.

5. L. M. V. González and L. Rodero-Merino, “Finding your way in the fog: Towards
a comprehensive definition of fog computing,” Comput. Commun. Rev., vol. 44,
no. 5, pp. 27–32, 2014.

6. E. Gibert Renart, A. Da Silva Veith, D. Balouek-Thomert, M. D. De Assuncao,
L. Lefevre, and M. Parashar, “Distributed operator placement for iot data an-
alytics across edge and cloud resources,” in 2019 19th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), 2019, pp. 459–468.

7. M. A. L. Peña and I. M. Fernández, “Sat-iot: An architectural model for a high-
performance fog/edge/cloud iot platform,” in 5th IEEE World Forum on Internet
of Things, WF-IoT 2019, Limerick, Ireland, April 15-18, 2019. IEEE, 2019, pp.
633–638.

8. S. V. Margariti, V. V. Dimakopoulos, and G. Tsoumanis, “Modeling and simulation
tools for fog computing a comprehensive survey from a cost perspective,” Future
Internet, vol. 12, no. 5, 2020.

9. C. Lin and H. Khazaei, “Modeling and optimization of performance and cost of
serverless applications,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 3, pp. 615–632, 2021.

10. S. Winzinger and G. Wirtz, “Model-based analysis of serverless applications,” in
2019 IEEE/ACM 11th International Workshop on Modelling in Software Engi-
neering (MiSE), 2019, pp. 82–88.

11. P. Ntumba, N. Georgantas, and V. Christophides, “Scheduling continuous opera-
tors for iot edge analytics,” in Proceedings of the 4th International Workshop on
Edge Systems, Analytics and Networking. Association for Computing Machinery,
2021, pp. 55-60.

12. T. Murata, “Petri nets: Properties, analysis and applications,” in Proceedings of
the IEEE, 77(4), 1989, pp.541-580.

13. R. Tolosana-Calasanz, J.Á. Bañares, C. Pham, and O.F. Rana, “Enforcing qos in
scientific workflow systems enacted over cloud infrastructures”. Journal of Com-
puter and System Sciences, vol. 78, no. 3, pp.1300–1315, 2012.

