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Abstract. Let Vn be a set of n points in the plane and let x /∈ Vn. An
x-loop is a continuous closed curve not containing any point of Vn. We
say that two x-loops are non-homotopic if they cannot be transformed
continuously into each other without passing through a point of Vn. For

n = 2, we give an upper bound eO(
√
k) on the maximum size of a family

of pairwise non-homotopic x-loops such that every loop has fewer than
k self-intersections and any two loops have fewer than k intersections.
The exponent O

(√
k
)

is asymptotically tight. The previous upper bound

bound 2(2k)4 was proved by Pach, Tardos, and Tóth [Graph Drawing
2020 ]. We prove the above result by proving the asymptotic upper bound

eO(
√
k) for a similar problem when x ∈ Vn, and by proving a close relation

between the two problems.

Keywords: graph drawing, non-homotopic loops, curve intersections,
plane

1 Introduction

The crossing lemma bounds the number of edge crossings of a graph drawn in
the plane where the graph has n vertices and m ≥ 4n edges. It was proved inde-
pendently by Ajtai, Chvátal, Newborn, and Szemerédi [1] and by Leighton [4].
Recently, Pach, Tardos, and Tóth [5] proved a modification of the crossing lemma
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for multigraphs with non-homotopic edges. In the proof, they used a bound on
the maximum size of collections of so-called non-homotopic loops. We focus on
improving the bounds for two settings – one used by the authors of [5] and a

slightly altered one. We provide an upper bound eO(
√
k) with the asymptotically

tight exponent O
(√
k
)

in both settings (Theorem 1); we also show a new relation
between the extremal functions in the two settings (Proposition 1).

For an integer n ≥ 1, let Vn = {v1, . . . , vn} be a set of n distinct points in
the plane R2. Given x ∈ R2, an x-loop is a continuous function ` : [0, 1] → R2

such that `(0) = `(1) = x and `(t) 6∈ Vn for t ∈ (0, 1). Two x-loops `0, `1 are
homotopic, denoted `0 ∼ `1, if there is a continuous function H : [0, 1]2 → R2 (a
homotopy) such that

H(0, t) = `0(t) and H(1, t) = `1(t) for all t ∈ [0, 1],

H(s, 0) = H(s, 1) = x for all s ∈ [0, 1], and

H(s, t) 6∈ Vn for all s, t ∈ (0, 1).

In the case when x ∈ Vn, we will, without loss of generality, assume x =
v := v1, and refer to x-loops as v-loops (dropping the subscript for simplicity).
Henceforth, when we use the term x-loop, we will tacitly assume that x /∈ Vn.
When x (or v) is clear from the context we will also call an x-loop (v-loop)
simply a loop.

A self-intersection of a loop ` is an unordered pair {t, u} ⊂ (0, 1) of distinct
numbers such that `(t) = `(u), while an intersection of two loops `1, `2 is an
ordered pair (t, u) ∈ (0, 1)2 such that `1(t) = `2(u).

Given integers n, k ≥ 1 and x /∈ Vn (v ∈ Vn), let f(n, k) (respectively, g(n, k))
be the largest number of pairwise non-homotopic x-loops (respectively, v-loops)
such that every loop has fewer than k self-intersections and any two loops have
fewer than k intersections.

Pach, Tardos and Tóth [5] considered x-loops (they also added a convenient
restriction that no loop passes through x, which holds trivially in the setting of
v-loops). The quantities f(n, k) and g(n, k) are related by the following inequal-
ities. In [2] we proved that for every n, k ≥ 1 we have

g(n, k) ≤ f(n, k) ≤ g(n+ 1, k). (1)

In the current paper we give the following inequality, which allows us to improve
the upper bound from [5] on f(n, k) by proving an upper bound on g(n, k).

Proposition 1. For every n, k ≥ 1 we have

f(n, k) = O(k2) · g(n, 5k). (2)

Proposition 1 is proved (with a multiplicative constant of 484) in Section 6.
Pach, Tardos and Tóth [5] showed that for n ≥ 2

f(n, k) ≤ 2(2k)
2n

(3)



and

f(n, k) ≥

{
2
√
nk/3, for n ≤ 2k,

(n/k)k−1, for n ≥ 2k.
(4)

Pach, Tardos and Tóth [5] also proved that if n = 1, then there are at most
2k + 1 non-homotopic loops with fewer than k self-intersections (that is, if we
do not bound the number of intersections) implying f(1, k) ≤ 2k + 1.

In our main result we focus on the function g in case n = 2.
Inequalities (1) and (3) imply that g(2, k) ≤ 216k

4

. After submitting this pa-
per to GD2021, the authors became aware that the latter inequality was not the
best at that time. From the proofs in the paper of Juvan, Malnič and Mohar [3]

it follows that f(2, k) ≤ kCk
2

for some absolute constant C > 0 (this paper
focuses on the generality of spaces in which the loops are drawn rather than on
quantitative bounds; it also implies good bounds for f(n, k) for any fixed n).

In [2] the authors proved

g(n, k) = 2O(k).

The following theorem (which we prove in Section 5) improves the upper bounds
on g(2, k) and f(2, k) significantly. Interestingly, the bound on g(2, k) only uses
the restriction on self-intersections (this is not enough for n ≥ 3), while the
restriction on intersections is used only in Proposition 1.

Theorem 1. Let n = 2. For any k, the size of any collection of non-homotopic

v-loops with fewer than k self-intersections is eO(
√
k). In particular g(2, k) =

eO(
√
k), and, in view of (2), we have f(2, k) = eO(

√
k).

Note that in view of (4) the exponent O
(√
k
)

is asymptotically tight.
There is still a huge gap between lower and upper bounds on f(n, k) (and

g(n, k)) for general n; see [5] (also the implicit bounds from [3] are probably
better for many pairs (n, k)). In the proof of Theorem 1, we use several lemmas
(Lemmas 1–7), which might help to narrow this gap, as they provide useful tools
and are usually stated for general n.
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2 Setup and Notation

2.1 Obstacles, equator and gaps

Depending on the context, we will treat S := R2 \ Vn either as the plane with
n points removed, or as a sphere with n + 1 points removed (where n of these



points come from the set Vn = {v1, . . . , vn} and the last point, denoted by v0,
corresponds to the “point at infinity”). We define V∞n = {v0} ∪ Vn and refer to
the elements of V∞n as obstacles.

Given a finite collection of loops, by infinitesimal perturbations, without
creating any new intersections or self-intersections, we can ensure that

1. no two (self-)intersections occur at the same point of S,
2. every (self-)intersection is a crossing, that is, one loop “passes to the other

side” of the other loop (rather than two loops ‘touching’).

Given a drawing of the loops satisfying the above conditions, we choose a
closed simple curve on the sphere which goes through the obstacles v0, . . . , vn
in this order (for x-loops, we choose this curve so that it also avoids x). We
call this loop the equator. Removing the equator from the sphere, we obtain
two connected sets, which we arbitrarily name the northern hemisphere and the
southern hemisphere. We refer to the n+1 open curves into which the equator is
split by excluding points vi as gaps. We assign label i to the gap between vi and
vi+1, with indices counted modulo n+ 1. Moreover, when talking about v-loops,
we treat v = v1 as an additional, special gap, with a label v; see Figure 1, where
the equator is drawn as a circle, for simplicity.

v0 = ∞ v1 = v
v2

0 1

2

Fig. 1. Equator, the gaps, and v-loop that induced the word w = v2102v.

By a careful choice of the equator, we can assume the following conditions:

3. every loop in the collection intersects the equator a finite number of times,
4. each of these intersections (except for, possibly, the intersection at v) is a

crossing, (i.e., no loop touches the equator),
5. no point of self-intersection or intersection lies on the equator.

2.2 Segments and induced words

Part of a given loop ` between a pair of distinct intersections with the equator
(inclusively) is called a segment. Treating a loop (respectively, a segment) as a



function ` : [0, 1]→∞ (respectively, the restriction of ` to a closed subinterval of
[0, 1]), gives a natural orientation of a loop or a segment. A minimal segment is
called an arc. If an arc intersects itself, we can remove the part of the arc between
these self-intersections without changing the homotopy class of the loop, which
allows us to make yet another assumption that

6. there are no self-intersections within any arc.

Consider a segment s that intersects the equator t times (including the be-
ginning and the end). By listing the labels of gaps that the loop crosses as it
traverses s, we obtain a word w = w1 . . . wt. In this case we say that s is a
w-segment. If we take the maximal segment of a loop `, that is, from the first
to the last crossing of equator (which is the whole loop in the case of v-loops),
then we say that word w is the word induced by `; see Figure 1. Given a loop
that induces a word w, the segments of the loop correspond to subwords (that
is, words consisting of consecutive letters of w) of length at least 2.

Note that the word induced by a v-loop ` starts and ends in v. Dropping
these vs we obtain a word which we call the inner word induced by a v-loop `.

If we reverse the orientation of a segment s, the order of gaps is reversed and
hence we obtain the reverse of the word w, denoted w := wt . . . w1. Sometimes
we talk about segments as unoriented objects, treating a segment simultaneously
as a w-segment and a w-segment.

Given an oriented segment s, we define the polarity of s as the hemisphere to
which the first arc of s belongs. We call an oriented w-segment a w-downsegment
or a w-upsegment whenever we want to specify the polarity of the first arc.

Remark 1. For a word w of even length (that is, with an even number of letters)
a w-segment is also a w-segment of the same polarity, while for a word w of odd
length a w-segment is also a w-segment of the opposite polarity.

For example, consider a v-loop with the first arc in the southern hemisphere
that induces the word 01201. It has 01-segments of both polarities (and hence
10-segments of both polarities), as well as a 012-downsegment (which is also a
210-upsegment) but, say, there is no 012-upsegment.

2.3 Patterns

To simplify notation we use a concept of pattern, that is a finite sequence of
symbols, usually, the first letters of the Greek alphabet α, β, . . . . Given a pattern
T , we say that a word w is a T -word if it is obtained by replacing symbols by
letters, so that two letters in w are equal if and only if the symbols in T are
equal. For example, words 010, 202, 121 match the pattern αβα, but 111 does not.
Given a pattern T , we say a word is T -free, if it contains no subword matching
the pattern T . With a slight abuse of notation, by a T -segment we also mean a
w-segment such that word w matches the pattern T .



3 General n

In this section we state and prove several facts that are valid for general n,
including all prerequisites for the proof of Theorem 1.

3.1 Simplifying words

Part (i) of the following lemma allows to simplify the words induced by a given
family of v-loops, in particular simplifying the setting for the proof of Theorem 1.
Part (ii) is used in the proof of the inequality (2) of Proposition 1.

Lemma 1. Assume that n ≥ 1.

(i) Given any family of v-loops, each loop can be replaced by a homotopic v-loop
inducing an αα-free inner word, with the first and last letters in {2, . . . , n},
so that the numbers of pairwise intersections or self-intersections do not
increase.

(ii) Suppose that a family of x-loops and the equator are such that there is a path
connecting x to some v ∈ Vn which does not intersect any loop or the equator.
Then each x-loop can be replaced by a homotopic x-loop inducing an αα-free
word so that the numbers of pairwise intersections or self-intersections do
not increase.

The part (i) was already proved in [2] and the part (ii) is easily established
using the same ideas. Therefore, we defer the proof to Appendix A.1.

3.2 Characterization of homotopic loops

Once we can simplify loops using Lemma 1, we can use the following lemma to
describe the homotopy classes of loops in terms of induced words.

Recall that v-loops start and end at v1, which is incident to gaps 0 and 1.

Lemma 2. (i) Two x-loops inducing αα-free words w1 and w2 are homotopic
if and only if w1 = w2.

(ii) Suppose that two v-loops `1 and `2 are such that all four initial/final arcs lie
in the same hemisphere. Suppose `1, `2 induce αα-free inner words

w1 = x1u1z1, and w2 = x2u2z2, (5)

where (possibly zero-length) words x1, x2, z1, z2 use only letters 0 and 1 and
words u1, u2 start and end in letters other than 0 or 1 (if ui is empty, we
assume that xi = wi and zi is empty). Then `1 and `2 are homotopic if and
only if u1 = u2 and the lengths of x1 and x2 have the same parity.

(iii) If two v-loops `1 and `2 induce words w1 and w2 that start and end in a
letter other than 0 or 1, then `1 and `2 are homotopic if and only if `1 and
`2 start in the same hemisphere, end in the same hemisphere, and w1 = w2.



Lemma 2 is proved in Appendix A.2. It is based on the description of the (fun-
damental) homotopy group of the plane with several points removed and the
correspondence between words and the generators of this group.

The idea of the part (ii) is that we may “unwind” the initial and final seg-
ments that just “wind around” the obstacle v, without changing the homotopy
class. The reason why, say, the prefixes x1 and x2 have to have matching parities
(and merely u1 = u2 is not enough), is that otherwise the segments correspond-
ing to the subwords u1 and u2 would have opposite polarity. One can see, say,
that if two loops start and end in the northern hemisphere and induce words 02
and 20 (so that u1 = u2 = 2), they are not homotopic (in fact, `1 is homotopic
to `2 reversed).

3.3 Subwords forcing intersections

The equator has two natural orientations. For any ordered triple (a, b, c) of dis-
tinct gaps we assign the orientation of the equator such that if we circle the
equator starting from the gap a, we encounter the gap b before c. In particular,
for any three distinct gaps a, b, c triples (a, b, c), (b, c, a), (c, a, b) have the same
orientation while triples (a, b, c) and (c, b, a) have opposite orientations. For ex-
ample, if n ≥ 2, recalling our labeling of gaps from Section 2 (in particular that
the vertex v = v1 is a special gap) we have that (0, v, 1), (v, 1, 2) and (0, 1, 2)
have the same orientation.

Lemma 3. Let k ≥ 0 be an integer. Consider two segments of the same polarity
corresponding to αα-free words a0a1 . . . akak+1 and b0b1 . . . bkbk+1 such that for
i = 1, . . . , k we have ai = bi, while a0 6= b0 and ak+1 6= bk+1. Suppose that
(a0, b0, a1) and (ak, bk+1, ak+1) have opposite orientations for even k, and the
same orientation for odd k. Then there is i ∈ {0, . . . , k} such that the aiai+1-arc
of the first word intersects the bibi+1-arc of the second word.

Proof idea. Assume, for a contradiction, that the aiai+1-arc and the bibi+1-arc
are disjoint for every i. It follows inductively that the orientation of the triple
(ai, bi+1, ai+1) is uniquely determined for every i. In particular, it must be the
same as the orientation of (a0, b0, a1) for even i and opposite otherwise. For i = k,
we arrive at a contradiction. The full proof is postponed to Appendix A.3.

3.4 Windings in v-loops

We now focus on v-loops and describe the intersections forced by specific alter-
nating words.

For a word w we write wk a concatenation of k copies of w, say (ab)2 = abab.
Given an obstacle vi, i 6= 1, let a, b be the gaps incident to vi. For integer s ≥ 1,
an s-winding around vi is a w-segment, where w has a form tw′u, where w′ is of
the form (ab)sa, (ba)sb, (ab)s+1 or (ba)s+1 and t, u are letters other than {a, b}.
Assuming the gaps incident to v1 are 0 and 1, an s-winding around v := v1 is a
w-segment with w of the same form as above (for {a, b} = {0, 1}), but with t, u



being letters other than 0, 1, and v (the difference from the first case is that we
do not allow t = v or u = v), see the left part of Figure 2.

The proofs of the following lemmas are sketched at the end of this subsection;
the detailed proofs are deferred to the appendix .

0

1

v

0

1

v

22

Fig. 2. Left: a 2-winding around v with word 2(01)32; right: a (2, 2)-snail with word
2(01)20v.

Lemma 4. Suppose S and T are an s-winding and a t-winding, respectively,
both around the same obstacle v ∈ Vn. Then

(i) Segment S has at least s self-intersections.
(ii) S and T have at least 2 ·min{s, t} mutual intersections (provided S 6= T ).

We excluded from the definition of windings the case where the obstacle is v1
and the alternating sequence appears at the beginning/end of the (inner) word.
Given a positive integer m, let (ab)−m := (ba)m and let (ab)0 stand for an empty
word. Given an integer s and a letter a other than 0, 1 (but possibly v), by a
(s, a)-snail we call a w-segment where w is a αα-free word of the form

v(01)sw′a, where w′ ∈ {0, 1, 01, 10}, a /∈ {0, 1},

see the right part of Figure 2. (Note: since w is αα-free, we cannot, say, have
w′ ∈ {1, 10} if s > 0.)

Lemma 5. Consider a (s, a)-snail and a (t, b)-snail of the same polarity. If
st < 0, the snails intersect at least min{|s|, |t|} times. If st > 0 and a, b 6= v,
then the snails intersect at least |s− t| − 1 times.

The following lemma is used in the proof of the inequality (2) of Proposition 1.

Lemma 6. Fix a word u that starts an and ends in a letter other than 0 or 1.
If we have a family F with more than 4(2k + 1)2 v-loops of the same polarity,
each of which induces an even-length αα-free word of the form

v(01)sw′uw′′(10)tv, t, s ∈ Z, w′, w′′ ∈ {0, 1, 01, 10}, (6)

then there are `1, `2 ∈ F (possibly `1 = `2) with at least k (self)-intersections.



We note in passing that Lemmas 4 and 5 are proved by finding sufficiently
many segment pairs that satisfy the conditions of Lemma 3 and arguing that
each pair implies a distinct intersection. Lemma 6 then follows from Lemma 5
by relatively straightforward pigeonhole-type arguments.

The full proofs of Lemmas 4 to 6 are included in Appendix A.4.

4 Expansions of words

Given an αα-free word w of length at least two, consider all maximal sub-
words that use two letters. For example, if w = 2010212, the maximal words
are 20, 010, 02, and 212. Ordering these words by the position of the first letter,
it is clear that every two consecutive words overlap in a single letter. We classify
these subwords according to the pair of letters they use. For distinct a, b a maxi-
mal subword that uses a and b is called an ab-word (the ordering of a and b does
not matter). For a given pair a, b, the ab-words are disjoint and surrounded by
letters other than a and b (we assume that w is extended by adding the letter v
at each end).

Each ab-word starts either with ab or ba. If we replace each of these two-letter
subwords by its power, say, ab by (ab)s+1, s ≥ 0, we obtain another αα-free word,
which we call an ab-expansion of w. Hence if w has ` ab-words, each ab-expansion
of w is uniquely described by a vector s = (s1, ..., s`) of nonnegative integers.

If, in addition, w is αβαβ-free, then for each distinct a, b all maximal ab-
words have at most three letters. If w is not αβαβ-free, it can be obtained by
consecutive ab-expansions of a αβαβ-free word, one for each pair a, b of distinct
letters.

The self-intersection number of a loop-word w is defined as the smallest
number of self-intersections in a loop that induces w.

Lemma 7. Let a, b be two gaps adjacent to the same obstacle v. Let ` = `(k) ≥
2
√
k be a positive integer.
Let w be a αα-free word which contains no subword abab or baba. Suppose

that there are at most ` maximal ab-words in w. If v = v1, then also assume
that none of these words appears at the beginning or the end of w. The number
of ab-expansions of w with the self-intersection number smaller than k is(

`√
k

)O(
√
k)
eO(
√
k).

In particular, if also ` = O
(√
k
)

then the above estimate becomes eO(
√
k).

4.1 Sketch of the proof of Lemma 7

Let `′ be the number of maximal ab-words in w and consider an ab-expansion of
w determined by vector s1, . . . , s`′ . In this expansion the ith maximal ab-word,



together with the letters surrounding it, is either an si-winding or an (si + 1)-
winding around v. By Lemma 4 such an ab-expansion has at least∑

i

si + 2
∑
i<i′

min{si, si′} (7)

self-intersections.
Our goal is to give an upper bound, in terms of k and `, on the number of

vectors s of length `′ such that (7) is smaller than k. Since `′ ≤ ` and the number
of such vectors is clearly largest for `′ = `, let us further assume that `′ = `.

For i = 0, . . . , k, let mi = mi(s) denote the multiplicity of i in s, formally

mi = mi(s) := | {j ∈ [`] : sj = i} |.

Given an integer α ≥ 0, let us write m≥α :=
∑
i≥αmi and note that

m≥0 = `. (8)

Moreover
m≥α ≤

√
k/α, α = 1, 2, . . . , k, (9)

since otherwise, noting that m≥α = {i : si ≥ α}, by (7) the self-intersection
number is at least

m≥αα+ 2

(
m≥α

2

)
α = m2

≥αα > k,

giving a contradiction.
An upper bound on the number of vectors s can be obtained by bound-

ing (i) the number of vectors s giving the same vector m = (m0, . . . ,mk) and
(ii) the number of distinct vectors m = (m0, . . . ,mk) with nonnegative integer
coordinates satisfying the constraints (8) and (9). The product of the two ob-
tained bounds is then an upper bound on the number of vectors s. The two
bounds are obtained by combinatorial methods in Appendix B , and they are

(`/
√
k)
√
keO(

√
k) for (i) and eO(k1/3(ln `+ln k)) for (ii). Their product is of order

(`/
√
k)O(

√
k)eO(

√
k), which gives Lemma 7.

5 Proof of Theorem 1

Recall that without loss of generality assume v = v1 so that the gaps adjacent
to v are 0 and 1. By Lemma 1 we can assume that every v-loop in the collection
induces an αα-free word so that the first and last letter is 2. By Lemma 2 (iii),
the v-loops induce different words, so it is enough to show that the number of

words of the such form with self-intersection numbers less than k is eO(
√
k).

Recall that the inner words use letters in {0, 1, 2}. Whenever we talk about
two distinct letters a, b, let c refer to the remaining third letter. The maximal
ab-words are disjoint and each of them is surrounded by c or v. We can replace
w by an αβαβ-free word w′ by repeatedly applying operation which replaces a



subword of a form abab, for some distinct letters a and b, by a subword ab. Note
that this does not change the structure of maximal words and when the procedure
terminates, every maximal word is a αβ-word or a αβα-word. Moreover, w′

remains αα-free and the first and last letters remain 2 in each intermediate
word.

As discussed in subsection 4, word w can be reconstructed from a αβαβ-free
word w′ by three consecutive ab-expansions, one for each ab ∈ {01, 02, 12}. Note
that we can also assume that, as in w, the first and the last letters in both w′

and the intermediate expansions are 2.
In view of this claim, it is enough to count αβαβ-free words with fewer than

k self-intersections, calculate the bound ` on the number of maximal ab-words
in such a word, and apply Lemma 7 three times.

We claim that an αα-free word with fewer than k self-intersections has at
most 4

√
k maximal ab-words for each pair ab. Assume the contrary. Let v be the

obstacle incident to gaps a and b. If at least
√
k of the maximal ab-words are s-

windings around v with s ≥ 1, then there are at least k self-intersections by (7).
So further we assume there are at least 3

√
k maximal ab-words of the form cabc

or cbac. Note that each such word corresponds either to a cab-upsegment or a
cab-downsegment. If among them there are at least

√
k of each polarity, then we

again have k self-intersections between cab-upsegments and cab-downsegments
by Lemma 3. So further assume there are more than 2

√
k words cabc of the same

polarity (note that reversing cabc does not change the polarity). In particular
there is a pair of such maximal ab-words which has no other maximal ab word
between them. Since their polarity is the same, between them there is an even-
length word which starts and ends in a letter other than c. We claim that such
subword contains ab, giving a contradiction. Say the word has 2m letters and
argue by induction: if m = 1, the first and last letter is not c, so the word is
ab or ba. Otherwise either the first two letters are ab or ba (in which case we’re
done) or one of ac and bc, in which case removing them we are left with a shorter
word of even number of letters starting and ending not in c, which by induction
hypothesis contains ab.

We have shown that every word w with fewer than k self-intersections is a
‘triple’ extension of a αβαβ-free word w′ with at most ` := 4

√
k maximal ab-

words for each ab ∈ {01, 02, 12}. Since the first maximal word in w′ has at most
three letters, and each subsequent maximal word has at most two additional
letters, w′ has at most 3 + 2(3` − 1) = 6` + 1 letters. Taking into account that
w′ is αα-free and necessarily starts with 2, there are at most

6`+1∑
i=2

2i−1 ≤ 26` = eO(
√
k) (10)

choices of w′. Now Lemma 7 implies that the number of ab-expansions is eO(
√
k),

which, together with (10) implies that the number of different words induced by

the v-loops is eO(
√
k). By the remark at the beginning of the proof, this proves

the theorem. ut



6 Proof of Proposition 1

For the full proof, see Appendix C.

Proof sketch. Let f = f(n, k) and choose a family of non-homotopic x-loops
`1, . . . , `f in S of the maximal size. We choose an obstacle v, a point x′ on some
loop, and a path P from v to x′ that does not intersect any loop. We assume
without loss of generality that x′ lies on the loop `f .

We first turn the x-loops into non-homotopic x′-loops while keeping the num-
ber of pairwise intersections and self-intersections bounded. We choose a path R
with no self-intersections that connects x to x′ and is contained in the graph of
`f . The x-loop `f is already an x′-loop and we turn every other x-loop `i into an
x′-loop `′i by (i) following R from x′ to x, (ii) going along `i, and (iii) returning
back to x′ via R. Note that to avoid an infinite number of (self-)intersections,
the loops cannot follow R precisely. Rather, they use pairwise disjoint paths that
run along R in sufficiently small distance so that if any loop intersects them it
must also intersect R (and thus `f ). See the left and middle parts of Figure 3.
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Fig. 3. Transforming x-loops into x′-loops and then to v-loops.

It is easy to see that the obtained x′-loops are pairwise non-homotopic. And
since R is a subset of the loop `f , every newly created crossing between a pair
of loops `′i and `′j corresponds to some crossing between `i and `f , or `j and `f .
This fact allows us to bound the total number of additional (self-)intersections
by 4k.

Now we choose the equator so that it does not cross the path P (see Figure 4).
Applying Lemma 1.(ii) we modify the x′-loops without increasing the numbers
of intersections so that they induce αα-free words.

Finally we turn each x′-loop `′i into a v-loop `′′i so that no additional in-
tersections are created, and the inner word that `′′i induces is the same as the
word induced by `′i. This is done similarly as before – the loop `′′i is obtained by
concatenating (i) a path closely following P from v to x′, (ii) the x′-loop `′i, and
(iii) a path closely following P back to v. See the right part of Figure 3.



x′
P v

Fig. 4. Drawing equator so that it does not separate x′ from the obstacle v.

Some resulting v-loops may be homotopic. Partition the v-loops into maximal
sets of homotopic v-loops H1, . . . ,Hm and note that m ≤ g(n, 5k). Since the first
and the last arc of every v-loop lies in the same hemisphere, by Lemma 2 (ii) for
each set Hj there is a word uj starting in letters other than 0 or 1 so that each
` ∈ Hj induces an even-length word of the form

vw′`ujw
′′
` v,

where words w′` and w′′` use letters 0 and 1. Applying Lemma 6, we see that
|Hj | ≤ 4(2 · 5k + 1)2 ≤ 4(11k)2 = 484k2 for every j. And since m ≤ g(n, 5k),
this implies that f(n, k) ≤ 484k2g(n, 5k).
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A Appendix

A.1 Lemma 1

Proof (Lemma 1 (i)). By an ear we mean a segment inducing an αα-word.
Denote v := v1. Taking into account that the gaps 0 and 1 are incident to v,
by end-ear we mean a va-segment or av-segment, where a ∈ {0, 1}, that is, an
end-ear is an initial or final arc of a loop that has one end in the gap 0 or 1. We
will remove ears in the first step (thus deleting the consecutive pairs of equal
letters) and end-ears in the second step (thus deleting the 0 s and 1s at the ends
of the inner word).

For the first step, we choose an ear in some loop (between two points of some
gap a) and denote its endpoints by y and z. By yz-gap denote the set of points
in the gap a strictly between y and z. An ear is minimal if there is no other ear
with both endpoints in the yz-gap. We remove ears one by one, always picking
a minimal ear.

The chosen ear partitions one of the halves of the sphere into two simply
connected open sets, one of which, that we denote by P , contains the yz-gap in
its boundary. Let P denote the closure of P , that is P together with its boundary.

We remove the chosen ear by continuously transforming it to a path which
closely follows the yz-gap inside the other hemisphere, as shown on Figure 5. By
choosing the new path sufficiently close to the equator we can make sure that if
a new (self-)intersection with some loop ` appears, then by tracing ` from that
(self-)intersection in a certain direction we cross the yz-gap, thus entering the
set P .

P

y z
y z

` `

Fig. 5. Removal of a minimal ear

Since v /∈ P , by tracing ` further we must leave P . This cannot happen by
crossing the yz-gap again, since that would contradict the fact that we picked a
minimal ear. Hence we leave P by crossing the original path of ear. This gives a
way to assign, for each newly created intersection with `, a unique intersection
with ` that was removed, showing that the transformation of the ear does not
increase the total number of intersections with `. In particular the number of self-
intersections does not increase since we can choose ` to be the loop containing
the ear in question.

The second step, removing end-ears, is similar to the first one, except that we
have to deal with the endpoint v separately. Let y be the point where an end-ear
crosses a gap a incident to v (either 0 or 1). Similarly as for ears, by vy-gap we



mean the points of gap a strictly between v and y. An end-ear is minimal, if
no other end-ear crosses gap a through the vy-gap. We will remove the end-ears
one by one, always picking a minimal end-ear.

Since the end-ear is contained in one of the halves of the sphere, it partitions
it into two simply connected sets, one of which, that we denote by P , has the vy-
gap in its boundary. We remove the end-ear by continuously transforming it into
a path that closely follows the vy-gap in the opposite hemisphere, as shown on
Fig. 6. By choosing the new path sufficiently close to the equator, we can make
sure that if a new (self-)intersection with some loop ` appears, then by tracing
` from that (self-)intersection in a certain direction we cross the vy-gap, thus
entering set P . Tracing ` further we must eventually leave the set P , since v /∈ P .

y

v

y
P

v` `

Fig. 6. Removal of a minimal end-ear.

This cannot happen by crossing the vy-gap again, since that would contradict
the fact that we removed all ears in the first step. It also cannot happen by
crossing v, since this would contradict that we chose a minimal end-ear. Hence
we leave P by crossing the original path of the end-ear, which determines an
intersection with the loop ` that was removed by transforming the end-ear.

Similarly as in the first step this assigns a unique removed intersection with `
to each new intersection with `, showing that removal of a minimal end-ear does
not increase the number of (self-)intersections.

We recap what we have proved: by repeatedly removing minimal ears in the
first step and removing minimal end-ears in the second step we end up with a
drawing which does not have any ears nor end-ears, proving the lemma.

Proof (Lemma 1 (ii)). To prove (ii), we need to remove only ears, and we do it
precisely the same way as in the proof of Lemma 1 (i), see Figure 5. We need
to check two things: (a) x does not belong to P (thus making every loop ` that
crosses the new route exit P through the old route); (b) removal of a single
ear does not violate the property that there is a path from x to some obstacle
u ∈ Vn that does not intersect any loop or the equator. For (a), note that, x is
not contained in the boundary of P because this boundary consists of a segment
of the equator and a segment of some loop that is not incident to x; neither is
x contained in P , since otherwise the path which connects x to some obstacle
u (and does not intersect any loop or the equator) would be contained in P by
connectedness of P , implying that u belongs to P , which is impossible. For (b),



suppose for contradiction, that π is the x-u path and no matter how close to
the yz-gap we choose the new route, it intersects π. This would imply (due to
compactness) that some point in π belongs to the closure of the yz-gap. Since
this closure contains neither u nor x, it implies that some internal point of π
belongs to it, thus contradicting that π does not intersect the equator. This
shows that (b) holds.

A.2 Proof of Lemma 2

Proof (Lemma 2). In the proof we treat S as a plane with n points removed.
We first consider the case of x-loops, (i). For every i ∈ [n], let gi be an x-loop

without self-intersections that circles obstacle vi so that the gap i− 1 is crossed
before the gap i (thus vi is the only obstacle contained in the bounded set sur-
rounded by gi. By reversing the orientation of gi, we obtain the inverse of gi,
denoted by g−1i . It is a well known from algebraic topology that every x-loop
` in S = R2 \ Vn is homotopic to a concatenation of a finite sequence of ele-
mentary loops g1, . . . , gn, g

−1
1 , . . . , g−1n . In each homotopy class, there is a unique

concatenation of elementary loops in which no two consecutive elementary loops
are inverses of each other (we call such concatenations reduced). In other words,
homotopy classes of x-loops under the operation of concatenation form a free
group with generators g1, . . . , gn.

We describe a correspondence between the word induced by ` (note that it
necessarily has even length) and its homotopy class written as concatenation of
elementary loops. Elementary loop gi induces a two-letter word (i− 1)i and g−1i
induces a word i(i− 1). For 0 ≤ i < j ≤ n, define gi,j := gi+1gi+2 . . . gj and for
0 ≤ j < i ≤ n, define gi,j := g−1i g−1i−1 . . . g

−1
j+1. Note that, for any distinct i, j,

loop gi,j is homotopic to any loop that induces a word ij. This gives a bijection
between even-length αα-free words and reduced concatenations gε1i1 . . . g

εk
ik

, where
εj ∈ {−1, 1}. To be precise, given a word w = w1 . . . w2m, we partition it into
words of length two and replace each word ij by gi,j . Note that if w is αα-free,
the resulting concatenation of elementary loops is reduced.

In particular, if two x-loops induce αα-free words, their homotopy classes are
different if and only if the words are different.

Now we deal with the case of v-loops, v = v1 ∈ Vn, starting with the setting
of Lemma 2.(ii). We can characterize when two v-loops `1, `2 are homotopic by
turning them into x-loops with x /∈ Vn (cf. proof of Theorem 2 in [5]). Fix a
circle C centered at v so that all obstacles except of v lie outside of it, and pick
an arbitrary point x in the northern hemisphere that lies on the circle C. Given
a v-loop `, let α` and ω` be the points where ` hits the circle the first and the last
time, respectively. Define a x-loop `′ by concatenating (i) the arc of the circle C
between x and α` that does not cross the equator, (ii) the segment of ` between
α` and ω`, and (iii) the arc of the circle C between ω` and x that does not
cross the equator, see Figure 7. We can assume, for i = 1, 2, that `′i induces the
same word as the inner word induced by `i. This is because for C small enough,
points α`i , ω`i lie in the northern hemisphere (by our assumption on the initial



and final arcs of the loops) and `i does not cross the equator between v and α`i
nor does it between ω`i and v.

x

v

αlωl

Fig. 7. Converting a v-loop to an x-loop; equator denoted by a dashed line.

Assume that an x-loop `′ induces a word w = w∗ŵw
∗, where w∗ and w∗ are

maximal words consisting of letters 0 and 1. Suppose that `′ ∼ gm1 hg
m′

1 , where
h is a reduced concatenation of elementary loops starting and ending in a loop
other than g1 or g−11 . We first simplify w without changing h. Note that if we
delete first two letters of w∗ (i.e., 01 or 10), we only increase or decrease m
by one, but do not change h. Hence we can assume w∗ has at most one letter.
Similarly we can assume w∗ has at most one letter. Further note that if w∗ = 0,
then m = 1 and h starts with g2, so replacing it by w∗ = 1 only changes m to 0,
without changing h. Similarly if w∗ = 0, we have m′ = −1 and h ends in g−12 ,
so setting w∗ = 1 changes m′ to 0 and preserving h. Hence, without changing
h, we can reduce the word w to one of the forms ŵ, 1ŵ, ŵ1 and 1ŵ1, which
correspond to h of the form h′, g2h

′, h′g−12 , and g2h
′g−12 , respectively, where

h′ stands for a reduced concatenation starting with an elementary loop other
than g2 and ending with an elementary loop other than g−12 . This implies that
if x-loops `′1, `

′
2 induce words as in (5) and satisfy

`′1 ∼ g
m1
1 h(1)g

m′
1

1 , and `′2 ∼ g
m2
1 h(2)g

m′
2

1 , (11)

with mi,m
′
i ∈ Z maximal, then h(1) = h(2) if and only if words u1 and u2 are

equal and start at a position of the same parity, that is, length of x1 and x2 have
the same parity.

It remains to show that v-loops satisfy `1 ∼ `2 iff h(1) = h(2). We modify each
`i, i = 1, 2, without changing its homotopy class, by adding an excursion from
α`i to x and back within the northern half of the circle C, and adding a similar
excursion from ω`i to x (see Figure 7). Thus we can assume `i contains `′i (by
which we mean that the function `′i is a restriction of the function `i to a closed
subinterval). Also, without changing the homotopy class of `i, we can assume
that `′i is a concatenation of elementary loops. Consider the initial segment of
`i that ends at x after traversing the gmi

1 part of `′i. It is easy to see that if we
replace this v-x curve by a straight vx segment we do not change the homotopy



class of `i. Similarly we can replace the final segment of `i that starts at x and

traverses the g
m′

i
1 part of `′i by a straight segment xv. Hence the homotopy class

of `i does not depend on m and m′. In particular, if h(1) = h(2), then `1 ∼ `2.
For the other direction, assume that h(1) 6= h(2). Assuming, for contradiction,

that `1 ∼ `2, we claim that `′1 ∼ gi1`
′
2g
j
1 for some i, j ∈ Z. Recalling (11), this

easily implies that h(1) = h(2), giving a contradiction. To see the claim, recall
that we can assume that, for k = 1, 2, loop `′k is a restriction of `k to some
sub-interval of [0, 1]. For simplicity assume that this interval is [1/3, 2/3]. Let H
be a homotopy of v-loops such that H(0, ·) = `1, H(1, ·) = `2. Using continuity
of H and the fact that H(s, 0) = v for every s ∈ [0, 1], one can show that
s 7→ H(s, 1/3) and s 7→ H(s, 2/3) are x-loops with homotopy class of the form
gi1. We define a continuous function K : [0, 1]2 → R2 \ Vn by

K(r, t) =


H(3rt, 1/3), t ∈ [0, 1/3]

H(r, t), t ∈ [1/3, 2/3]

H(3r(1− t), 2/3), t ∈ [2/3, 1].

Function K is a homotopy of x-loops between K(0, ·) ∼ `′1 and K(1, ·) ∼ gi1`′2g
j
1,

implying `′1 ∼ gi1`′2g
j
1, as desired. This completes the proof of (ii).

Finally, assume that the v-loops satisfy the conditions of the case (iii). By
rerouting the equator near v (see Figure 8) we can make sure that all loops start
and end in, say, the northern hemisphere, and at the same time the word induced
of each loop gains a letter 1 at the beginning (if and only if its initial segment
was originally in the southern hemisphere), and gains a letter 1 at the end (if
and only if its final segment was originally in the southern hemisphere). Using

v

Fig. 8. Rerouting of equator (dashed) that makes all loops start and end in the northern
hemisphere.

the characterization in (ii), this gives the claimed characterization in (iii).

A.3 Proof of Lemma 3

Proof (Lemma 3). For k ≥ 1, we denote by xi, i = 0, . . . , k+ 1, the points where
the first segment intersects the equator (thus xi belonging to the gap ai) and by



yi, i = 0, . . . , k + 1, the points where the second segment intersects the equator
(so yi belonging to the gap bi). We can assume that xi 6= yi for every i.

We define the orientation of a triple (z1, z2, z3) of distinct points on the equa-
tor similarly as for gaps: if you travel from z1 in this orientation, you encounter
z2 before z3.

We prove the lemma by contradiction. For this we assume that the corre-
sponding arcs do not intersect and apply the following claim, noting that the
orientation of (a0, b0, a1) equals the orientation of (x0, y0, x1) and the orientation
of (ak, bk+1, ak+1) equals the orientation of (xk, yk+1, xk+1).

Claim. Consider two segments of the same polarity, which intersect the equator
at disjoint sets of points (xi : i = 0, . . . , k + 1) and (yi : i = 1, . . . , k + 1),
respectively. Assume that for every i = 1, . . . , k points xi, yi belong to the same
gap, and for every i = 1, . . . , k + 1 points xi, xi−1 belong to different gaps (note
that we allow the corresponding terminal points of the segments to belong to
the same gap). If, for i = 1, . . . , k + 1, the arc between xi−1 and xi does not
intersect the arc between yi−1 and yi, then the orientations of (x0, y0, x1) and
(xk, yk+1, xk+1) is the same for even k and opposite for odd k.

We prove the above claim by induction on k. The base case k = 0 is trivial,
since all it says is that if two arcs do not intersect, then travelling along the
equator in a certain direction between the endpoints of one of the arcs we will
pass through both endpoints of the other arc.

Now assume k ≥ 1. By induction hypothesis applied to points x0, x1 and
y0, y1 we obtain that (x0, y0, x1) has the same orientation as (x0, y1, x1) and by
the induction hypothesis applied to points x1, . . . , xk+1 and y1, . . . , yk+1 we get
that the orientations of (x1, y1, x2) and (xk, yk+1, xk+1) are the same for even
k−1 (thus odd k) and opposite for odd k−1 (thus even k). It therefore remains
only to verify that

(x0, y1, x1) and (x1, y1, x2) have opposite orientations. (12)

To see (12), let a be the gap to which points x1, y1 belong. Removing points
x1, y1 from the equator we obtain two sets A and B. One of them, say A, must
be contained in the gap a. Since x0 and x2 do not belong to the gap a, they
are both in the set B which means (x1, x0, y1) and (x1, x2, y1) have the same
orientation which is equivalent to (12).

A.4 Proofs of lemmas on the windings in v-loops

Proof (Lemma 4). We make a convention that ci, i = 1, 2, . . . stand for an
element of (Vn \ {a, b}) ∪ {x} if v 6= x and element of Vn \ {a, b} if v = x. We
say that an s-winding is even if it is of the form c1(ab)s+1c2 and otherwise it is
odd and has form c1(ab)sac2. Note that by reversing an odd winding we change
its polarity without changing the order of the letters in the parentheses. On the
other hand, by reversing an even winding, we change the order of letters in the
parentheses without changing polarity.



Given a pair of even windings, we can assume without loss of generality (by
optionally renaming the letters a, b and/or reversing), that it is of one of the
following forms:

1. c1(ab)s+1c2, c3(ab)t+1c4, same polarity
2. c1(ab)s+1c2, c3(ba)t+1c4, opposite polarity

Given pair of an even winding and an odd winding we can write it in the form

3. c1(ab)s+1c2, c3(ab)tac4, same polarity

Finally, given a pair of odd windings, we can write it in one of the following
forms:

4. c1(ab)sac2, c3(ab)tac4, same polarity
5. c1(ab)sac2, c3(ba)tbc4, opposite polarity

We claim that for each of the above forms there are at least min{s, t} pairs of
segments (with the same number of letters) of the same polarity consisting of
an initial segment of the s-winding and a final segment of the t-winding that
intersect. Namely, in each case we choose these pairs so that they match one of
the forms: (A) (c1(ab)ia, b(ab)ic4) or (B) (c1(ab)i, (ba)ic4).

Lemma 3 implies that a segment pair (of the same polarity) of form (A) or
(B) implies an intersection between corresponding arcs (for example, if we choose
initial-final segments of the form (A), for i = 1, 2, . . . , then for every i there is
j = j(i) so that an intersection occurs between the arcs corresponding to jth
and (j+ 1)th letter in each of the words c1(ab)ia and b(ab)ic4). This makes sure
that each initial-final segment pair gives entails a distinct intersection between
the s-winding and the t-winding.

There is one thing that needs some care. Lemma 3 assumes the same polar-
ity of the segments. Note that all initial segments of the s-winding inherit its
polarity. On the other hand, the polarity of the final segment of the t-winding
alternates as the number of letters increases. One can check, in each of the five
cases, that the segments that we chose indeed have the same polarity. For exam-
ple, in the case 1, we have to choose even-letter segments, since they are forced
by the form of the t-winding. But since the windings have the same polarity, the
t-winding is even, and we choose even-length segments, the final segment of the
t-winding turns out to have the same polarity as the s-winding. The remaining
cases can be checked similarly.

It is also easy to see, that in each case the number of pairs we chose is at least
min{s, t}. In particular this implies part (i) of the lemma, since the argument
applies to the case S = T .

Similarly, we count number of pairs of final segments of the s-winding and
initial segments of the t-winding that force intersections. The form of the seg-
ments now is not precisely of the form (A) or (B), but may require swapping
the letters a and b (which clearly does not change the condition required by
Lemma 3). Namely, we choose even-length segments in the cases 1, 3, and 5,
while we choose odd-length segments in the cases 2 and 4. Again the number



of choices is at least min {s, t} in each of the five cases. It is easy to see that
for S 6= T the intersections implied by final-initial segment pairs are different
from those implied by the initial-final segment pairs we discussed before. This
completes the proof of (ii).

Proof (Lemma 5). Assume that the (s, a)-snail induces word w(1) and the (t, b)-
snail induces word w(2).

Case st < 0. Assume without loss of generality that t < 0 < s, so that
w(1) starts with v(01)s0, and w(2) starts with v(10)−t1 with −t > 0. For i =
1, . . . ,min{s,−t} consider initial segments of w(1), w(2) of length 2i + 2 (the
second one reversed), so that they induce words

v(01)i0, and 1(01)iv, (13)

(Note that reversing of the second segment did not change its polarity, due to
even length.) Triples (v, 1, 0) and (1, v, 0) have opposite orientations. Together
with the fact that the initial segment of w(2) is reversed, via Lemma 3 we get
that pairs (13) force distinct intersections, giving min{|s|, |t|} intersections, as
claimed.

Case st > 0. Assume without loss of generality that s ≥ t > 0. We can further
assume that s ≥ t + 2, since otherwise the bound |s − t| − 1 we are aiming at
is trivial. Note that w(1) starts with v(01)s0. We consider two possible cases: (i)
w(2) = v(01)t+1b, b /∈ {v, 0, 1} and (ii) w(2) = v(01)t0b, b /∈ {0, v, 1}. In the case
(i) for i = 1, . . . , s− t− 1 we can write

w(1) = v0(10)i−11(01)t+10(10)s−t−i−1 . . .

and comparing the underlined word with the word w(2) = v(01)t+1b of the (t, b)-
tail, both of which have the same, even, length. Since b /∈ {0, v, 1}, triples (1, v, 0)
and (1, b, 0) have opposite orientations. So by Lemma 3 the underlined word and
w(2) force an intersection which is different for each i = 1, . . . , s− t− 1.

In the case (ii), writing, for i = 1, . . . , s− t− 1,

w(1) = v0(10)i−11(01)t01(01)s−t−i−1 . . .

we compare the underlined word and w(2) = v(01)t0b, which have the same, odd,
length. Since b /∈ {0, v, 1}, triples (1, v, 0) and (0, b, 1) have the same orientation,
and so by Lemma 3 the underlined word and w(2) force an intersection and for
each i = 1, . . . , s− t− 1 the intersection is different.

Proof (Lemma 6). If u is an empty word, then each loop induces a word that is of
the form v(01)s01v and therefore is a (s, v)-snail. Since reversing an even-length
segment does not change its polarity, the same loop reversed is a (−s, v)-snail of
the same polarity, and thus has |s| self-intersections by Lemma 5. If |F | ≥ 2k,
then F contains a loop that induces v(01)s01v with |s| ≥ k which has at least k
self-intersections.



Assuming u is nonempty, let a s-snail mean a (s, a)-snail for any a 6= v. So a
loop that induces a word of the form (6), starts with a s-snail and ends with a
t-snail, to such loop we associate a pair (s, t). By the assumptions on the loops
and words, all these snails have the same polarity.

Let S be the set of integers s, such that some ` ∈ F contains a s-snail. In
view of Lemma 5, it is enough to show that S contains two numbers s, t such
that either (i) st < 0 and min{s, t} ≥ k or (ii) st > 0 and |s− t| ≥ k + 1.

For given s, t, there are at most 4 words of the form (6), hence if the family
has more than 4(2k + 1)2 loops, there are more than (2k + 1)2 different pairs
(s, t) that are associated to some ` ∈ F , in particular |S|2 > (2k+ 1)2. Denoting
S+ := {s ∈ S : s > 0}, S− := {s ∈ S : s < 0}, we have that |S+|+|S−| ≥ 2k+1. If
|S+|, |S−| ≥ k, there are numbers s, t satisfying (i). Otherwise, min{|S+|, |S−|} ≤
k− 1 and so max{|S+|, |S−|} ≥ k+ 2, in which case there are s, t satisfying (ii).

B Estimates needed in the proof of Lemma 7

Here we complete the proof of Lemma 7 by showing the two bounds claimed at
the end of Section 4.

B.1 Number of vectors s corresponding to a particular vector m

Our first task is to find an upper bound on the number of choices of s =
(s1, . . . , s`) corresponding to a fixed vector m. By (9), we have mi = 0 for
i > k, so we further treat m as a vector (m0, . . . ,mk). Note that m≥0 = `. Thus,
we are counting the ways to choose, for i = 0, . . . , k, which mi coordinates of s
are assigned value i, which is the multinomial coefficient(

`

m0, . . . ,mk

)
=

`!∏k
i=0mi!

.

Proposition 2. Suppose that

` ≥ 2
⌊√

k
⌋
−
⌊√

k/2
⌋
. (14)

If a vector m = (m0, . . . ,mk) with nonnegative integer coordinates satisfies (8)
and (9), then (

`

m0, . . . ,mk

)
≤
(

`

z0, . . . , zk

)
,

where

z0 := `−
⌊√

k
⌋
,

zi :=
⌊√

k/i
⌋
−
⌊√

k/(i+ 1)
⌋
, for i = 1, . . . , k.



Proof. First observe that we can restrict m to non-increasing vectors, because
(a) the multinomial coefficient and the sum of coordinates does not change the
value if the coordinates are rearranged, and (b) given m, its non-increasing
rearrangement m′ = (m′0, . . . ,m

′
k) satisfies

∑
i≥αm

′
i ≤

∑
i≥αmi = m≥α for

α = 1, . . . , k, (“the sum of smallest k − α+ 1 coordinates is at most the sum of
some k − α+ 1 coordinates”).

For a non-increasing vector m, the proposition is proved by transforming
such m into the vector z = (z0, . . . , zk) in finitely many steps (defined below).
A variable vector x = (x0, . . . , xk) is set to x = m = (m0, . . . ,mk) at the
beginning of the transformation process, and the process terminates with x =
z = (z0, . . . , zk). In each of the steps the value of the multinomial coefficient(

`
x0,...,xk

)
does not decrease, which gives the required inequality.

As with the notation m≥α, for α ∈ {0, . . . , k}, we define x≥α = xα + · · ·+xk
and z≥α = zα + · · ·+ zk.

The following system S of k + 1 constraints is satisfied by the vector x =
(x0, . . . , xk) during the whole transformation process:

x≥0 = ` ( = z≥0 ), and (15)

x≥α ≤
⌊√

k/α
⌋

( = z≥α ), for α = 1, . . . , k. (16)

By (8) and (9), the system S is also satisfied by the (initial) vector x = m.

A step consists of choosing indices a < b, decreasing the value of xa by one
and increasing the value of xb by one. The indices are chosen as follows. Suppose
that x = (x0, . . . , xk) 6= z is a vector satisfying the system S. Consider the
largest index b such that xb 6= zb. By (16), we have x≥b ≤ z≥b. Since xi = zi for
i > b, this implies xb < zb. Since x≥0 = z≥0 ( = ` ), there is also an index i < b
such that xi > zi. Let a be the largest among such indices i. This choice of a
and b ensures that

xb ≤ zb − 1 and xj ≤ zj for j = a+ 1, . . . , k. (17)

We now verify that the system S stays valid after each step. It is immediate
that the constraint (15) is preserved. Regarding (16), the sum x≥α increases
only if a < α ≤ b. Recalling that (17) was true before the step, we conclude that
x≥α ≤ z≥α after the step, which verifies that the inequality (16) is preserved.

Preparing to show that the multinomial coefficient does not decrease during
each step, we claim that for 0 ≤ a < b ≤ k

za + 1 ≥ zb. (18)

To see (18), consider first the case a ≥ 1 and note that function x 7→
√
k/x −√

k/(x+ 1) is strictly decreasing on (0,∞) (this can be checked, say, by calcu-



lating the derivative), so

za + 1 =
⌊√

k/a
⌋
−
⌊√

k/(a+ 1)
⌋

+ 1 ≥
⌊√

k/a
⌋
−
√
k/(a+ 1) + 1

>
√
k/a−

√
k/(a+ 1) >

√
k/b−

√
k/(b+ 1)

>
⌊√

k/b
⌋
−
(⌊√

k/(b+ 1)
⌋

+ 1
)

= zb − 1,

which implies (18), since za, zb are integers. In the remaining case a = 0, by the
assumption (14) on `, and (18) applied for a = 1,

za + 1 = z0 + 1 = `−
⌊√

k
⌋

+ 1 ≥ 2
⌊√

k
⌋
−
⌊√

k/2
⌋
−
⌊√

k
⌋

+ 1

= z1 + 1 ≥ zb.

The value of
(

`
x0,...,xk

)
in non-decreasing during the whole transformation

process, as the ratio between the value after and before a step is(
`

x0,...,xa−1,...,xb+1,...,xk

)(
`

x0,...,xa,...,xb,...,xk

) =
xa

xb + 1
≥ za + 1

zb
≥ 1,

where the last inequality follows from (18).
It is clear that the step cannot be applied infinitely, so eventually we arrive

at x for which the step is not defined, that is, x = z. This finishes the proof of
the proposition.

We now bound the multinomial coefficient
(

`
z0,...,zk

)
from above by

eO(
√
k)(`/

√
k)
√
k.

Since we can assume k is larger than some absolute constant, we can also as-
sume that z0 ≥ 1. By Stirling’s formula, we have `! ≤ e

√
`(`/e)` and zi! ≥√

2πzi(zi/e)
zi . Using the latter estimate for all i with zi ≥ 1 and the equality

zi! = 1 otherwise, it follows that(
`

z0, . . . , zk

)
≤ e``

√
`∏

i≥0:zi≥1

zzii
√

2πzi
= O

(
``

zz00
· 1∏

i≥1:zi≥1 z
zi
i

)
,

where we used ` ≤
∏
i:zi≥1(2zi), which can be shown by induction. Using 1+x ≤

ex for x = `−z0
z0

= b
√
kc
z0

, we get

``

zz00
=

(
`

z0

)z0
`b
√
kc ≤ eb

√
kc`b

√
kc.

Let ik
(
∼ (k/4)1/3

)
be the largest integer i such that

√
k/i −

√
k/(i+ 1) > 1.

Then using x − 1 < bxc ≤ x it is routine to check that zi ≥ 1 for i ≤ ik and



zi ≤ 1 for i > ik. Therefore

1∏
i≥1:zi≥1 z

zi
i

=
1∏ik

i=1 z
zi
i

=
1∏ik

i=1

(
Ω
( √

k
i3/2

))zi
=

(
1√
k

)z1+···+zik ik∏
i=1

(
O
(
i3/2

))O( √
k

i3/2

)

=

(
1√
k

)b√kc−⌊√k/(ik+1)
⌋
e
O
(∑ik

i=1

√
k

i3/2
ln i
)

=

(
1√
k

)b√kc−Θ(k1/3)

eO(
√
k) =

(
1√
k

)b√kc
eO(
√
k).

Putting the previous estimates together, we get(
`

z0, . . . , zk

)
≤
(

`√
k

)√k
eO(
√
k).

B.2 Number of vectors m

Here we give an upper bound on the number of vectors m = (m0, . . . ,mk)
with nonnegative integer coordinates satisfying (8) and (9). We set β :=

⌈
k1/3

⌉
.

By (9), m≥β = mβ + · · · + mk ≤
√
k/β ≤ β, so the number of ways to choose

mβ , . . . ,mk is at most the number of ways to put m≥β ≤ β balls into k−β+1 ≤ k
bins, which is at most kβ = eO(k1/3 ln k). Since by (8) mi ∈ [0, `] for every i, the

number of ways to choose m0, . . . ,mβ−1 is at most (` + 1)β = eO(k1/3 ln `). We

conclude that the number of ways to choose m is eO(k1/3(ln `+ln k)).

C Full proof of Proposition 1

Proof (Proposition 1). Let f = f(n, k) and choose a family L of non-homotopic
x-loops `1, . . . , `f in S, attaining the maximum in the definition of f(n, k). Re-
moving the image of all loops partitions R2 into connected open sets, among
which we pick F that contains some obstacle v on its boundary. Moreover, we
choose a point x′ in the boundary ∂F \ Vn, and a path P connecting v to x′

inside F . We assume without loss of generality that x′ lies on the loop `f .
Let R be a path without self-intersections that is contained in the graph of

the the loop `f and connects x to x′. (We obtain R simply by taking one of the
two segments of `f between x and x′ and deleting every loop.) Moreover, let us
fix a circle C centered at x small enough such that every loop `i intersects C
exactly twice (at the very beginning and at the very end of the loop). Denote
these points as a2i−1 and a2i. Since the path R intersects C at some point y
that is different from all ais, we can choose points y1, . . . , y2f on C close to b
and connect them to x′ using disjoint paths R1, . . . , R2f that closely follow the
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Fig. 9. Transforming x-loops into x′-loops.

original path R. Moreover, we can choose the order of the points yi so that that
the straight segments aiyi are all disjoint.

We define a family L′ of x′-loops `′1, . . . , `
′
f where `′i for i ∈ [f−1] is obtained

by concatenating (i) the path R2i−1 from x′ to y2i−1, (ii) the segment y2i−1a2i−1,
(iii) the part of `i between a2i−1 and a2i, (iv) the segment a2iy2i, and (v) the
path R2i back to x′. The part from x′ to a2i−1 is called the head of `′i, the part
from a2i back to x′ is called the tail of `′i and the remaining middle part is
called the body of `′i. Finally, we set `′f = `f as `f already passes through x′. See
Figure 9.

First, we show that the x′-loops in L′ are pairwise non-homotopic. Suppose
for a contradiction that x′-loops `′i and `′j are homotopic. For any h ∈ [f ], let

`Rh be the x-loop obtained by following R from x to x′ then going along the
x′-loop `′h and finally returning to x via R. Clearly, we have `Rh ∼ `h for every
h. Furthermore, the loops `Ri and `Rj can be shown to be homotopic by applying

the homotopy between `′i and `′j to the middle parts of `Ri and `Rj . Therefore,

`i ∼ `Ri ∼ `Rj ∼ `j which contradicts that L is a family of non-homotopic loops.

Now we show that every loop in L′ has fewer than 5k self-intersections and
any two loops have fewer than 5k intersections. To that end, let `′i and `′j be two
loops from L′, not necessarily different. Firstly, we have at most k intersections
between `i and `j (and thus between the bodies of `′i and `′j) so it remains to
bound only the intersections incident with heads and tails of `′i and `′j . The paths
R2i−1, R2i, R2j−1 and R2j are pairwise disjoint and without self-intersections.
Therefore, the only newly added intersections are between the head or the tail
of `′i and the body of `′j , and vice versa. Since R is a subset of the loop `f , there
are at most k intersections between R and any x-loop `h ∈ L and thus at most k
newly added intersections between the head of `′i and the body of `′j . Counting
the symmetric situations, that gives at most 4k additional intersections. How-
ever, we need to be more careful when `′j is taken to be `′f . In such case, any
self-intersection of `f where we shortened a loop during the construction of R
can create two new intersections with the head or tail of `′i. But since `′f itself
has no head or tail, there are only at most 2k new intersections incident with
the head of `′i and 2k new intersections incident with the tail of `′i.



Now we choose the equator so that it does not cross the path P (see Figure 4).
Applying Lemma 1.(ii) we modify the x′-loops without increasing the numbers
of intersections so that they induce αα-free words.

x′

v
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b2

b1

a2

a1

P2

x′

v

Fig. 10. Transforming an x′-loop into a v-loop.

Finally we turn each x′-loop `′i into a v-loop `′′i so that no additional inter-
sections are created, and the inner word that `′′i induces is the same as the word
induced by `′i. If we fix a circle C ′ centered at x′ that is small enough, then every
x′-loop `′i intersects it exactly twice (here we use the assumption that x′-loops
do not pass through x′). Denote these points as a2i−1 and a2i. The equator par-
titions the face F into several connected components. Let F ′ be the one which
contains the path P . Since the path P intersects C ′ at some point b that is
different from all ais, we can choose points b1, b2f on C ′ close to b and connect
them to v using disjoint paths P1, . . . , P2f inside F ′ (and thus not intersecting
the equator or any loop). Moreover, we can choose the order of the points bi so
that that the straight segments aibi are all disjoint. Now for each `′i construct
`′′i by concatenating (i) the path P2i−1, (ii) the straight segment b2i−1a2i−1, (iii)
the part of x′-loop `′i outside of the circle, (iv) straight segment a2ib2i, and (v)
the path P2i, see Figure 10.

Some resulting v-loops may be homotopic. Partition the v-loops L′′ = H1 ∪
· · · ∪ Hm into nonempty sets accoding to the homotopy class and note that
m ≤ g(n, 5k). Since the first and the last arc of every v-loop lies in the same
hemisphere, by Lemma 2 (ii) for each set Hj there is a word uj starting in letters
other than 0 or 1 so that each ` ∈ Hj induces an even-length word of the form

vw′`ujw
′′
` v,

where words w′` and w′′` use letters 0 and 1. By Lemma 6, |Hj | ≤ 4(2 ·5k+ 1)2 ≤
4(11k)2 < 484k2 for every j.

Since m ≤ g(n, 5k), this implies that f(n, k) ≤ 484k2g(n, 5k). This completes
the proof of Proposition 1.
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