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Abstract. Predicting student performance is a fundamental task in In-
telligent Tutoring Systems (ITSs), by which we can learn about students’
knowledge level and provide personalized teaching strategies for them.
Researchers have made plenty of efforts on this task. They either leverage
educational psychology methods to predict students’ scores according to
the learned knowledge proficiency, or make full use of Collaborative Fil-
tering (CF) models to represent latent factors of students and exercises.
However, most of these methods either neglect the exercise-specific char-
acteristics (e.g., exercise materials), or cannot fully explore the high-order
interactions between students, exercises, as well as knowledge concepts.
To this end, we propose a Graph-based Exercise- and Knowledge-Aware
Learning Network for accurate student score prediction. Specifically, we
learn students’ mastery of exercises and knowledge concepts respectively
to model the two-fold effects of exercises and knowledge concepts. Then,
to model the high-order interactions, we apply graph convolution tech-
niques in the prediction process. Extensive experiments on two real-world
datasets prove the effectiveness of our proposed Graph-EKLN.

Keywords: Education Data Mining · Intelligent Tutoring System · Col-
laborative Filtering · Graph Neural Network

1 Introduction

Intelligent Tutoring Systems (ITSs) aim at providing personalized guidance for
students [2,5], which can be treated as an important supplementary for tra-
ditional offline teaching mode. It has attracted enormous attention from both
industry and academics [12,22].

Usually, researchers consider the issue from the educational psychology per-
spective and propose cognitive diagnosis models to discover students’ knowl-
edge proficiency [2]. Among them, the Deterministic Inputs, Noisy ”And” Gate
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(DINA) model is a representative method which uses multi-dimensional factors
to represent students’ knowledge states on specific knowledge concepts [10]. How-
ever, they ignore the influence of other exercise-specific characteristics. knowl-
edge proficiency is not the only factor that affects students’ final scores. For
example, exercise materials can also influence exercises’ difficulty [17].

Moreover, motivated by the observation that students and exercises are col-
laboratively correlated, researchers borrow success of Matrix Factorization (MF)
techniques in recommender systems to model the interactions between students
and exercises [25,26]. For example, In [25], the authors applied MF to learn the
latent embeddings of students and exercises and predicted the scores based on
the inner products of them. Although MF based models achieve great success in
ITSs, they still have some weaknesses. First of all, MF based methods are still
inadequate in utilizing knowledge concept information, which is very important
for student performance prediction. Second, MF based methods cannot deal with
the high-order collaborative information between student and exercises.

Since students and exercises naturally form a bipartite graph structure, it is
natural to apply Graph Convolutional Network (GCN) to model the high-order
collaborative information in the student-exercise-knowledge graph. However, dif-
ferent from scale-free networks, distribution of exercise-knowledge data does not
satisfy the power law distribution (i.e., shown in the middle part of Fig. 1).
More specifically, the degree distribution of exercise is uniform, i.e., most exer-
cises are related to around 1 to 2 knowledge concepts, as shown in the right part
of Fig. 1. Furthermore, the number of knowledge concepts is relatively small.
Therefore, knowledge concept nodes would link to many exercise nodes, leading
to over smoothing when propagating information through dense links. To this
end, in this paper, we propose a novel Graph-based Exercise- and Knowledge-
Aware Learning Network (Graph-EKLN ), which takes the both influences of
exercises and knowledge concepts into consideration for student performance
prediction. For the effect of exercises, we apply GCN with link-specific aggre-
gation functions [23] onto the student-exercise bipartite graph to explore the
high-order collaborative information. For the effect of knowledge concepts, we
replace exercises with their related knowledge concepts, and predict students’
performance scores on knowledge concepts by MF. Along this line, the high-
order graph structure information and knowledge concept information can be
fully explored for the final student performance prediction.

Input data (student-exercise-knowledge) Exercise degree distribution in Part 1

students
exercises

knowledge 
concepts

Exercise degree distribution in Part 2

Part 1

Part 2

Fig. 1. Data structure of ITSs
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2 Related Work

2.1 Educational Psychology

Educational psychology models are mainly discussed from two sides: cogni-
tive diagnosis models and knowledge tracing models [17,20]. Cognitive diag-
nosis models, assuming students’ knowledge states are static throughout their
practice, aim to discover students’ proficiency to predict their future perfor-
mance [18,5,28,35,10,8]. Item Response Theory (IRT) [11,5] was a typical and
straightforward cognitive diagnosis model which used a one-dimensional con-
tinuous variable θ to indicate each student’s knowledge state and used β to
indicate each exercise’s difficulty. In this way, (θ − β) was proportional to the
predicted probability of the question being answered correctly. Another typical
model was DINA [10]. DINA was a multi-dimensional discrete model to represent
each student with a binary latent vector. We can know whether the student has
mastered related knowledge concepts from students’ knowledge states (’1’ indi-
cates the student has mastered the target knowledge concepts and vice versa).
Recently, deep neural networks have been used for cognitive diagnosis. For exam-
ple, Cheng et al. leveraged deep learning to enhance the process of diagnosing
parameters [8]. Wang et al. proposed to incorporate neural networks to learn
interaction functions between students and exercises [28]. Knowledge tracing
models aims to track the changes of students’ knowledge states during prac-
tice [9,17,14,24]. Researchers proposed a first-order Markov process model, in
which knowledge states will change with transition probabilities after a learning
opportunity [9]. Piech et al. introduced a recurrent neural network to describe
the change of knowledge states [21]. Liu et al. explored the text content of exer-
cises by integrating a bidirectional LSTM model [17].

2.2 Collaborative Filtering in Recommender Systems

Recommender systems have been widely utilized to help users find their poten-
tial interests in many areas [1,7,30]. Classical models utilize MF techniques to
learn user and item embeddings [16]. Motivated by the observation that users
and items naturally form a bipartite graph, researchers proposed to utilize Graph
Convolution Networks (GCNs) to model high-order collaborative signals in rec-
ommender systems [6,23,31,32,33,34]. E.g., Wang et al. used the graph convolu-
tion technique to encode collaborative signals in the propagation process [29]. Wu
et al. modeled social diffusion process by propagating embeddings in the social
network [32]. Chen et al. enhanced graph based recommendation by empirically
removing non-linearities and proposed a residual network based structure [6].

2.3 Collaborative Filtering in ITS

Motivated by the observation that students and exercises are collaboratively cor-
related, researchers mapped educational data to user-item-rating triple data in
recommender systems, then applied MF for predicting student performance [25].
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To improve prediction results, Thai et al. proposed MRMF to explore the mul-
tiple relationships between students, exercises, and knowledge concepts by MF
techniques [26]. Similarly, CRMF integrated the course relationships to update
representations of exercises [15]. Moreover, researchers were inspired by social
recommendation systems and used the SocialMF technique to improve the pre-
diction accuracy [27]. Furthermore, Nakagawa et al. proposed GKT that viewed
knowledge concepts and their dependencies as nodes and links in a graph, so that
students’ knowledge states on the answered concepts and their related concepts
can be both updated over time [19]. Note that, students and exercises naturally
form an interaction graph in ITSs. Considering that GCN can enhance recom-
mendation performance in the user-item bipartite graph, we aim to propose a
model that applies GCN onto the student-exercise bipartite graph in ITSs.

3 The Proposed Model

3.1 Problem Formulation

Suppose there are M students, N exercises, and O knowledge concepts. In-
teractions between students and exercises are represented with matrix R =
{rsp}M×N , where rsp represents the performance score that student s has on
exercise p. In most cases, the observed part of R consists of 0 and 1, where
rsp = 1 if student s’s answer to exercise p is correct and rsp = 0 otherwise.
As for relations between exercises and knowledge concepts, educational experts
manually label each exercise with several knowledge concepts. We use matrix
Q = {qpk}N×O to denote the relations, where qpk = 1 if exercise p is related to
knowledge concept k and qpk = 0 if there are no relations between them. Given
observed interactions R and relations between exercises and knowledge concepts
Q, we aim to predict unobserved r̂sp, namely student s’s score on non-interactive
exercise p.

3.2 Overall Structure

The overall structure of Graph-based Exercise- and Knowledge-Aware Learning
Network (Graph-EKLN ) is shown in Fig. 2. In the left part of Fig. 2., links
between students and exercises are established according to matrix R and links
between exercises and knowledge concepts are established according to matrix
Q. There two challenges in our task: how to handle with the different links
(correct answer/wrong answer) between students and exercises and how to utilize
knowledge concept information in MF based models.

To address these two challenges, we divide the task into two sub-tasks, as
shown in the middle part of Fig. 2. The first sub-task is to predict student s’s
proficiency on exercise p itself r̂Psp. Note that, P denotes the predicted score r̂Psp is
in the exercise space. The second sub-task is to predict a student’s proficiency on
an exercise’s related knowledge concepts r̂Ksp. Note that, K denotes the predicted

score r̂Ksp is in the knowledge space. The following two subsections describe the
two sub-tasks respectively.
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Fig. 2. The overall structure of our proposed Graph-EKLN.

3.3 Modeling High-order Collaborative Information

Student embeddings and exercise embeddings in the exercise space are repre-
sented with U = [u1, ...,us, ...,uM ] ∈ RM×D, V = [v1, ...,vp, ...,vN ] ∈ RN×D

respectively. D denotes the embedding size and us,vp represent the initial em-
beddings of student s and exercise p. To address the different-link problem men-
tioned in subsection 3.2, we follow R-GCN [23], which is proposed to learn rep-
resentations of multi-relational graph.

...
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Fig. 3. The graph convolution layer in our model. Suppose student s has good perfor-
mance scores on a exercises and bad performance scores on other b exercises. We show
the information propagation process of the graph convolution layer on student s.

Fig. 3. provides an overview of the one-layer GCN propagation process in
our model. Specifically, we utilize link-specific aggregation functions based on
multilayer perceptrons (MLPs) for two kinds of links, thus getting high-order
students’ and exercises’ embeddings. Students’ and exercises’ initial embedding
can be formulated as

h0
s = us,h

0
p = vp. (1)
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Suppose there are L propagation layers. The student s’s embedding at the (l+1)-
th layer can be formulated as:

h(l+1)
s =

∑
n∈{0,1}

∑
p∈Nn

s

1

|Nn
s |
Fn(hl

p) + F (hl
s), (2)

where Nn
s denotes student s’s n-th type of neighbors, i.e.,the exercises that

student s answered correctly and incorrectly. Eq.(2) uses three types of functions
F, F0, F1 to differentiate the aggregation process of student s’s neighbors and
itself with MLPs:

Fn(hl) = σ2(σ1(hlW1))W2, (3)

where σ1, σ2 denote activation functions and W1,W2 denote the linear transfor-
mation. The exercise p’s embedding can be obtained by aggregating embeddings
of its neighbor nodes in the same way. After propagating information, we can
obtain [h0

s, ...,h
l
s, ..,h

L
s ] and [h0

p, ...,h
l
p, ..,h

L
p ] as students’ and exercises’ embed-

dings of each layer. We concatenate embeddings of each layer as follows:

hs = h0
s||...||hl

s||...||hL
s , hp = h0

p||...||hl
p||...||hL

p , (4)

where || is the concatenation operation. By calculating the inner dot of con-
catenated embeddings, we can get student s’s proficiency on exercise p in the
exercise space:

r̂Psp = hT
s hp. (5)

3.4 Modeling Information of Knowledge Concepts

As for predicting students’ proficiency on knowledge concepts, we project stu-
dents and knowledge concepts to knowledge-space. Note that, X = [x1, ...,xs, ...,
xM ] ∈ RM×D and Y = [y1, ...,yk, ...,yO] ∈ RO×D respectively denote the repre-
sentations of students and knowledge concepts. Then, we use the inner product
to predict r̂Ksp in the knowledge concept space:

r̂Ksp =
1

|Kp|
∑
k∈Kp

xT
s yk, (6)

where |Kp| denotes the set of knowledge concepts related to exercise p. It can
be formulated as Kp = {k|qpk = 1}, while qpk ∈ Q. Please note that, we do
not utilize GCN layer here. In fact, the number of knowledge concepts is much
smaller than that of exercises. Thus, relations between students and knowledge
concepts are not sparse enough. Therefore, we keep their original embeddings
rather than utilizing GCN layers in Eq.(6) to avoid over smoothing.

3.5 Performance Prediction

In subsection 3.3, we model the effect of exercises by R-GCN technique. In
subsection 3.4, we model the effect of knowledge concepts by inner product of
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student and knowledge concepts related to the target exercise. After obtaining
r̂Psp and r̂Ksp, we can easily calculate student s’s final predicted scores on exercise
p. Thus the overall predicted function is defined as:

r̂sp = r̂Psp + αr̂Ksp, (7)

where α is a hyper-parameter used to control the balance between the two sub-
tasks. We use the point-wise based squared loss to optimize our model:

L =
1

T

∑
(s,p,rsp)∈(S,P,R)

(rsp − r̂sp)2, (8)

where T denotes the number of (s, p, rsp) triplets in training data.

4 Experiments

4.1 Dataset Description

Table 1. The statistics of the two datasets

Dataset Students Exercises Concepts Logs Density

ASISST 4,163 17,746 123 278,868 0.37%

KDDcup 574 173,650 437 609,979 0.61%

We choose two widely-used datasets in our experiments. One dataset is AS-
SIST (ASSISTments 2009-2010 ”skill builder”)1 provided by the online educa-
tional service ASSISTments. The other dataset is Algebra 2005-2006 from the
Educational Data Mining Challenge of KDDCup2. The detailed statistics of two
datasets are summarized in Table 1. Note that, we only consider exercises that
are related to at least one knowledge concept. Specifically, we filter out exercises
without related knowledge concepts for the two datasets. Because the number
of concepts in KDDcup dataset is too small to make full use of concept infor-
mation, we combine the knowledge concepts related to the same exercise as a
new single concept. Please note that, these two datasets are extremely differ-
ent. Specifically, in ASISST, each student has nearly 67 logs on average while in
KDDcup, each student has nearly 1,063 logs.

4.2 Experimental Settings

Evaluation Metrics. We adopt three widely used metrics (Accuracy, RMSE,
and AUC) to measure the error between true ratings and predicted ratings [28,19,17].
Root mean square error (RMSE) is used to measure the absolute difference be-
tween predicted labels and real labels [3]. As students’ performance scores are
binary, we utilize the area under the curve (AUC) [4] as a metric.

1 https://sites.google.com/site/assistmentsdata/home
2 http://pslcdatashop.web.cmu.edu/KDDCup/
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Baselines. We compare our model with the following methods:

• Student Average: This method calculates students’ average scores in train-
ing data and uses them as the predicted scores on exercises in testing data.

• MF [16]: It is a classical CF model in recommendations. This model utilizes
MF techniques and learns latent representations of students and exercises.
Note that knowledge concepts are not used in MF.

• IRT [11]: A classical cognitive diagnosis model that uses one-dimensional
continuous variables to represent students’ knowledge proficiency and exer-
cises’ difficulty, and uses the difference between them for score prediction.

• NeuralCDM [28]: This is an improved multi-dimensional cognitive diagno-
sis model that utilizes neural networks as the interaction function.

• CRMF [15]: This MF based model takes knowledge concepts into consider-
ation by assuming that representations of exercises with the same knowledge
concepts are more similar.

• R-GCN [23]: A substructure of our model that only uses R-GCN to predict
scores but neglects students’ proficiency on knowledge concepts.

• R-GCN (hetero): In this method, We apply GCN in the whole student-
exercise-knowledge heterogeneous graph in Fig. 1.

Parameter Settings. We implement our model in PyTorch-1.6.0. The embed-
ding dimension is set to 128 for our model and other CF models. We initialize
all parameters with Xavier initialization [13]. The learning rate is set to 0.001.
We set the depth of GCN as two layers. We choose 2-layer MLPs to serve as F
in Eq.(3) and LeakyReLU as the activation function. We also set the balancing
parameter α = 1.

4.3 Experimental Results

We list the results of our model and other baselines in Table 2. We have several
observations from this table.

First, Student Average is the simplest baseline. It assumes that students have
the same scores on different exercises, resulting in the worst performance. Second,
classical MF based models (MF and CRMF) perform worse than our proposed
Graph-EKLN on both two datasets. An obvious reason is that they ignore high-
order collaborative information. Simultaneously, CRMF performs better than
MF for considering course relations. Third, as for two cognitive diagnosis mod-
els (NeuralCDM and IRT), we observe that cognitive diagnosis models perform
worse than all MF based model on the ASSIST dataset. MF based models ex-
plore similarity among students/exercises, and then provide suggested guidance
for students based on the similarities. The reason is that lack of sufficient data
brings trouble in cognitive diagnosis models while it has fewer effects on CF
based models (MF, CRMF, R-GCN, and Graph-EKLN ). Fourth, R-GCN (het-
ero) even performs worse than R-GCN on KDDcup. The reason is that data in
the heterogeneous graph doesn’t obey power law distribution, therefore, common
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graph based methods cannot be directly applied onto ITSs as mentioned in Sec-
tion 1. Finally, our proposed Graph-EKLN has the best performance on both two
datasets. The reason is that Graph-EKLN simultaneously utilizes information
of high-order collaborative signals and related knowledge concepts.

Table 2. Overall performance. ↑ / ↓ denotes that the higher/lower, the better.

Model
ASSIST KDDcup

Accuracy ↑ RMSE ↓ AUC ↑ Accuracy ↑ RMSE ↓ AUC ↑
Student Average 0.6942 0.4483 0.6816 0.7679 0.4190 0.5891

MF 0.7399 0.4205 0.8105 0.7927 0.3841 0.8062

IRT 0.7181 0.4647 0.7394 0.7762 0.4835 0.7607

NeuralCDM 0.7249 0.4329 0.7561 0.8060 0.3713 0.8093

CRMF 0.7612 0.4134 0.8136 0.8014 0.3750 0.7968

R-GCN 0.7705 0.3982 0.8230 0.8205 0.3619 0.8239

R-GCN (hetero) 0.7748 0.3973 0.8232 0.8201 0.3642 0.8187

Graph-EKLN 0.7782 0.3938 0.8298 0.8271 0.3591 0.8291

4.4 Detailed Model Analyses

Ablation Study We perform an ablation study to demonstrate the effective-
ness of each component in our model. Specifically, we conduct four experiments
to figure out whether graph based techniques (denoted as GCN) and utilizing
knowledge concepts (KLG) are effective in ITSs. The basic model is MF, which
only utilizes MF techniques. Besides MF techniques, MF-TEM follows subsec-
tion 3.4 to use knowledge concepts. MF and R-GCN are recorded in subsection
4.2. As shown in Table 4.4, MF-TEM performs better than MF. It proves that
utilizing knowledge concepts is effective. Similarly, R-GCN also performs better
than MF, which proves that capturing high-order collaborative signals is helpful
for student score prediction. Finally, our proposed Graph-EKLN performs best
to prove that simultaneously considering R-GCN and knowledge concepts has
the most performance improvements.

Table 3. The ablation study

Model
Components ASSIST KDDcup
KLG GCN Accuracy ↑ RMSE ↓ AUC ↑ Accuracy ↑ RMSE ↓ AUC ↑

MF × × 0.7399 0.4205 0.8105 0.7927 0.3841 0.8062

MF-TEM X × 0.7664 0.3984 0.8288 0.8255 0.3626 0.8246

R-GCN × X 0.7705 0.3982 0.8230 0.8205 0.3619 0.8239

Graph-EKLN X X 0.7782 0.3938 0.8298 0.8271 0.3591 0.8291

Performance under different balancing parameter α As mentioned in
Eq. (7), α is a hyper-parameter that controls balance between two-fold effects.
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We try the parameter α in the range {0,0.1,1,5,10}. Note that, α = 0 denotes
only taking the exercise space into consideration, and Graph-EKLN degenerates
to R-GCN. As shown in Fig. 4, when α→ 0, the results become worse; when α
becomes higher (e.g., α = 5, 10), the results also become worse. Finally, Graph-
EKLN has the best performance on two datasets when α = 1.
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Fig. 4. Results of accuracy, AUC, and RMSE with different α

5 Conclusions

In this paper, we proposed a Graph-based Exercise- and Knowledge-Aware Learn-
ing Network to improve student performance prediction in ITSs. We borrowed
the success of neural graph based models in recommender systems and suc-
cessfully modeled two-fold effects of exercises and related knowledge concepts.
Experimental results on two datasets showed the effectiveness of our model. Note
that, we assumed that students’ knowledge states are static in this paper. In the
future, we are interested in extending our model to a dynamic model which can
track the changes in knowledge states.
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