Skip to main content

Increasing Oversampling Diversity for Long-Tailed Visual Recognition

  • Conference paper
  • First Online:
  • 2120 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13069))

Abstract

The long-tailed data distribution in real-world greatly increases the difficulty of training deep neural networks. Oversampling minority classes is one of the commonly used techniques to tackle this problem. In this paper, we first analyze that the commonly used oversampling technique tends to distort the representation learning and harm the network’s generalizability. Then we propose two novel methods to increase the minority feature’s diversity to alleviate such issue. Specifically, from the data perspective, we propose a mixup-based Synthetic Minority Over-sampling TEchnique called mixSMOTE, where tail class samples are synthesized from head classes so that a balanced training distribution can be obtained. Then from the model perspective, we propose Gradient Re-weighting Module (GRM) to re-distribute each instance’s gradient contribution to the representation learning network. Extensive experiments on the long-tailed benchmark CIFAR10-LT, CIFAR100-LT and ImageNet-LT demonstrate the effectiveness of our proposed method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)

    Article  Google Scholar 

  2. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. In: Advances in Neural Information Processing Systems, pp. 1565–1576 (2019)

    Google Scholar 

  3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  4. Chawla, N.V., Japkowicz, N., Kotcz, A.: Special issue on learning from imbalanced data sets. ACM SIGKDD Explor. Newsl. 6(1), 1–6 (2004)

    Article  Google Scholar 

  5. Cohen, G., Hilario, M., Sax, H., Hugonnet, S., Geissbuhler, A.: Learning from imbalanced data in surveillance of nosocomial infection. Artif. Intell. Med. 37(1), 7–18 (2006)

    Article  Google Scholar 

  6. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9268–9277 (2019)

    Google Scholar 

  7. Drummond, C., Holte, R.C., et al.: C4. 5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling. In: Workshop on Learning from Imbalanced Datasets II, vol. 11, pp. 1–8. Citeseer (2003)

    Google Scholar 

  8. Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4367–4375 (2018)

    Google Scholar 

  9. Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5356–5364 (2019)

    Google Scholar 

  10. Haixiang, G., Yijing, L., Jennifer Shang, G., Mingyun, H.Y., Bing, G.: Learning from class-imbalanced data: review of methods and applications. Expert Syst. Appl. 73, 220–239 (2017)

    Article  Google Scholar 

  11. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Jamal, M.A., Brown, M., Yang, M.H., Wang, L., Gong, B.: Rethinking class-balanced methods for long-tailed visual recognition from a domain adaptation perspective. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7610–7619 (2020)

    Google Scholar 

  14. Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. arXiv preprint arXiv:1910.09217 (2019)

  15. Kim, J., Jeong, J., Shin, J.: M2m: imbalanced classification via major-to-minor translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13896–13905 (2020)

    Google Scholar 

  16. Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5(4), 221–232 (2016). https://doi.org/10.1007/s13748-016-0094-0

    Article  Google Scholar 

  17. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  18. Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2537–2546 (2019)

    Google Scholar 

  19. Oh Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured feature embedding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4004–4012 (2016)

    Google Scholar 

  20. Ouyang, W., Wang, X., Zhang, C., Yang, X.: Factors in finetuning deep model for object detection with long-tail distribution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 864–873 (2016)

    Google Scholar 

  21. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  22. Peng, M., et al.: Trainable undersampling for class-imbalance learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4707–4714 (2019)

    Google Scholar 

  23. Ren, M., Zeng, W., Yang, B., Urtasun, R.: Learning to reweight examples for robust deep learning. arXiv preprint arXiv:1803.09050 (2018)

  24. Shu, J., et al.: Meta-weight-net: learning an explicit mapping for sample weighting. In: Advances in Neural Information Processing Systems, pp. 1919–1930 (2019)

    Google Scholar 

  25. Wang, Y.-X., Ramanan, D., Hebert, M.: Learning to model the tail. In: Advances in Neural Information Processing Systems, pp. 7029–7039 (2017)

    Google Scholar 

  26. Xiang, L., Ding, G.: Learning from multiple experts: Self-paced knowledge distillation for long-tailed classification. arXiv preprint arXiv:2001.01536 (2020)

  27. Xiang, L., Jin, X., Ding, G., Han, J., Li, L.: Incremental few-shot learning for pedestrian attribute recognition. In: IJCAI (2019)

    Google Scholar 

  28. Yan, Y., et al.: Oversampling for imbalanced data via optimal transport. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5605–5612 (2019)

    Google Scholar 

  29. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  30. Zhang, X., Fang, Z., Wen, Y., Li, Z., Qiao, Y.: Range loss for deep face recognition with long-tailed training data. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5409–5418 (2017)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. U1936202, 61925107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiguang Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiang, L., Ding, G., Han, J. (2021). Increasing Oversampling Diversity for Long-Tailed Visual Recognition. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13069. Springer, Cham. https://doi.org/10.1007/978-3-030-93046-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93046-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93045-5

  • Online ISBN: 978-3-030-93046-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics