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Abstract. This paper addresses the problem of 3D hand pose estima-
tion from a monocular RGB image. While previous methods have shown
great success, the structure of hands has not been fully exploited, which
is critical in pose estimation. To this end, we propose a regularized graph
representation learning under a conditional adversarial learning frame-
work for 3D hand pose estimation, aiming to capture structural inter-
dependencies of hand joints. In particular, we estimate an initial hand
pose from a parametric hand model as a prior of hand structure, which
regularizes the inference of the structural deformation in the prior pose
for accurate graph representation learning via residual graph convolution.
To optimize the hand structure further, we propose two bone-constrained
loss functions, which characterize the morphable structure of hand poses
explicitly. Also, we introduce an adversarial learning framework condi-
tioned on the input image with a multi-source discriminator, which im-
poses the structural constraints onto the distribution of generated 3D
hand poses for anthropomorphically valid hand poses. Extensive exper-
iments demonstrate that our model sets the new state-of-the-art in 3D
hand pose estimation from a monocular image on five standard bench-
marks.

Keywords: 3D hand pose estimation· graph refinement· prior pose· ad-
versarial learning· bone-constrained loss.

1 Introduction

3D human hand pose estimation is a long-standing problem in computer vision,
which is critical for various applications such as virtual reality and augmented
reality [15,25]. Previous works attempt to estimate hand pose from depth im-
ages [11,10] or in multi-view setups [24,33]. However, due to the diversity and
complexity of hand shape, gesture, occlusion, etc., it still remains a challenging
problem despite years of studies [14].

As RGB cameras are more widely accessible than depth sensors, recent works
focus mostly on 3D hand pose estimation from a monocular RGB image and have
shown their efficiency [12,4,3,5,8]. While some early works [5,4] did not explic-
itly exploit the structure of hands, some recent methods [12,8] have shown the
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Fig. 1. The proposed method estimates 3D hand pose from a monocular
image based on regularized graph representation learning. A parametric hand
model generates a prior pose, which regularizes the learning of deformations in graph
topology under a conditional adversarial learning framework.

crucial role of hand structure in pose estimation, but may resort to an addi-
tional synthetic dataset. Also, unlike bodies and faces that have obvious local
characteristics (e.g., eyes on a face), hands exhibit almost uniform appearance.
Consequently, estimated hand poses from existing methods are sometimes dis-
torted and unnatural.

To fully exploit the structure of hands, we propose to represent the irregular
topology of 3D hand poses naturally on graphs, and learn the graph repre-
sentation regularized by a prior pose from the monocular image input under
a conditional generative adversarial learning framework, aiming to capture the
structural dependencies among hand joints. Moreover, while most existing works
[4,12,5] deploy 3D Euclidean distance between joints as the loss function for 3D
annotation, we propose two bone loss functions that constrain the length and
orientation of each bone connected by adjacent joints so as to preserve hand
structure explicitly. Besides, unlike some recent works [12,5,18], we estimate 3D
hand poses without resorting to ground truth meshes or depth maps, which is
more suitable for datasets in the wild.

Specifically, given an input monocular image, our framework consists of a
hand pose generator and a conditional discriminator. The generator is composed
of a MANO hand model module [26] that provides an initial pose estimation as
prior pose and a deformation learning module regularized by the prior pose. In
particular, taking the prior pose and image features as input, the deformation
learning module learns the deformation in the prior pose to further refine the
hand structure, by our designed residual graph convolution that leverages on the
recently proposed ResGCN [19]. Further, we design a conditional multi-source
discriminator that employs hand poses, hand bones computed from poses as well
as the input image to distinguish the predicted 3D hand pose from the ground-
truth, leading to anthropomorphically valid hand pose. Experimental results
demonstrate that our model achieves significant improvements over state-of-the-
art approaches on five standard benchmarks.

To summarize, our main contributions include
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– We propose regularized graph representation learning for 3D hand pose esti-
mation from a monocular image, which fully exploits structural information.

– We learn the graph representation of hand poses by inferring structural de-
formation, which is regularized by an initial hand pose estimation from a
parametric hand model.

– We introduce two bone-constrained loss functions, which optimize the esti-
mation of hand structures by explicitly enforcing constrains on the topology
of bones.

– We present a conditional adversarial learning framework to impose structural
constraints onto the distribution of generated 3D hand poses, which is able
to address the challenge of uniform appearance in hands.

2 Related Work

According to the input modalities, previous works on 3D hand pose estimation
can be classified into two categories: 1) 3D hand pose estimation from depth
images; 2) 3D hand pose estimation from a monocular RGB image.

2.1 Estimation from Depth Images

Depth images contain rich 3D information for hand pose estimation [28], which
has shown promising accuracy [32]. There is a rich literature on 3D hand pose
estimation with depth images as input [10,11,9,6,7,16,21]. Among them, some
earlier works such as [7,16] are based on a deformable hand model with an iter-
ative optimization training approach. Due to the effectiveness of deep learning,
some recent works like [21] leverage CNN to learn the shape and pose parameters
for a proposed model (LBS hand model).

2.2 Estimation from a Monocular Image

Compared with the aforementioned two categories, a monocular RGB image
is more accessible. Early works [2] propose complex model-fitting approaches,
which are based on dynamics and multiple hypotheses and depend on restricted
requirements. These model-fitting approaches have proposed many hand models,
based on assembled geometric primitives [23] or sphere meshes [29], etc. Our
work deploys the MANO hand model [26] as our prior, which models both hand
shape and pose as well as generates meshes. Nevertheless, these sophisticated
approaches suffer from low estimation accuracy.

With the advance of deep learning, many recent works estimate 3D hand
pose from a monocular RGB image using neural networks [12,4,3,5,18]. Among
them, some recent works [18,12] directly reconstruct the 3D hand mesh and then
generate the 3D hand pose through a pose regressor. Kulon et al. [18] reconstruct
the hand pose based on an auto-encoder, which employs an encoder to extract
the latent code and feeds the latent code into the decoder to reconstruct hand
mesh. Ge et al. [12] propose to estimate vertices of 3D meshes from GCNs [17] in
order to learn nonlinear variations in hand shape. The latent feature of the input
RGB image is extracted via several networks and then fed into a GCN to directly
infer the 3D coordinates of mesh vertices. However, since the accuracy of the
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Fig. 2. Architecture of the proposed regularized graph representation learning under
a conditional adversarial learning framework for 3D hand pose estimation.

output hand mesh is critical for both methods, they need an extra dataset which
provides ground truth hand meshes as supervision. Also, the upsampling layer
used in [12] to reconstruct the hand mesh will cause a non-uniform distribution
of vertices in mesh, which influences the accuracy of hand pose.

In contrast, we take a prior pose estimated from a parametric hand model
as regularization for graph representation learning over hand poses rather than
directly reconstructing hand poses from latent features. Besides, our method
does not require any additional supervision such as mesh supervision [12,18] or
depth image supervision [12,5]. Hence, our method is more suitable for datasets
in the wild. Further, we introduce conditional adversarial training for 3D hand
pose estimation, which enables learning a real distribution of 3D hand poses.

3 Methodology

3.1 Overview of the Proposed Approach

We aim to infer 3D hand pose via regularized graph representation learning under
an adversarial learning framework. The entire framework consists of a hand pose
generator G and a conditional discriminator D, as illustrated in Fig. 2.

The multi-source discriminator D imposes structural constraints onto the
distribution of generated 3D hand poses conditioned on the input image, which
distinguishes the ground-truth 3D poses from the predicted ones.

3.2 The Proposed Hand Pose Generator G

Given the observed input image I and ground truth hand pose Pgt, we formulate
the training of hand pose estimation from a monocular image as a Maximum a
Posteriori (MAP) estimation problem:

P̂MAP(I,Pgt) = argmax
P

f(I,Pgt|P)g(P), (1)

where P denotes the hand pose to estimate. In (1), g(P) represents the prior
probability distribution of the hand pose, which provides the prior knowledge of
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Fig. 3. Architecture of the deformation learning module in our generator.

P. f(I,Pgt|P) denotes the likelihood function, which is the probability of obtain-
ing the observed image I and ground truth hand pose Pgt given the estimated
hand pose P.

We define the likelihood function as an exponential function of the distance
between the estimated pose and the ground truth pose/input image:

f(I,Pgt|P) = exp{−d1(Pgt,P)− d2(I,P)}, (2)

where d1(·) is the distance metric between the estimated hand pose and the
ground truth, and d2(·) is the distance metric between the estimated hand pose
and the input image. Regarding g(P), it is a constant C after we acquire a
prior pose from a parametric hand model. Hence, when we substitute (2) and
g(P) = C into (1), take the logarithm and multiply by −1, we have

min
P

d1(Pgt,P) + d2(I,P). (3)

d1(·) and d2(·) will be discussed in Section 3.4 in detail.
Specifically, we employ a parametric hand model to provide the prior of P,

and designate a Deformation Learning Module to learn the pose under the su-
pervision of the ground-truth pose and input image. We discuss the two modules
of the generator in detail as follows.

The Hand Model Module Given an input monocular image, this module
aims to generate an initial estimation of 3D hand pose P̃ as a prior. A hand
model is able to represent both hand shape and pose with a few parameters,
which is thus a suitable prior for hand pose estimation.

We first predict parameters of the hand model. Specifically, we crop and resize
the input image to a salient region of the hand, which is fed into the ResNet-50
network [13] to extract features for the construction of the latent code z, i.e.,
parameters of the hand model. Then, we employ a modified MANO hand model
[26], which is based on the SMPL model [20] for human bodies.

The Deformation Learning Module This module aims at accurate graph
representation learning for hand pose estimation, which is conditional on the
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Fig. 4. Architecture of the conditional discriminator.

prior and under the supervision of the input image and ground truth pose as in
(1). In particular, conditioned on the prior P̃, we learn the structural deformation
in P̃ instead of the holistic hand pose.

We first construct an unweighted graph over P̃, where the irregularly sampled
key points (i.e., joints) on the hand are projected onto nodes. The graph signal
on each node is the concatenation of the global feature vector of the input image
and the 3-dimensional coordinate vector of each joint in the input prior pose.
Nodes are connected if they represent adjacent key points of the hand, where
the adjacency relations follow the human hand structure as presented in Fig. 5,
leading to an adjacency matrix A ∈ RN×N .

Based on the graph representation A, the finally refined pose is

P̂ = P̃ + GCN(P̃⊕ F,A), (4)

where F ∈ RN×F denotes the F -dimensional global feature vector of the im-
age repeated N times, and ⊕ denotes the feature-wise concatenation operation.
GCN(P̃⊕F,A) represents the learned deformation between the prior P̃ and the
ground truth. The sum of the prior pose P̃ and its deformation thus leads to the
refined hand pose.

Let Xl denote the input of the l-th Graph Res-block, then the output of the
l-th Graph Res-block takes the form

Xl+1 = N
(
g(N(g(Xl,A)),A)

)
+ skip(Xl), (5)

where g(·) represents a single GCN layer as in [17], N(·) represents a single
normalization layer, and skip(·) denotes the skip connection which is a GCN
layer to match the dimension of the two terms in (5). We then stack several layers
of Graph Res-blocks to learn the deformation of the prior pose, as demonstrated
in Fig. 3.

3.3 The Proposed Conditional Discriminator D

A simple architecture of a discriminator is a fully-connected (FC) network with
the hand pose as input, which however has two shortcomings: 1) the relation
between the RGB image and inferred hand pose is neglected; 2) structural prop-
erties of the hand pose are not taken into account explicitly. Instead, inspired



Hand Pose Estimation via Graph 7

Fig. 5. Illustration of the residual between the ground truth hand pose
(marked in green) and the predicted one (marked in red). Each hand pose
has 21 key joints. We denote a bone vector connecting two key joints i and j by bi,j ,
such as b5,6 in the figure.

by the multi-source architecture in [31], we design a conditional multi-source
discriminator with three inputs to address the aforementioned issues. As illus-
trated in Fig. 4, the inputs include: 1) features of the input monocular image;

2) features of the refined hand pose P̂ or the ground truth pose Pgt; 3) fea-
tures of bones via the KCS layer as in [30], which computes the bone matrix

from P̂ or Pgt via a simple matrix multiplication. The bone features contain
prominent structural information such as the length and direction of bones, thus
characterizing the hand structure accurately.

The loss function of the conditional discriminator follows the definition of
the Wasserstein loss [1] conditioned on the input image I:

LWass = −EPgt∼pdata(Pgt)D(Pgt|I) + EP̂∼p(P̂)D(P̂|I), (6)

where D takes the generated (fake) pose P̂ and ground-truth pose Pgt as input,

Pgt is a sample following the ground-truth pose distribution pdata(Pgt) and P̂

is a sample from the refined pose distribution p(P̂).

3.4 The Proposed Bone-Constrained Loss Functions

As presented in (3), we have two types of loss functions for the MAP estima-
tion of hand pose. We employ the commonly adopted Euclidean distance in the
coordinates of joints of 3D hand pose Lpose [12] as well as two proposed bone-
constrained metrics as d1(·) to measure the distortion of the estimated 3D hand
pose compared to the ground truth, and apply the commonly used Euclidean
distance in the coordinates of joints of projected 2D hand pose Lproj [12] as d2(·)
to measure the distance between the estimation and the 2D image,

Lpose =
∑
i

||ji − ĵi||2,Lproj =
∑
i

||j′i − ĵ′i||2, (7)
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where ji ∈ R3×1, j′i ∈ R2×1 are 3D and 2D coordinates of joint i respectively.
Since Lpose and Lproj cannot capture the structural properties of hand pose

explicitly, we propose two novel bone-constrained loss functions to characterize
the length and direction of each bone.

As illustrated in Fig. 5, we first define a bone vector bi,j ∈ R3×1 between
hand joint i and j as

bi,j = ji − jj , (8)

The first bone-constrained loss Llen quantifies the distance in bone length
between the ground truth hand and its estimate, which we define as

Llen =
∑
i,j

∣∣∣||bi,j ||2 − ||b̂i,j ||2
∣∣∣ , (9)

where bi,j and b̂i,j are the bone vectors of the ground truth and the predicted
bone respectively.

The second bone-constrained loss Ldir measures the deviation in the direction
of bones:

Ldir =
∑
i,j

∣∣∣∣∣∣bi,j/||bi,j ||2 − b̂i,j/||b̂i,j ||2
∣∣∣∣∣∣
2
. (10)

Besides, as we adopt the framework of adversarial learning, we also introduce
the Wasserstein loss LWass in (6) into the loss function for adversarial training.
Hence, the overall loss function L is

L = Lpose + λprojLproj + λlenLlen + λdirLdir + λWassLWass, (11)

where λproj, λlen, λdir and λWass are hyperparameters for the trade-off among
these losses. In accordance with (3), d1 = Lpose + λlenLlen + λdirLdir, and d2 =
λprojLproj.

4 Experimental Results
4.1 Implementation Details

In our experiments, we first pretrain the hand model module and then train the
entire network end-to-end. In particular, the training process can be divided into
three stages.

Stage I. We pretrain the hand model module, which is randomly initialized
and trained for 100 epochs using the Adam optimizer with learning rate 0.001.
Then, we freeze the parameters of this stage to evaluate the effectiveness of the
deformation learning module.

Stage II. We train the generator G end-to-end without the discriminator D.
In G, the hand model module is initialized with the trained model in the first
stage and the deformation learning module is randomly initialized. G is then
trained with 100 epochs using the Adam optimizer with learning rate 0.0001.

Stage III. We adopt the framework of SNGAN [22] for the conditional
adversarial training, and train our model end-to-end. G and D are trained with
100 epochs using the Adam optimizer with learning rate 0.0001.

Regarding the hyper-parameters in (11), we set λlen = 0.01, λdir = 0.1, λproj =
0.1, λWass = 0.01.
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STB RHD MPII+ZNSL(px) Dexter+Object EgoDexter

[12] 6.37 15.33 - - -

[4] 9.76 - 18.95 25.53 45.33

[27] 8.56 19.73 - 40.20 56.92

[34] - - 59.40 34.75 52.77

Ours 3.97 12.40 9.87 16.12 34.98

Table 1. Comparison with state-of-the-art methods on the five datasets. Note that
MPII+ZNSL only provides 2D annotation, thus we employ the 2D distance (px) metric
on this dataset.

Stage hand model deformation discriminator STB RHD EGODEXTER

I X 24.15 83.37 52.32
II X X 5.12 15.84 43.26
III X X X 3.97 12.40 34.98

Table 2. The performance of different stages in our model on three datasets (measured
in 3D Euclidean distance (mm)).

Model GCN Deformation FC Deformation Discriminator STB RHD EGODEXTER

1 X 15.11 37.59 52.34
2 X 5.12 15.84 40.12
3 X X 10.23 25.15 44.23
4 X X 3.97 12.40 34.98

Table 3. Ablation studies on the Deformation Learning Module, with comparison
between the Deformation Learning Module and the simple FC Refinement Module in
3D Euclidean distance (mm).

4.2 Experimental Results

We compare our method with competitive 3D hand pose estimation approaches
on the five datasets. We list the results in 3D Euclidean distance for comparison
with the state-of-the-arts in Tab. 1. Compared to these works which directly
reconstruct the 3D hand pose [12,4,5], our method performs much better mainly
due to the proposed regularized graph representation learning and conditional
adversarial learning. We show the qualitative results and PCK results in the
supplementary material.

4.3 Ablation Studies

We perform ablation studies on the performance of different stages, the defor-
mation learning module, the discriminator and loss functions. Due to the page
limit, we present all the results in 3D Euclidean distance (mm). Please refer to
the supplementary material for the results measured in 3D PCK.

On different stages. We present the results of three training stages in
average 3D Euclidean distance, as listed in Tab. 2. The performance of Stage
II significantly outperforms Stage I, which demonstrates that the proposed
deformation learning module plays the most critical role in our model. The
adversarial training scheme (Stage III) further improves the result, by learning
a real distribution of the 3D hand pose.
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Model Deformation Learning Multi-source Single-source STB RHD EGODEXTER

1 X X 3.97 12.40 34.98
2 X X 4.54 15.10 37.46

Table 4. Ablation studies on the discriminator (3D Euclidean distance (mm)).

Model Lpose + Lproj Llen Ldir
STB RHD

Stage I Stage II Stage III Stage I Stage II Stage III

1 X 32.75 9.11 5.35 99.24 25.96 15.07
2 X X 30.32 8.00 5.02 95.19 22.96 14.76
3 X X 27.65 6.91 5.00 89.76 21.63 14.01
4 X X X 24.15 5.12 3.97 83.37 15.84 12.40

Table 5. Ablation studies on the proposed bone-constrained loss functions at three
stages.

On the deformation learning module. We compare the deformation
learning module with a simple fully-connected deformation learning module (FC
Deformation Module) to refine the prior pose. We train the deformation learning
modules in different experimental settings: 1) without our discriminator, i.e.,
without adversarial learning; and 2) with our discriminator. As presented in
Tab. 3, the GCN deformation learning module leads to significant gain over
the simple FC deformation module on both datasets in different settings, thus
validating the superiority of the proposed deformation learning module.

On the conditional discriminator. We compare with a single-source dis-
criminator which only takes the 3D hand pose as the input. As presented in
Tab. 4, the multi-source discriminator outperforms the single-source one on both
datasets, which gives credits to exploring the structure of hand bones and the
relation between the image and pose.

On loss functions. We also evaluate the proposed bone-constrained loss
functions Llen and Ldir separately. We train the network with different combina-
tions of loss functions on the STB and RHD datasets in three stages respectively.
As reported in Tab. 5, the network trained with our proposed bone-constrained
loss functions performs better in all the three stages on both datasets. We also
notice that Ldir plays a more significant role compared to Llen. This gives cred-
its to the constraint on the orientation of bones that explicitly takes structural
properties of hands into consideration.

5 Conclusion

In this paper, we propose regularized graph representation learning under a
conditional adversarial learning framework for 3D hand pose estimation from
a monocular image. Based on the MAP estimation formulation, we take an
initial estimation of hand pose as prior pose, and further learn the structural
deformation in the prior pose via residual graph convolution. Also, we propose
two bone-constrained loss functions to enforce constraints on the bone structures
explicitly. Extensive experiments demonstrate the superiority of the proposed
method.
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