Skip to main content

Emotion Class-Wise Aware Loss for Image Emotion Classification

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13069))

Abstract

With the increasing number of images containing rich emotional information in social media and the urgent demand for faster and more accurate image emotional information mining, some researchers have begun to pay attention to image emotion classification research. However, most of the work focuses on the complex model design, neglecting the proper consideration of the loss function, which is common in the research of image emotion classification task. Simultaneously, the widely used loss function, such as the Softmax Loss, ignores the difference in the concentration of the inner-class features in image emotion and object classification, which causes the problem of lacking inner-class feature distance converging data imbalance leading to more misclassifications of affective images. We explored the problem of inner-class feature constraints in the loss function design for image emotion classification tasks. Based on the existing loss improvement, we propose a method with the Emotion Class-wise Aware (ECWA) loss to get better accuracy and robustness on more occasions. Results show that the method we proposed is more effective in the image emotion classification task, especially in the emotion category with few samples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ain, Q.T., et al.: Sentiment analysis using deep learning techniques: a review. Int. J. Adv. Comput. Sci. Appl. 8(6), 424 (2017)

    Google Scholar 

  2. Bellet, A., Habrard, A., Sebban, M.: A survey on metric learning for feature vectors and structured data. arXiv preprint arXiv:1306.6709 (2013)

  3. Borth, D., Ji, R., Chen, T., Breuel, T., Chang, S.F.: Large-scale visual sentiment ontology and detectors using adjective noun pairs. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 223–232 (2013)

    Google Scholar 

  4. Cambria, E., Das, D., Bandyopadhyay, S., Feraco, A.: Affective computing and sentiment analysis. In: Cambria, E., Das, D., Bandyopadhyay, S., Feraco, A. (eds.) A Practical Guide to Sentiment Analysis. Socio-Affective Computing, vol. 5, pp. 1–10. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55394-8_1

  5. Campos, V., Jou, B., Giro-i Nieto, X.: From pixels to sentiment: fine-tuning cnns for visual sentiment prediction. Image Vis. Comput. 65, 15–22 (2017)

    Article  Google Scholar 

  6. Campos, V., Salvador, A., Giró-i Nieto, X., Jou, B.: Diving deep into sentiment: understanding fine-tuned cnns for visual sentiment prediction. In: Proceedings of the 1st International Workshop on Affect & Sentiment in Multimedia, pp. 57–62 (2015)

    Google Scholar 

  7. De Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005)

    Article  MathSciNet  Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. Ekman, P.: An argument for basic emotions. Cogn. Emot. 6(3–4), 169–200 (1992)

    Article  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Jia, J., Wu, S., Wang, X., Hu, P., Cai, L., Tang, J.: Can we understand van gogh’s mood? Learning to infer affects from images in social networks. In: Proceedings of the 20th ACM International Conference on Multimedia, pp. 857–860 (2012)

    Google Scholar 

  12. Joshi, D., et al.: Aesthetics and emotions in images. IEEE Signal Process. Mag. 28(5), 94–115 (2011)

    Article  Google Scholar 

  13. Kaya, M., Bilge, H.Ş: Deep metric learning: a survey. Symmetry 11(9), 1066 (2019)

    Article  Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  15. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  16. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  17. Mikels, J.A., Fredrickson, B.L., Larkin, G.R., Lindberg, C.M., Maglio, S.J., Reuter-Lorenz, P.A.: Emotional category data on images from the international affective picture system. Behav. Res. Methods 37(4), 626–630 (2005)

    Article  Google Scholar 

  18. Ortis, A., Farinella, G.M., Battiato, S.: Survey on visual sentiment analysis. IET Image Process. 14(8), 1440–1456 (2020)

    Article  Google Scholar 

  19. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. arXiv preprint arXiv:1912.01703 (2019)

  20. Peng, K.C., Sadovnik, A., Gallagher, A., Chen, T.: Where do emotions come from? Predicting the emotion stimuli map. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 614–618. IEEE (2016)

    Google Scholar 

  21. Rao, T., Li, X., Zhang, H., Xu, M.: Multi-level region-based convolutional neural network for image emotion classification. Neurocomputing 333, 429–439 (2019)

    Article  Google Scholar 

  22. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  23. She, D., Yang, J., Cheng, M.M., Lai, Y.K., Rosin, P.L., Wang, L.: Wscnet: weakly supervised coupled networks for visual sentiment classification and detection. IEEE Trans. Multimed. 22(5), 1358–1371 (2019)

    Article  Google Scholar 

  24. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  25. Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  26. Yao, X., She, D., Zhang, H., Yang, J., Cheng, M.M., Wang, L.: Adaptive deep metric learning for affective image retrieval and classification. IEEE Trans. Multimed. (2020)

    Google Scholar 

  27. You, Q., Luo, J., Jin, H., Yang, J.: Robust image sentiment analysis using progressively trained and domain transferred deep networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29 (2015)

    Google Scholar 

  28. You, Q., Luo, J., Jin, H., Yang, J.: Building a large scale dataset for image emotion recognition: the fine print and the benchmark. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

    Google Scholar 

  29. Zhao, S., Ding, G., Huang, Q., Chua, T.S., Schuller, B.W., Keutzer, K.: Affective image content analysis: a comprehensive survey. In: IJCAI, pp. 5534–5541 (2018)

    Google Scholar 

  30. Zhao, S., Gao, Y., Jiang, X., Yao, H., Chua, T.S., Sun, X.: Exploring principles-of-art features for image emotion recognition. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 47–56 (2014)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China (61976010, 61802011, 61702022), Beijing Municipal Education Committee Science Foundation (KM201910005024).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, S., Wu, L., Shi, G., Zhang, H., Hu, W., Dong, R. (2021). Emotion Class-Wise Aware Loss for Image Emotion Classification. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13069. Springer, Cham. https://doi.org/10.1007/978-3-030-93046-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93046-2_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93045-5

  • Online ISBN: 978-3-030-93046-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics