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Abstract. Attacks on sensor measurements can take the system to an
unwanted state. The disadvantage of using a system model-based ap-
proach for attack detection is that it could not isolate which sensor was
under attack. For example, if one of two sensors that are physically cou-
pled is under attack, the attack would reflect in both. In this work, we
propose an attack detection and isolation technique using a multi-model
framework named Bank of Models (BoM) in which the same process will
be represented by multiple system models. This technique can achieve
higher accuracy for attack detection with low false alarm rates. We make
extensive empirical performance evaluation on a realistic ICS testbed to
demonstrate the viability of this technique.
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1 Introduction

An Industrial Control System (ICS) is a combination of computing elements and
physical phenomenon [35]. In particular, we will consider examples of a water
treatment plant in this paper. An ICS consists of cyber components such as
Programmable Logic Controllers (PLCs), sensors, actuators, Supervisory Con-
trol and Data Acquisition (SCADA) workstation, and Human Machine Interface
(HMI) elements interconnected via a communications network. The advances in
communication technologies resulted in the widespread of such systems to better
monitor and operate ICS, but this connectivity also exposes physical processes
to malicious entities on the cyber domain [6,28]. Recent incidents of sabotage
on these systems [7,13], have raised concerns on the security of ICS.
Challenges in ICS security are different as compared with conventional IT
systems, especially in terms of consequences in case of a security lapse. Attacks
on ICS might result in damage to the physical property [10,46] or severely af-
fecting people who depend on critical infrastructure as was the case of the recent
power cutoff in Ukraine [7]. Data integrity is an important security requirement
for ICS [20] therefore, the integrity of sensor data should be ensured. Sensor
data can either be spoofed in cyber (digital) domain [42] or in physical (ana-
log) domain [40]. Sensors are a bridge between the physical and cyber domains
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in an ICS. Traditionally, an intrusion detection system (IDS) monitors a com-
munication network or a computing host to detect attacks. However, physical
tampering with sensors or sensor spoofing in the physical/analog domain may
go undetected by IDS based only on network traffic [40]. Recently, a live-fire
cyber attack-defense exercise on ICS, evaluated commercially available network
layer attack detection products with the process-aware research prototypes and
concluded that the network-only products do not succeed in detecting process
layer attacks [23].

Data integrity attacks on sensor measurement and the impact of such at-
tacks have been studied in theory, including false data injection [33], replay
attacks [32], DoS attacks [26] and stealthy attacks [11]. These previous studies
proposed attack detection methods based on the system model and statistical
fault detectors [3,1] and also point out the limitations of such fault detectors
against an adversarial manipulation of the sensor data. A major limitation of
these model based attack detection methods, is that it is difficult to isolate the

attacks.
The Attack Isolation Problem: The attack isolation problem also known

as determining the source of an attack is important in the context of ICS [47].
Anomaly detection research suffers from this issue, especially methods rooted
in machine learning [41, 2]. Using machine learning methods with the available
data might be able to raise an alarm but are not able to find the source of the
anomaly. In the context of ICS, if a model is created for the whole process it is
not clear where does an anomaly is coming from?

Motivating Example: To understand the idea, we need to consider an example
from the SWaT testbed [31]. SWaT is a six-stage water treatment plant. Figure 1
shows stage 1 of the SWaT testbed. This stage holds the raw water that is to be
processed. The central entity is a water storage tank with a level sensor (LIT-
101). For this example, we shall focus on another sensor that is the flow sensor
(FIT-201) at the outlet of the tank to measure the outflow of the water from
the tank. LIT-101 and FIT-101 are coupled physically, meaning when FIT shows
outflow level shall go down in LIT-101. In the following, this explanation will
help us understand the problem.

Level Sensor
LIT-101

Flow Sensor
Flow Sensor FIT-201
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. Fig. 1: Stage 1 of the SWaT Testbed.
Figures 2 and 3 show an example of such a problem in a real water treatment

process in which both sensor measurements and estimates are obtained through
process models. Figure 2 depicts a flow meter at the outlet of the raw water
storage tank labeled as FIT-201. A joint physical system model for the stage 1 is
created using a Kalman filter (more details on this in Section 2). Such a system
model captures the dynamics of the physical process. In our case, the physical
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Fig. 2: Flow sensor, FIT-201 is under attack. Flow is simulated to be 2m?/hr
while in reality it is zero. From the residual signal it could be detected. However,
we will see this attack affecting system model for LIT-101 as well in Figure 3.

process is an example of a water storage tank, which collects a limited amount of
water to be used by the subsequent stages of the water treatment testbed. It is
intuitive to understand that there is a physical relationship between the physical
quantities, for example, consider that when water flows out of the tank through
the outlet pipe then the level of the water should fall in the tank. Hence, water
level sensor LIT-101 and outlet flow sensor FIT-201 are physically coupled with
each other. In the example attack, an attacker spoofs the flow sensor FIT-201
by spoofing the real sensor measurements of zero flow to 2m?/hr volumetric flow
level. In the left-hand part of the Figure 2, sensor measurements and estimates
are shown before, during and after the attack. The difference between the sensor
measurements and estimates is given as residual on the right-hand plot. It can
be seen that the attack would be detected using a model-based detector [3] on
FIT-201 residual. However, from Figure 3 it can be seen that the same attack is
detected using the detector for the LIT-101 sensor. For the Figure 3 it could be
seen that using the system model the estimate for the level tends to decrease, for
the reason that if there is outflow the level should be decreased, but since there
is an attack going on, it could be seen that the estimate deviates from the real
sensor measurements. The model-based detectors defined for both level sensor
and flow sensor would raise an alarm. It is not possible to figure out where is
the actual attack unless manually checked. The problem of attack isolation is
important considering the scale and complexity of an ICS. Attack detection and
isolating the devices that are under attack is critical for response and recovery.
Proposed Solution: We propose a multi-model framework named Bank of
Models (BoM) to detect and isolate attacks on the sensors in an ICS. The pro-
posed attack detection framework improves on the limitations of model-based
attack detection schemes[42, 4]. BoM uses the estimates for each sensor obtained
from the multiple system models. It then creates a profile for each sensor based
on a set of time domain and frequency domain features that are extracted from
the residual vector (difference between sensor measurement and sensor estimate).
A one-class Support Vector Machine (SVM) is used to detect attacks for a mul-
titude of industrial sensors. Experiments are performed on an operational water
treatment facility accessible for research [31]. A class of attacks as explained in
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Fig. 3: The attack in flow sensor seen in Figure 2, can be observed in LIT-101 as
well. This is precisely the attack isolation problem, meaning an attack originating
in one component can appear in multiple devices.

the threat model are launched on a real water treatment testbed. The major
contributions of this work are thus:

— A novel BoM framework to detect and isolate sensor attacks.

— A detailed evaluation of the proposed technique as an attack detection
method, for a class of sensor spoofing attacks.

— Extensive empirical performance evaluation on a realistic ICS testbed.

— An ensemble of models based algorithm to increase the attack detection rate
and reduction in the false alarm rate.

2 System and Threat Model

2.1 System Dynamics

A system model represents the system dynamics in a mathematical form. A
linear time invariant system model is obtained using either first principles (laws
of Physics) or subspace system identification techniques. Then, we construct a
Kalman filter which is used to obtain estimates for the system states and to
find the residual vector. We studied the system design and functionality of the
water treatment (SWaT) testbed [31] to obtain the system model. We used data
collected under regular operation (no attacks) and subspace system identification
techniques [36] to obtain a system model. For SWaT testbed, resulting system
model is a Linear Time Invariant (LTT) discrete time state space model of the
form:

(1)

{$k+1 = A(Ek + Buk + Vg,
Yk = Cxp + N

Where k € N is the discrete time index, x; € R™ is the state of the approximated
model, (its dimension depends on the order of the approximated model), y €
R™ are the measured outputs, and u € RP denote the control actions. A, B,C
are the state space matrices, capturing the system dynamics. 7 is the sensor
measurement noise and vy, is the process noise.



Title Suppressed Due to Excessive Length 5

Yk Nk
Actuator !
Yk

——pK——] Process '-u)))))
Sensor | >
g
_ MR 41

ug Uk = Yk + Ok

Control

Fig.4: A general CPS under sensor attacks.

2.2 Threat Model

At the time-instants k € N, the output of the process y; is sampled and transmit-
ted over a communication channel as shown in Figure 4. The control action wu
is computed based on the received sensor measurement 7. Data is exchanged
between different entities of this control loop and it is transmitted via com-
munication channels. There are many potential points where an attacker can
compromise the system. For instance, through the Man-in-The-Middle (MiTM)
attack at the communication channels and physical attacks directly on the in-
frastructure. In this paper, we focus on sensor spoofing attacks, which could be
accomplished through a Man-in-The-Middle (MiTM) scheme [42] or a replace-
ment of on board PLC software [17]. After each transmission and reception, the
attacked output g, takes the form:

Yk = Y + O = Cxp + Mi + O, (2)

where 6, € R™ denotes sensor attacks.

Assumptions on Attacker: It is assumed that the attacker has access to yi,; =
Cixy +ny,i (i.e., the opponent has access to it" sensor measurements). Also, the
attacker knows the system dynamics, the state space matrices, the control inputs
and outputs, and the implemented detection procedure. All the attacks taken
from reference work [18] are executed by compromising the Supervisory Control
and Data Acquisition (SCADA) system. An attack toolbox was used to inject

an arbitrary value for real sensor measurement.

3 Attack Detection and Isolation

The Problem of State Estimation: State estimation is to estimate the physical
state variable of a system given the previous state measurement. A general state
estimation problem can be formulated as,

Xk+1:AXk+BUk+L(Yk—Yk), (3)

Equation (3) presents a general estimator design, where L is a gain matrix
calculated to minimize the estimation error. Y and X are estimated system
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output and system state, respectively. Let’s consider an example of a system
model with two outputs and one control input and equation (3) becomes,

~1 ~1 1

Thr1 | _ | @11 Q12| | T . bi1 U + li1 ho e(yk) 4
[iiH] |:a21 a22:| [fi] [521] B a1 2o 6(3/;%) )

Thor _ andy +arndy + birug | lie(yp) +lize(yz) (5)

ii+1 agli‘}c + azgi'i + bzluk lgle(y,i) + lgze(y%)

The two system state estimates are labeled as :f:,lc and ;%i It can be observed
from (5) that the state estimate #1,, at k+ 1'" time instance depends on error
from both the outputs, i.e., e(y;) and e(y;) since the estimator is designed for
both the sensors as a joint model. In this study, we have used Kalman filter to
estimate the state of the system based on the available output yy,

Epe1 = Ady, + Bug + L (g - Ciy), (6)

with estimated state &y € R™, &1 = E[x(t1)], where E[-] denotes expectation,
and gain matrix L € R™™. Define the estimation error ey := x; — T. In the
Kalman filter, the matrix Ly is designed to minimize the covariance matrix
Py := E[erel] (in the absence of attacks). Given the system model (1) and
the estimator (6), the estimation error is governed by the following difference
equation

Clyl = (A - LkC’)ek - Lknk - chsk + Vk. (7)

If the pair (A, C') is detectable, the covariance matrix converges to steady state
in the sense that limy_,. P, = P exists [5]. We assume that the system has
reached steady state before an attack occurs. Then, the estimation of the random
sequence z, k € N can be obtained by the estimator (6) with Py and Ly, in steady
state. It can be verified that, if Ry + CPCT is positive definite, the following
estimator gain

Ly = L= (APCT)(Ry +CPCT) ™", (8)

leads to the minimal steady state covariance matrix P, with P given by the
solution of the algebraic Riccati equation:

APAT - P+ Ry = APCT(Ry + CPCT)'CPA". (9)

The reconstruction method given by (6)-(9) is referred to as the steady state
Kalman Filter, cf. [5].

3.1 Attack Detection Framework

In this section, we explain the details of the proposed attack detection scheme.
First, we use the Kalman filter based state estimation to generate residual (dif-
ference between sensor measurement and estimate). Then, we present the design
of our residual-based attack detection method.
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Proposition 1. In steady state [5], residual vector is a function of sensor and

process noise. Consider the process (1), the Kalman filter (6)-(9). The residual
k-2 A
vector is given as, 1 = Ceg + 1y and e, = ¥ (A-LC) (vg-i—1 — Lng—i-1), where

is
vk € R™ is the process noise and 1 € R™ is the sensor noise.

Proof: The state estimation error is the difference between real system state
and estimated system state and can be presented as,

€ktl = Thal — Tt (10)

From system state equation (1) and state estimation equation (6), by substitut-
ing the equations for xx+1 and Ty we get,

€L+1 =A$k+B’U,k+’Uk—A.’%k—Buk—L(yk—ﬂk) (11)
For yi = Cxy + ni, and g = CTy we get,
CL+1 :A(xk—ick)+vk—L(ka+77k—C§:k) (12)

As ey = xf — Ty, we get,

€L+l = Aek + Vg — LC’ek - L??k (13)
€lt+1 = (A - LC)ek + UV — L’I]k (14)
u

Using system model and system state estimates it is possible to extract the
residual as defined above. Once we have obtained these residual vectors capturing
the modeled behaviour of the given ICS, we can proceed with pattern recognition
techniques (e.g. machine learning) to detect anomalies.

Design of the Proposed Framework The proposed scheme begins with data
collection and then divides data into smaller chunks to extract a set of time
domain and frequency domain features. Features are combined and labeled with
a sensor ID. A machine learning algorithm is used for sensor classification under
normal operation.

Residual Collection: The next step after obtaining a system model for an ICS
is to calculate the residual vector as explained in previous section. Residual is
collected for different types of industrial sensors present in SWaT testbed. The
objective of residual collection step is to extract a set of features by analyzing
the residual vector. When the plant is running, an error in sensor reading is a
combination of sensor noise and process noise (water sloshing etc.). The collected
residual is analyzed, in time and frequency domains. Each sensor is profiled
using variance and other statistical features in the residual vector as shown in
the Table 1. A machine learning algorithm is used to profile sensors from fresh
readings (test-data).
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Table 1: List of features used. Vector z is time domain data from the sensor
for N elements in the data chunk. Vector y is the frequency domain feature of
sensor data. yy is the vector of bin frequencies and ¥y, is the magnitude of the
frequency coefficients.

Feature Description
=N va1 i
Std-Dev o=\ o5 2N (zi - 7:)?
Mean Avg. Dev| Ds = SN i - I
Skewness v = v 2 (o
Kurtosis B=x3n 1(%_06) -3

2 *1,
Spec. Std-Dev |0 —\/M

Mean T

=N ym (@)
. _ Zizl(yf(i))*ym(i)
Spec. Centroid | Cs = B O
DC Component ym (0)

Feature Extraction: Data is collected from sensors at a sampling rate of one
second. Since data is collected over time, we can use raw data to extract time
domain features. We used the Fast Fourier Transform (FFT) algorithm [45] to
convert data to frequency domain and extract the spectral features. In total, as
in Table 1, eight features are used to construct the fingerprint.

Data Chunking: After residual collection, the next step is to create chunks
of dataset. We have performed experiments on a dataset collected over 7 days
in SWaT testbed. An important purpose of data chunking is to find out, how
much is the sample size to train a well-performing machine learning model? and
How much data is required to make a decision about presence or absence of an
attacker? The whole residual dataset (total of N readings) is divided into m
chunks (each chunk of [%J), we calculate the feature set < F/(C;) > for each data
chunk . For each sensor, we have m sets of features < F/(C;) >ie[1,m]. We have
used a one-class SVM algorithm for attack detection. It is found out empirically
that a sample size of 120 readings, i.e., m = 120 gave the best results. Most of
the machine learning algorithms need a chunk of data to operate on and it is
common to find an appropriate chunk size through experimentation [29, 9].

Size of Training and Testing Dataset: For a total of F'S feature sets for each
sensor, at first we used half (£2 5 ) for training and half ( ) for testing. To analyze
the accuracy of the classifier for smaller feature sets durlng training phase, we
began to reduce number of feature sets starting with F . Classification is then

carried out for the following corresponding range of feature sets for Training :

FS FS FS FS FS FS QFS 3FS 4FS 9FS , :
{T’T’T’T’TO} and for Testlng {7 =3 4 0 5 7} reSpeCthely.

For the classifier we have used a one-class SVM library [8] and it turns out that
the amount of data does not affect the performance. Moreover since we are not
using supervised learning for attack detection, therefore, training is only done
on the normal data obtained from a particular sensor.
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3.2 Attack Isolation

A well known idea in fault isolation literature is to use multiple observers [44,
12,43]. Consider the dynamic system as expressed by (1) with p outputs,

Ui = [Wies Vs -r yh )" = Oy (15)

For the case of an attack on one sensor ¢, attack vector 5}; #+ 0 and y,’C =
Ci@y + 6};. Again consider the example of two sensors in the water tank example
we have considered earlier. To use the idea of bank of observers we would drop
one sensor at first and design an observer just using the first sensor, i.e., the flow
sensor FIT-101 and then we will design another observer by using the second
sensor, i.e., the level sensor LIT-101. Let’s consider both the cases one by one:

Case 1:

Tr1 = AZp + Bug + Li(y), — Cidn), (16)

re = Cog -y (17)
Using the first observer designed for FIT-101 gives the output as,

i il 1 1
Dt | = o ([ anr a2 |||y |ban g o D || o) + 0 18
|:?713+1:| (|:(L21 a22] |:§7i:| " |:b21:| * |:121 e(yé) + 5,1 (18)

Case 2: Using the second observer designed for LIT-101 gives the output as,

0i 7l 2 2
e el e B B Ll O L | 19
[yk] ([ HkHb] i) o) + 07 (19)

Where 5,& and 6,% are the attack vectors in sensor 1 and sensor 2 respec-
tively. To isolate the attack using a bank of observers, following conditions are
considered for p sensors,

Condition 1: if ri #0 for one j € {1,2,....,i- 1,4+ 1,...,p}, then sensor
j is under attack, while sensor i is the one used to design an observer.

Condition 2: if ri #0 for all je{1,2,....i-1,i+1,...,p} then sensor i
is under attack while sensor i is used to design the observer.

For a simple example, let’s consider two observers as designed in (18) and
(19). In the first case we had used FIT-101 sensor measurements to design an
observer and also keep in mind that FIT-101 was free of any attacks. This means
according to the condition 1 above FIT-101 residual mean should go to zero but
for LIT-101, it does not. Figure 5 shows the results for the case 1. It can be seen
that the sensor 1 (FIT-101) residual does not deviate form the normal residual,
while the sensor 2 (LIT-101) residual deviates from the normal operation, hence
detecting and isolating the source of attack. For the case 2, the observer is
designed using the sensor 2 (LIT-101) and also remember that the attack is also
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Fig. 5: Sensor 1 FIT-101 is used for observer design but the attack was in sensor 2
LIT-101. Therefore attack can be isolated in residual of LIT-101.

present in the LIT-101. Figure 6 shows the results for this case. This case satisfies
the condition 2 as stated above and then we see that the attack is present in both
the sensors as the observer used is the one which has the attack. This means 5,%
was 0 and 67 was not zero in (18) and (19) respectively.

However from the results above it could be noticed that the sensor attacks
could be isolated using the idea of bank of observers but it would not detect the
case when the attack is in multiple sensors at the same time, e.g., multi-point
single-stage attacks in an ICS [18]. Towards this end we are proposing the idea of
using a Bank of Models (BoM) to isolate and detect attacks on multiple sensors
at the same time in an ICS.

30 600
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400

20
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T

-200
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Residual Value

-400

-20 -600

-30 -800
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Fig.6: Sensor 2 LIT-101 used for observer design and the attack was also in
sensor 2 LIT-101. Therefore, both the sensor residuals deviate from the normal
pattern.

Bank of Models (BoM): The idea is to create multiple models of the physical
process rather than the multiple observers. For example if you have two sensors
which are physically coupled as in the case of FIT-101 and LIT-101, then we
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Algorithm 1: Attack Isolation Method

Result: Output the sensor ID under attack
initialization;

0s: {Set of Sensors} ;

T;’oint =0, T%OMZO; ie 95;

sensort, . Attack = False #Flag it" sensor Attack;
while Sensor Signal do

for zm 0, do.

T;oint = y_;'oint - y;ointa T}BoM:y%oM - :’)lBoM >

if v, 0. Attack == True &6 v . . Attack == True then
| Sensor®. Attack = True;

else
| Sensor®. Attack = False;

end

end
end

will create three models, 1) with both the sensors as output, 2) with FIT-101
only as the output and 3) with LIT-101 only as the output. We call the first
method as Joint model and the rest two models as BoM. We can use these
models in conjunction with each other to isolate the attacks and call that model
as Ensemble of models. By having a separate model the sensors are no longer
coupled to each other. These separate models could be used to detect attacks but
accuracy of detection might be low as we will see in the results. Therefore, we
propose a method called Ensemble of models combining the joint and separate
models to make an attack detection decision as well as isolate the attack.

=

7

Fig. 7: Experiments conducted at SWaT Testbed.
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4 Evaluation

4.1 Experimentation Setup

Industrial Control Systems have a broad domain. In this work, a Secure Water
Treatment testbed (SWaT) [31] shown in Figure 7 at the Singapore University
of Technology and Design is used as a case study. SWaT is a fully functional
testbed and is open for researchers to use. A brief introduction is provided in
the following to understand the context of the problem.

The SWaT testbed produces the purified water and it is a scaled-down ver-
sion of a real water treatment process. There are six stages in the SWaT testbed.
Each stage is equipped with a set of sensors and actuators. Sensors include water
quantity measures such as level, flow, and pressure and water quality measures
such as pH, ORP and conductivity. Actuators include motorized valves and elec-
tric pumps. Stage 1 is the raw water stage to hold the raw water for the treat-
ment and stage 2 is the chemical dosing stage to treat the water depending on
the measurements from the water quality sensors. Stage 3 is the ultra-filtration
stage. Stage 4 is composed of de-chlorinator and stage 5 is equipped with reverse
osmosis filters. Stage 6 holds the treated water for distribution. Multiple stages
from SWaT are used in this study. Actuator signals are input to the system
model and sensor measurements are outputs. Level sensors labelled as LIT-s0q,
where LIT stands for level transmitter, s for the stage and q for the specific
number, e.g., LIT-101 means level sensor in stagel and sensor 1. FIT-301 is the
flow sensor in stage3 and sensor number 1. The performance is evaluated in three
areas, namely, attack detection, attack isolation and the improvement in attack
detection rate.

4.2 Attack detection

To show the performance of attack detector we use True Positive Rate (TPR:
meaning attack data declared as attack), True Negative Rate (TNR: normal
data declared as normal). Attack detection results are shown in Table 2. For each
sensor in SWaT testbed attack sequences are shown. These attack sequences and
attacked dataset is obtained from already published benchmark attacks [18,9].
We can see a high TPR and TNR indicating the effectiveness of our proposed
scheme. There is an interesting observation to make here, as discussed earlier the
proposed technique is based on the system model, it exhibits a strong coupling
between inputs and outputs of a system. If attacks are executed on level sensors
we could see the effect on associated flow meter and vice versa. This indicates
the coupling due to the laws of Physics even though the sensors were of different
types. Column 3 and 4 indicates this result in form of TNR-Joint and TPR-Joint
respectively. For LIT-101 it could be seen that the TPR is 100%, however, we
observe attack detection TPR for FIT-101 to be 88.88% while there were no
attacks carried on FIT-101. Column 5 and 6 depict results for the case when we
have a separate system model for each sensor labeled as TNR-BoM and TPR-
BoM respectively. These two single models can help in detecting attacks just in
LIT-101 and none in FIT-101 as expected.
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Table 2: Attack detection performance. TPR: Attack detected successfully, TNR:
Normal data classified successfully. LIT: level sensor, FIT: flow sensor,DPIT:
differential pressure sensor.

Sensor | Atk. seq. ¢ |TNR-Joint| TPR-Joint| TNR-BoM| TPR-BoM | TNR-Ensemble| TPR-Ensemble
DPIT-301 8 84.66% 100% 83.14% 100% 88.66% 100%
LIT-101 |3,21,30,33,36| 83.37% 100% 94.55% 85.18% 96.50% 85.18%
FIT-101 None 91.96% 88.88 71.00% |No Attacks 96.07% No Attacks
LIT-301 |7,16,26,32,41| 86.28% 78.37% 92.31% 100% 96.82% 78.37%
FIT-301 None 86.41% 83.78% 86.23% |No Attacks 89.89% No Attacks
LIT-401 25,27,31 87.12% 74.28% 86.66% 65.21% 90.18% 60.86%
FIT-401 | 10,11,39,40 | 87.50% 51.42% 87.40% 100% 91.70% 100%
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Fig. 8: This shows how two different attacks on two different sensors are reflected
in residuals of both the sensors due to the physical coupling.
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4.3 Attack Isolation

We have seen the attack isolation performance in Table 2 using the separate
model for each sensor. To visually present the idea Figure 8 shows two example
attacks and the coupling effects. Attack 1 is carried out on the flow meter FIT-
101 by spoofing the flow value to 4m?/hr as shown in Figure(b) and this attack
can be observed in the residual value on the right-hand side. However, attack 1
could be seen in Figure(a) in the level sensor LIT-101 as well. The Attack 2 is
carried out on the level sensor by spoofing the water level value as shown in
Figure 8(a). This attack could be seen in the residual of the level sensor LIT-101
and also on the right-hand side in the flow sensor FIT-101 residual.

In Figure 9 it can be seen that separate system models for both the sensors
were able to isolate both the attacks. Attack 1 only appears in the residual of
FIT-101 and Attack 2 is detected only by LIT-101.
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Fig.9: In this Figure both the attacks as shown in Figure 8 are shown but for
the case when we have two separate models for each sensor. It can be seen that
the attacks are isolated to the particular sensor under attack.
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4.4 Reduction in False Alarm Rate via Ensemble

From the results above we have seen that the bank of models (BoM) can detect
as well as isolate the attacks on the sensors. However, we thought to make use of
more information by combining the BoM and Joint models termed as Ensemble
model here as outlined in Algorithm 1. Last two columns in Table 2 shows the
results for the Ensemble of both the models. It is seen that using the information
about residual vectors from two different models and obtaining an ensemble
increase the information at hand and can led in reduced false alarms. Observing
column TNR-Ensemble and comparing with other TNR columns reveal that the
false alarm rate has significantly reduced as compared to prior results.

5 Discussion

TPR and TNR Accuracy: The reason for low TPR and TNR in some cases
is that as soon as an attack is ended, we start considering the behavior/ground
truth to be a normal operation. But our detection system still raises alarms and
these alarms are treated as False positives. In reality, this is the time required
by the system to come back to a normal operating range. More so, since we do
not record that as a rightful attack detection then it is also counted as wrongful
TNR reducing the TNR. For example, as shown in Figure 10 we can observe
that as soon as an attack is removed, we observe post-attack effects which per-
sist for some time. In this region, we assume the attack is over but due to attack
effects, our detector keeps raising an alarm thus reducing the TNR value. From a
defender’s perspective, it might be acceptable since operators would be involved
even from the first alarm raised. However, from an attacker’s perspective this ob-
servation highlights, how important it is to terminate attacks in a way to reduce
the number of alarms. This is in line with earlier works that have highlighted
how important it is to time an attack [25], similarly, it is important to terminate
attack as such to avoid abrupt changes.

Scalability: An important consideration is the practicality of the proposed tech-
nique for real-world plants. Since the proposed method does not use any extra
hardware, scalability is not an issue. Previously in the literature bank of ob-
servers has been used for hundreds of sensors, similarly, the proposed idea of a
bank of models can be used as it is grounded in the mathematical formulation
and software. Practical demonstration in the real-world water treatment testbed
also shows the applicability of the proposed technique to real systems without
any overhead.
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Fig. 10: Explanation for low TPR/TNR dues to post-attack effects.

6 Related Work

Machine Learning-based Approaches: There have been a lot of efforts towards at-
tack detection in the context of ICS. Most of the works took a machine learning-
based approach. Most techniques took classification approach and either used
unsupervised or semi-supervised machine learning algorithms to detect attacks
in an 1CS[24,19,22,21,15,16, 38]. In particular, some of them have used data
from Secure Water Treatment (SWaT) testbed [31]. The design of an anomaly
detector for ICS is treated as a “one-class classification problem” and several un-
supervised learning methods are effectively employed [22]. Unsupervised learning
approaches construct a baseline for normal behavior through feature learning and
monitor whether the current behavior is within the specified range or not. Al-
though these techniques can detect zero-day vulnerabilities, they generate high
false alarms due to the existence of several hyperparameters and the multivariate
nature of ICS data. Similarly, for one class SVM, authors in [22] have fine-tuned
the parameters, namely ¢ and  for better performance on the SWaT dataset.
Although there exist several automated approaches, such as grid search, ran-
domized search, and metaheuristic optimization techniques for fine-tuning, a
significant challenge faced by these techniques is overfitting. Generally, the error
rate during the validation process should be less for the trained model; a higher
validation error for the model trained with a large volume of data implies that
the model is over-fitted. A context-aware robust intrusion detection system is
proposed by [39]. Given the amount of work done in this domain this related
worklist is by no means exhaustive but tried to cover the related work tested on
the SWaT testbed. These techniques do not include a feature of attack isolation
that is the core of this work.
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System and Process Model: There have been efforts from the system and the
process model perspective. Krotofil et al. [27] detect the spoofed measurements
using the correlation entropy in a cluster of related sensors. Most of the work
focused on system model-based approaches, the literature volume is huge and it
is not possible to cover all the studies here but a few representative [14, 37, 30].
These works capture the process dynamics in the form of system models and
use the point change detection methods to detect attacks in the process data. A
similar recent approach [47] does isolate the attack but only the attacks on the
actuators. Sensor fusion [34] and multi observer techniques[43] are recent efforts
on attack isolation problem in simulated environments. However from the results
in Section 3.2 it is noticed that the sensor attacks could be isolated using the
idea of a bank of observers but it would not detect the case when the attack is
in multiple sensors at the same time, e.g., multi-point single-stage attacks in an
ICS. Our work is the first effort demonstrating a bank of models on a live water
treatment plant.

7 Conclusions and Future Work

The problem of attack isolation is critical in terms of system response and re-
covery in an event of attack detection. We demonstrated that using the bank of
models (BoM) the attack isolation problem on multiple sensors at a time could be
solved. This work strengthens the previous studies and provides a novel solution
to the problem of determining the source of the attack in a complex industrial
control system. In future, we plan to extend this work using bigger city scale pro-
cess plant. Moreover, we propose to automate the process of data-based system
modelling.
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