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Abstract. Recently, deep learning has achieved promising results in the
calculation of Estimated Time of Arrival (ETA), which is considered as
predicting the travel time from the start point to a certain place along
a given path. ETA plays an essential role in intelligent taxi services or
automotive navigation systems. A common practice is to use embed-
ding vectors to represent the elements of a road network, such as road
segments and crossroads. Road elements have their own attributes like
length, presence of crosswalks, lanes number, etc. However, many links in
the road network are traversed by too few floating cars even in large ride-
hailing platforms and affected by the wide range of temporal events. As
the primary goal of the research, we explore the generalization ability of
different spatial embedding strategies and propose a two-stage approach
to deal with such problems.

Keywords: Graph Embedding, Machine Learning, ETA, Geospatial
Linked Data.

1 Introduction

The modern state of traffic induces a remarkable number of forecasting chal-
lenges in a variety of related areas. According to the industrial needs, a relevant
computation of the estimated time of vehicle arrival can be considered as one
of the most actual problems in the logistics domain. In particular, intelligent
traffic management systems [15] require significant accuracy in case of arrival
time estimation. Besides such an application, computation of ETA also appears
as a common issue in the commercial areas which are strongly dependent on op-
timal routing. The explicit examples of such services are taxi [19], railway [17],
vessels [14] and aircraft transportation [3].

Accurate prediction of ETA for cars is a complex task requiring the rele-
vant processing of heterogeneous data. It is frequently represented as time se-
ries and graph structure with feature vectors associated with its nodes and/or

⋆ equal contribution

http://arxiv.org/abs/2110.04228v1


2 V. Porvatov et al.

0:00 - 2:00

2:00 - 4:00

4:00 - 6:00

6:00 - 8:00

8:00 - 10:00

10:00 - 12:00

12:00 - 14:00

14:00 - 16:00

16:00 - 18:00

18:00 - 20:00

20:00 - 22:00

22:00 - 00:00

0:00 - 2:00

2:00 - 4:00

4:00 - 6:00

6:00 - 8:00

8:00 - 10:00

10:00 - 12:00

12:00 - 14:00

14:00 - 16:00

16:00 - 18:00

18:00 - 20:00

20:00 - 22:00

22:00 - 00:00

2000

1750

1500

1250

1000

750

500

0

250

R
e
a
l 
ti
m

e
 o

f 
a
rr

iv
a
l,
 s

T
ri
p
s
 n

u
m

b
e
r

16000

8000

0

Abakan Omsk

Fig. 1. Demonstration of temporal traffic dynamics: cumulative frequencies of car ac-
tivity and distribution of trips duration for Abakan and Omsk in the two hours interval.

edges. In comparison with other vehicles, computation of ETA for cars is con-
siderably influenced by the road network topology, nonlinear traffic dynamics,
unexpected temporal events, and unstable weather conditions, Figure 1. The
stochastic nature of the introduced problem requires an implementation of a
powerful domain-specific regression model with a high generalization ability.

Machine learning proved its outstanding efficiency in a wide range of re-
gression tasks. However, not every model can be efficiently applied to the ETA
forecasting due to the mentioned constraints of available data. Previously per-
formed attempts of a simple model implementation (e. g., linear regressions and
gradient boosting) were reported as inefficient [11, 27], while the more sophisti-
cated approaches allowed to achieve more optimistic results [21]. Thus, in order
to obtain a better performance, we assume the necessity of applying graph neural
networks [29] as a part of the presented pipeline.

According to the extensive growth of graph machine learning in recent years,
many promising architectures [10, 16] emerged and soon were applied in a wide
range of graph-related studies [6, 18]. These models quickly became useful in
terms of feature extraction in downstream tasks. Applied to the underlying graph
structure of a city road network, such algorithms have the potential to dramat-
ically increase the expressiveness of regression models and therefore should be
explored.

In the present paper, we propose and compare different architectures of the
hybrid graph neural network for ETA prediction. Our main contributions are
the following:

– We introduce and publish the first to our best knowledge dataset1 with inter-
mediate trip points. This dataset is relevant for consistent ETA prediction
task and future usage as a benchmark. We provide common information

1 to receive an access to data you need to send a request to semenova.bnl@gmail.com
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about trips and city road network as well as road structural properties,
marking, and weather conditions (other features are described in Section 3
in detail). Additionally, the route data includes auxiliary information which
can be used both for evaluation of the ETA and independent prediction of
real traveled distance as a separate problem.

– Absence of methodological review of subgraph embeddings in the domain of
interest encourages us to overwhelm such a limitation. Instead of focusing on
more general approaches which include both spatial and recurrent temporal
aspects, we prefer to precisely explore the domain of spatial embeddings as
an underdeveloped one at the present moment.

– We conduct a comprehensive evaluation of our method on two real-world
datasets which correspond to tangibly different cities. Obtained results of
computational experiments motivate us to further develop our research in
accordance with achieved significant performance improvements.

2 Related work

As it has been mentioned above, the ETA-related tasks are a fundamental part of
logistic services. In overwhelming number of cases, they demand two properties
from the predictive algorithms: computational efficiency and relevant accuracy.
The first part of this challenge was unequivocally solved by simple learning
models like gradient tree boosting, multi-layer perceptron, and linear regression.
However, the quality of these models cannot be reported as sufficient even beyond
the commercial logistics.

Along with the simple learning models, deterministic algorithms were also
developed in huge amount [2, 26]. In the majority of cases they cannot be com-
pared with learning models in terms of quality. However, some of them were
inspiring enough to influence the future development of their concepts in a more
sophisticated way.

Limitations of mentioned approaches were partially overwhelmed in DeepTTE
[25] and MURAT [13]. The first approach includes a recurrent neural network
(RNN) which subsequently predicts the travel time along the trip. As many other
recent methods, this algorithm is dependent on intermediate GPS coordinates.
At the same time, the second method is closely related to the proposed archi-
tecture in the sense of graph embedding usage. In spite of the deep development
of the temporal forecasting part, no more than one spatial embedding method
was observed in any of this papers.

The most recent studies introduce new solutions with the potential to signif-
icantly increase the quality of ETA prediction. WDR [27] is a wide-deep archi-
tecture that outperformed a lot of previously established approaches. Its further
improvement and computational experiments led the same authors to the design
of RNML-ETA architecture [21] which allows to achieve even better results. Si-
multaneously, another intriguing paper [4] emerged as a prospective modification
of ST-GCN methods family [7, 20, 28]. All of these methods use datasets with
intermediate points in contrary to the overwhelming majority of early papers.
Following this positive trend, we continue studies in the same direction.
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Fig. 2. Edges usage frequencies projected as a heatmap on the road networks of Abakan
(a) and Omsk (b). The patterns of edges demand are clearly distinguishable as the
topology of networks remains significantly different.

3 Data

In the present work, we use two datasets related to the city networks of Abakan
and Omsk. The cities have significantly different scales. Hence, their infrastruc-
ture pattern cannot be compared directly. Such a diversity allows us to check
the generalization ability of the proposed architectures in a more explicit way.
General properties of the dataset are established in Table 1 when the frequencies
of road network segments usage are represented in Figure 2(a, b).

Each dataset consists of both road networks and the routes associated with
their edges. City networks contain an abundant number of meaningful features
that can be translated to the predictive model in different ways. The route sample
includes information about the start and destination point and a set of visited
nodes during the ride.

The trip data was collected in the period from December 1, 2020 up to Decem-
ber 31, 2020 by subsidiary companies of Sberbank. A comprehensive description

Table 1. Description of the datasets in terms of common networks characteristics

Property Abakan Omsk

Nodes 65524 231688
Edges 340012 1149492
Total trips number 119986 120000
Trips coverage 0.535 0.392
Edges usage median 12 8
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of the proposed data is given in Table 2 for the city network and in Table 3 for
car routes.

Table 2. Edge features of city network

Feature Values Description

Road class

fake road, intra-quarter driveway,
dirt road, other city street, main
city street, highway, intercity
road, federal highway, cycle path,
walkway

General road segments
categories

Length Z+

Length of a road
segment in meters

Width Z+

Width of a road
segment in meters

Def speed {3, 15, 20, 60, 90}
Speed limit on a
road section in km/h

Lanes {0, 1, 2, 3, 4, 5}
Number of lanes in
a road segment

Barrier {0, 1}
Defines the presence
of road barriers

Payment flag {0, 1}
Defines a road segment
as toll

Turn restrictions {0, 1}
Defines an ability to
turn on a road section

Pedo offset {0, 1}
Defines the presence of
crosswalk offsets

Bad road {0, 1}
Defines the condition
of a road segment

Style

undefined, archway, crosswalk,
stairway, bridge, overground way,
invisible, normal, park path,
park footpath, subway, pedestrian
bridge, underground way, tunnel,
living zone, ford

Additional road segments
categories

According to the complexity of input data, it cannot be directly translated to
a predictive model as an input. In order to correctly solve the desired task, it is
recommended to filter the established dataset and perform feature engineering.
Trips that have a rebuild count more than 1 should be optionally separated
from the main volume of routes as well as anomaly short and long routes. Values
of start (finish) point parts and dist to a(b) can be also added or subtracted
from the total estimated length of the route in order to obtain a better spatial
resolution of subgraph embeddings.
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Table 3. Features of trip dataset

Feature Values Description

Nodes {V̂ ⊂ V } Subset of nodes

Dist to a Z+

Length of a segment between actual start
point and its projection on the first edge

Dist to b Z+

Length of a segment between actual end
point and its projection on the last edge

Start point part Z+

Part of the first edge where the trip
starts in meters

Finish point part Z+

Part of the last edge where the
trip ends in meters

Start UTC Z+ Start time of the trip in UTC format
Real time of arrival Z+ Trip duration in seconds

Real dist* Z+ Actual traveled distance in meters

Rebuild count* Z+

Number of route rebuilds that corresponds
to the destination change

4 Methods

The task can be mathematically formulated as a regression problem that ex-
tended by a special procedure of an automatic feature engineering. In order to
handle this challenge, we generate vector representations of the road segments
via GNNs, aggregate them to the trips embeddings and then apply a regression
model which predicts ETA.

Given a graphG = (V,A,X) of the city road network, where V = {v1, v2, ..., vn}
denotes the set of graph vertexes (road segments), A: n×n −→ {0, 1} denotes the
adjacency matrix (each edge encodes connectivity of the road segments), and X :
n×m −→ R is a matrix of node features.

The goal is to compute such a representation of each node vi ∈ V that
can be effectively aggregated in accordance with structural properties of the
route sj := {vj1 , ..., vjt}, sj ∈ S. There are two main aggregation strategies
that potentially allow to construct a meaningful route subgraph embedding.
The first one based on basic summation of all representations of the nodes that
are included to the exact route

zsj =

#sj
∑

i=1

Z(vji), (1)

where Z(·) is the node embedding function.
Another approach related to initial graph extension by virtual nodes. This

procedure induces a new graph Ĝ(V ′, A′, X ′), where V ′ = {v1, ..., vn, vn+1, ...,

vn+#S}, A
′:(n+#S)×(n+#S) −→ {0, 1}, ∀vi, vn ∈ V adjacency matrix defined

as A′(vi, vj) = A(vi, vj). For the other edges, we propose the bijective function
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f : V ′\V −→ S that defines ∀v′k ∈ V ′\V and ∀vl ∈ f(v′k) values in remaining
part of the extended adjacency matrix as A′(vl, v

′

k) = 1. In agreement with this
method,

zsj = Z(f−1(sj)). (2)

For both strategies it is crucial to find the appropriate node embedding func-
tion Z(·) which has a significant impact on the relevance of the final route sub-
graph representations. We propose graph convolutional networks [10], GAT [23],
and GraphSAGE [8] as the main candidates for nodes representation learning.
The ideas behind these methods are quite similar as they all encode nodes to
vectors of a fixed size via a repeated aggregation over a local neighborhood. How-
ever, while the GCN is based on mean aggregation, GraphSAGE pretends to be
a more flexible and representative instrument due to its different aggregators
and embedding concatenation stage. On the other hand, GAT adopts the mech-
anism of attention [22] firstly proposed in Natural Language Processing (NLP)
to the needs of graph machine learning. To explicitly reveal the relevance of the
mentioned approaches, in the following we briefly introduce the main aspects of
each method.

Graph Convolutional Network (GCN). For a given graph G(V,A,X)
this method defines an effective approach to network information aggregation.
Single graph convolution layer is its atomic unit that can be represented as

H(l+1) = σ
(

D̃−
1

2 ÃD̃−
1

2H(l)W (l)
)

, (3)

where l+ 1 is the current convolution layer number, σ is an arbitrary nonlinear
function (e. g., ReLU), H(0) = X , Ã = A + IN , D̃ii =

∑

j Ãij and W l is the
matrix of learning parameters.

GraphSAGE. This algorithm mostly inherits the notation of convolutions
from the GCN architecture, but instead of using full graph it directly computes
convolution for each node v in the iterative manner

hl+1
v = σ

(

W l · CONCAT
(

hl
v, h

l+1
N(v)

))

, (4)

where hl+1
N(v) can be extracted by a few different aggregate functions for the set

of neighbour nodes N(v).
Graph Attention Network. The last considered method is based on the

attention mechanism which also avoids transductive GCN constraints and apply
the iterative aggregation procedure

hl+1
i = CONCATK

k=1 σ





∑

j∈N(i)

αk
ijW

khl
j



 . (5)

The attention coefficient is computed as follows:

αij =
exp

(

σ
(

aT · CONCAT(Whl
i,Whl

j)
))

∑

k∈N(i) exp
(

σ
(

aT · CONCAT(Whl
i,Whl

k)
)) , (6)
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where aT is a transposed vector of attention trainable parameters.
In order to boost the expressiveness of these methods and convert supervised

setups to unsupervised, we propose to embed them as a part of the Deep Graph
InfoMax pipeline [24]. This approach is based on minimizing of a two-component
loss function

L =
1

N +M

N
∑

i=1

EG [logD(di, T )] +

M
∑

j=1

EC

[

log
(

1−D(d̃j , T )
)]

(7)

which aims to learn how to distinguish initial nodes representations d and cor-
rupted ones d̃, Figure 3.

G

C
corrupted

embeddings d

regular 

embeddings d

TS

Z

Z

F

D

D

regular

similarity

corrupted

similarity

loss

maximize

minimise

~

Fig. 3. Deep Graph Infomax corrupts feature vectors of the input graph G by function
S (in the used realisation it shuffles features), constructs regular and corrupted node
embeddings by applying Z(·), and finally estimates their similarity to the ground-truth
vector T by the discriminator function D.

Once embeddings of routes zsj are computed, each vector can be extended by
additional information about the weather conditions and corresponding temporal
categorical features. After these manipulations with route vectors zsj they can
be finally fed to the regression model.

5 Results

In order to perform the training and evaluation of proposed architectures, we
need to split the datasets into three samples. We trained our model on the first
100 000 trips, while the test and validation steps were performed on equal parts
of the remaining datasets.

Following the evaluation standards, we use a common set of metrics for the
ETA prediction task: Mean Average Error (Eq. 8), Mean Average Percentage
Error (Eq. 9), and Rooted Mean Square Error (Eq. 10).
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MAE =
1

N

N
∑

i=1

|yi − y′i| , (8)

MAPE =
100

N

N
∑

i=1

∣

∣

∣

∣

yi − y′i
yi

∣

∣

∣

∣

, (9)

RMSE =

√

√

√

√

1

N

N
∑

i=1

(yi − y′i)
2
. (10)

5.1 Implementation details

Computational experiments were provided with the use of StellarGraph [5] li-
brary. All models were trained on 2 GPU Tesla V100, the total training time of
the pipeline for the best models is 9 hours. During the embedding construction
process, we used three types of each observed architecture with the number of
layers from 1 to 3 and the fixed output of size 128. Neural networks weights were
trained by Adam optimizer [9] due to its good convergence and stability. We use
the static learning rate parameters L1 = 0.001 for node embedding generation
and L2 = 0.0001 for regression.

5.2 Experiments

We performed series of computational experiments varying the strategy of sub-
graph embedding generation and the method of node representation extraction.
As the final regression model, we leverage a multi-layer perceptron (MLP). For
the purpose of Deep Graph InfoMax tests extension, we also compute the val-
ues of the metrics for regular unsupervised GraphSAGE and regression baseline
to illustrate the general capabilities of different approaches. The final values of
metrics for each configuration are shown in Table 4.

Table 4. Evaluation results on test sample

Abakan Omsk

MAE RMSE MAPE MAE RMSE MAPE
Baseline(MLP only) 111.05 316.39 27.129 145.819 296.86 25.019
GraphSAGE + VN 111.23 316.82 27.213 146.003 297.028 25.108
GraphSAGE + Sum 96.575 310.114 22.881 129.831 279.773 22.416

DGI(GCN) + Sum 97.927 310.628 23.506 141.017 289.32 24.335
DGI(GAT) + Sum 101.808 313.01 25.737 133.262 283.22 23.175
DGI(GS) + Sum 95.819 309.627 22.622 130.296 280.058 22.593
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As it seen from the table, the best performance was achieved by the Graph-
SAGE setup with Deep Graph InfoMax in the case of Abakan. Meanwhile, com-
mon GraphSAGE also demonstrates promising embeddings quality (especially
for Omsk) which is slightly different from its DGI modification. The error dis-
tributions of the best models for each dataset are shown in Figure 4.

ABAKAN

CONFUSION MATRIX
OMSK
CONFUSION MATRIX

(a) (b)

true valuestrue values

p
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te
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 v
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u
e
s

Fig. 4. Error distribution for the regression models trained on Abakan (a) and Omsk
(b) datasets.

Unfortunately, the test series of virtual nodes route embeddings turned down
our pursuit to report any significant results. We conclude that the expressive-
ness of this method is limited in the area of interest, despite previous positive
attempts of implementation in other tasks [12]. However, such a result was par-
tially foreordained by the studies which also explored subgraph embeddings [1].

6 Conclusion and Outlook

In this work, we implemented and explored a pipeline that includes state-of-
the-art algorithms of graph machine learning that emerged in recent years. We
trained and tested our model on two consistent datasets which correspond to
cities with different road topology types. Our results allow us to conclude that
GraphSAGE-based models capture spatial patterns of city networks more sub-
stantially.

Our own perspectives include future development and modification of more
specific methods based on obtained results. As the primary goal of this research
was to find the most efficient methods of subgraph embedding construction in
the context of ETA problem, we intend to use this knowledge to construct a
more complex spatial approach in the upcoming papers. In the spotlight of our
research, we also have an idea to design an powerful generalizing approach to
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various kinds of road networks with the potential of applying it to a bunch of
cities.
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