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Abstract. In stem cell biology, cellular pluripotency describes the capacity of
a given cell to differentiate into multiple cell types. From a statistical physics
perspective, entropy provides a statistical measure of randomness and has been
demonstrated as a way to quantitate pluripotency when considering biological
gene networks. Furthermore, recent theoretical work has established a relation-
ship between Ricci curvature (a geometric measure of “flatness”) and entropy
(also related to robustness), which one can exploit to link the geometric quantity
of curvature to the statistical quantity of entropy. Therefore, this study seeks to
explore Ricci curvature in biological gene networks as a descriptor of pluripo-
tency and robustness among gene pathways. Here, we investigate Forman-Ricci
curvature, a combinatorial discretization of Ricci curvature, along with network
entropy, to explore the relationship of the two quantities as they occur in gene
networks. First, we demonstrate our approach on an experiment of stem cell gene
expression data. As expected, we find Ricci curvature directly correlates with net-
work entropy, suggesting Ricci curvature could serve as an indicator for cellular
pluripotency much like entropy. Second, we measure Forman-Ricci curvature in
a dataset of cancer and non-cancer cells from melanoma patients. We again find
Ricci curvature is increased in the cancer state, reflecting increased pluripotency
or “stemness”. Further, we locally examine curvature on the gene level to identify
several genes and gene pathways with known relevance to melanoma. In turn, we
conclude Forman-Ricci curvature provides valuable biological information re-
lated to pluripotency and pathway functionality. In particular, the advantages of
this geometric approach are promising for extension to higher-order topological
structures in order to represent more complex features of biological systems.

Keywords: network geometry, Forman-Ricci curvature, stem cell biology, can-
cer biology

1 INTRODUCTION

A major biological phenomenon is cellular differentiation, whereby pluripotent stem
cells undergo phenotypic evolution to approach one of many possible differentiated
states. Understanding how cellular dynamics shape the trajectories of differentiation
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Fig. 1. A: Stem cell differentiation as a landscape, wherein stem cells move down a gradient
of potential energy to reach local minima at unique differentiated cell states. B: Example sub-
network of PPI network, with an edge of interest (green) and corresponding parallel edges (blue)
labelled.

can provide us with a deeper knowledge of the processes that govern phenotypes, which
could allow us to predict cellular behavior in various biological processes and ultimately
may inform our strategy for influencing these complex biological systems with targeted
pharmacology. For example, recent work in this regard have ranged from stem cell
biology [1–4], cancer biology [1, 2], cellular reprogramming [5], to defining biologi-
cal robustness and drug resistance [6–8]. Epigenetic evolution is familiarly motivated
by C.H. Waddington [9] as a hill-like “landscape”, in which cellular state is intrinsi-
cally coupled to a quantity similar to potential energy in classical mechanics (Fig. 1A).
That is, cellular differentiation could be modeled as a ball rolling down the hillside of
this landscape, gaining momentum and following “grooves” towards a state of lower
potential energy and perhaps settling into a local minima. However, the mathematical
quantification of this landscape in regards to cellular trajectories and pluripotency in
general has only been recently investigated [3, 4, 10] and to a large part, remains an
open problem.

To this end, in order to estimate and capture the complex dynamics of cellular dif-
ferentiation, one can model the underlying biological systems as a network. While a
complete review of such network modeling is beyond the scope of this work [11], this
study focuses on protein-protein interaction (PPI) networks [12, 13]. Here, individual
genes are treated as components in a large network of interacting proteins, wherein re-
lationships such as protein binding or enzyme catalysis are modeled as corresponding
edges between nodes on a graph and for which such “interactions” have been validated
by experimental studies. In this regard, many recent studies have applied PPI networks
to model the differentiation landscape [1, 2, 14]. More importantly, several of these re-
cent works attempt to mathematically quantify the general notion of pluripotency from
a statistical mechanics perspective, in which the differentiation capacity of a cell can
be described by entropy measured on the PPI network. In particular, [14] utilizes a no-
tion of graph entropy to examine the “randomness” of gene expression data overlaid
onto a PPI network. These studies demonstrate gene network entropy to be a powerful
statistical descriptor of cell pluripotency, decreasing upon cellular differentiation and
increasing in situations such as cancer [1, 2].
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Gene Network Curvature 3

While statistical mechanics and in particular notions of entropy are well-known
with ubiquitous applications beyond cellular biology, recent work has shown that Ricci
curvature (a geometric measure of “flatness”) may also be reinterpreted as a statistical
quantity and proxy for entropy [15–17]. This is particularly fascinating in the contin-
uous case as one is able to unify a purely deterministic geometric (local) quantity of
curvature with that of a statistical (equilibrium) quantity of entropy. From the biological
perspective, this provides a “bridge” to investigate geometric (and topological) proper-
ties of biological networks to better capture cellular functionality in facets not generally
realizable from a purely classical statistical lens [18]. That said, discretizing the contin-
uous definition of Ricci curvature (and other forms of curvature in Riemannian geome-
try [19]) is not necessarily straightforward especially over a discrete metric space (e.g.,
graph) where differential operators are not readily provided. As such, several works
have focused on discretizing Ricci curvature for graphs including the definitions of Ol-
livier [20] and Forman [22]. While both discretize Ricci curvature for graphs, Ollivier-
Ricci curvature [20] is motivated through the statistical idea that probabilistic neighbor-
hoods are closer (farther) than their centers depending on positive (negative) curvature,
using optimal transport theory to compute such a distance, whereas Forman-Ricci cur-
vature provides an explicit combinatorial curvature formula based on Bochner’s method
of decomposing the combinatorial Laplacian (more detail in Section 2) [22–25]. While
both of these measures work well on 1-dimensional simplicial complexes, i.e. graphs
with only nodes and undirected edges, Forman-Ricci curvature is in fact formulated
for higher order structures such as faces, which are composed of multiple nodes and
edges [26]. Therefore, in the context of biological gene networks where multiple genes
can interact simultaneously in common pathways, Forman-Ricci curvature may prove
advantageous over previous applications of Ollivier-Ricci curvature from both compu-
tational and mathematical perspectives.

Of importance, theoretical work [15–17] has demonstrated a relationship between
Boltzmann entropy and Ricci curvature (i.e. changes in entropy are positively corre-
lated with changes in curvature). Several works have exploited this concept in a variety
of venues from cancer biology [18, 27, 28], neuroscience [29, 30], wireless network
congestion [31], economics [32], to graph-based Ricci flows [25, 33]. Here, most of
the biological work has focused on Ollivier’s definition. However, there exist intrinsic
computational and mathematical limitations to the generalization of this definition to
the higher order topological structures necessary to capture biological functionality un-
derlying cellular dynamics. Therefore, our study examines curvature and entropy in the
context of stem cell differentiation and cancer with the goal of establishing a direct link
between the deterministic quantity of Forman-Ricci curvature and the statistical quan-
tity of network entropy. Ultimately, we aim to explore the capability of Forman-Ricci
curvature as a meaningful descriptor of cellular pluripotency and pathway functionality.
If curvature analysis can indicate which genes are associated with pluripotency and how
these genes drive pluripotency, this would suggest geometric theory could guide appli-
cations in biology and medicine to exert dynamic control over cellular differentiation
processes and pathologic processes as in cancer. Perhaps more importantly, this will lay
the foundation for an exploration of higher-dimensional biological structures through
extension of Forman’s definition.
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This paper is organized as follows: In Section 2, we provide preliminaries and nec-
essary background. In Section 3, we describe our computational approach. Following
this, Section 4 presents results that highlight Forman-Ricci curvature as a descriptor of
pluripotency in a stem cell dataset and pathway functionality in a melanoma dataset.
Lastly, Section 5 presents conclusions and discussions of future directions.

2 BACKGROUND

2.1 Motivation: Interplay of Entropy & Curvature

Critical to our motivation for this study are several works exploring the relationship of
entropy and curvature in geometric spaces [15–17]. The core of the approach of these
studies involves the dependence of various geometric quantities on the lower bound
of Ricci curvature. Namely, for a given Riemannian manifold, the existence of a lower
quadratic bound on Ricci curvature, Ric(M)≥ κI where I is the identity matrix, implies
K-convexity of Boltzmann entropy on the same manifold [17]. This property can be
exploited to establish a positive correlation between changes in entropy ∆S and changes
in curvature ∆Ric,

∆S×∆Ric≥ 0. (1)

An additional key relationship to these two variables involves robustness, which
can be defined as the rate of return to equilibrium in a dynamical system. The Fluctua-
tion theorem [27, 34] asserts a positive correlation between changes in entropy ∆S and
changes in robustness ∆R, which therefore, by Eq. (1), implies the same relationship
between Ricci curvature and robustness,

∆S×∆R≥ 0 =⇒ ∆Ric×∆R≥ 0. (2)

These findings provide direction for this study, serving as the theoretical ground-
work for exploring Ricci curvature in gene networks as a statistical indicator for pluripo-
tency and pathway robustness. Given that global network entropy has been demon-
strated as a descriptor of cellular pluripotency [1, 2, 14], we aim to extend Ricci curva-
ture as a geometric quantity on biological gene networks. Then, we can apply the rela-
tionships of curvature to entropy and robustness, respectively, to assess Ricci curvature
as a potential descriptor of pluripotency (globally) and pathway robustness (locally).

2.2 Biological Graphs: Topological & Geometric Information

In the context of biology, graphs such as protein-protein interaction networks can rep-
resent the complex system of interactions between diverse proteins. On one hand, topo-
logical information alone can provide valuable information about biological networks
[35]. Nevertheless, gene expression array data can be overlaid onto these graphs to aug-
ment the underlying topology with geometric node and edge weights, providing richer
and more complex analysis than merely topological information. In this paper, we seek
to analyze such gene networks from a geometric perspective.

Previous studies examining gene network entropy utilize a formulation based on
Shannon entropy [14]. In brief, local entropy Si at a node i can be determined based
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on the interaction probabilities pi j of neighboring nodes, and a subsequent global en-
tropy rate SR can be computed as a weighted-average of local entropies based on the
stationary (invariant) distribution π of the network,

Si = ∑
j∈Ni

pi jlogpi j SR =
n

∑
i=1

πiSi. (3)

By realizing a gene network as a geometric object, we aim to exploit the relationship
of entropy and Ricci curvature, shown in Eq. (1), to pivot from the statistical quantity
of entropy into the geometric quantity of curvature. We also seek to utilize the relation-
ship of robustness and Ricci curvature, in Eq. (2), by examining Ricci curvature within
local network components, which here would represent individual genes and gene path-
ways, to quantify changes in functional robustness that could indicate critical pathways
involved in biological processes such as tumorigenesis.

Importantly, the discrete structure of gene networks requires a discretization of Ricci
curvature, for which we select Forman-Ricci curvature due to its combinatorial nature,
computational advantages, and adaptability to higher-order structures.

2.3 Forman-Ricci Curvature

In the discrete setting, Forman-Ricci curvature can be developed through a combi-
natorial analogue to the Bochner-Weitzenböck decomposition of the Riemannian (or
Hodge [21]) Laplacian �p into a rough (or Bochner) Laplacian Bp and a combinatorial
curvature operator Fp [22],

�p = Bp +Fp. (4)

This definition applies to CW-complexes, a general class of topological structures
that includes graphs. In this sense, a graph is considered a complex consisting of nodes
(0-cells) and edges (1-cells) glued together at their boundaries, i.e. their nodes. For
each edge in the graph, we use Forman’s approach to derive an explicit combinatorial
curvature formula that depends only on the weights of the edge, the edge end-nodes,
and neighboring (parallel) edges [22].

Let us consider an arbitrary graph consisting of nodes and edges (Fig. 1B). For a
given edge e with ascribed edge weight we, coupled with end-nodes v1 and v2 with
respective node weights wv1 and wv2 , Forman-Ricci curvature is defined as

F(e) = we

(
wv1

we
− ∑

ev1∼e

wv1√wewev1

+
wv2

we
− ∑

ev2∼e

wv2√wewev2

)
, (5)

where evi ∼ e denotes parallel edges that share a common node vi with edge e.
This definition applies to both undirected and directed graphs [24]. In the case of a

directed graph, the same definition is applied, with the caveat that only parallel edges
concordant in direction with edge e are considered and any opposite edge v2v1 is disre-
garded. Notably, as we consider here only simple graphs of nodes (0-cells) and edges
(1-cells), we disregard higher order structures such as faces (2-cells), which do appear
in the full derivation [22].
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As Forman-Ricci curvature is defined on each edge of the graph, one can define a
contracted nodal curvature as the mean of all edge curvatures incident to a given node,

F(v) =
1

deg(v) ∑
ev∼v

F(ev). (6)

In the case of a directed graph, nodal curvature is defined as the mean of all incom-
ing edge curvatures minus all outgoing curvatures,

F(v) =
1

degIN(v)
∑

evIN∼v
F(evIN )−

1
degOUT(v)

∑
evOUT ∼v

F(evOUT ). (7)

A global average of curvature FGA can be computed as a weighted average of nodal
curvatures, weighted by the stationary distribution π of the graph,

FGA =
n

∑
i=1

πiF(vi). (8)

3 APPROACH

3.1 Gene Expression Pre-Processing to Graph Construction

In this note, we regard an RNA-sequencing data set as a matrix with a row for each
unique gene measured and a column for each unique sample in the experiment. This
data is typically provided as integer read counts that correspond to the number of times
an observed RNA sequence read was aligned to a specific gene transcript. These read
count data were pre-processed by first performing quantile normalization to reduce bias
between samples, then a log2 transformation was applied, which brings large values
closer to the distribution and allows for similar variation across different magnitudes.
The goal of these pre-processing steps was to reduce systematic bias and improve the
analysis of biologically meaningful data [36].

Protein-protein interaction (PPI) graph topology was defined based on protein inter-
action data from Pathway Commons (https://www.pathwaycommons.org) [13]. These
interaction data were further processed by a sparsification technique described in [1],
which removed likely false-positive edges. As such, we directly utilized the same inter-
action network as [1,2], downloaded from the SCENT Github repository (https://github.
com/aet21/SCENT, file: data/net13Jun12.Rda). This PPI network contained 8434 nodes
corresponding to unique genes and 303,600 edges describing protein-protein interac-
tions between pairs of nodes.

From here, a (pre-processed) gene expression matrix D measuring expression of
M genes across N samples (i.e. D is a matrix of dimension M×N) was overlaid onto
the PPI network. First, all nodes corresponding to genes not measured in the gene ex-
pression dataset were removed and subsequently only the largest strongly connected
component of the resulting network was considered. Next, for each individual sample k,
taking the corresponding column vector RM

+ of gene expression, E :=D·k (i.e., E ∈RM
+ ),

node weight was directly defined as the (pre-processed) gene expression value,

w(vi) = Ei. (9)
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Edge weights were then defined based on the mass-action law [14, 37, 38], which
states the rate of interaction is directly proportional to the concentration (or expression)
of each gene,

w(ei j) = EiE j. (10)

We note that across multiple samples, the same PPI topology was used and new
node and edge weights were defined based on the gene expression profile of a given
sample.

3.2 Gene Network Curvature Analysis

For each individual sample, gene expression was overlaid onto the PPI network and
node weights and edge weights were defined as above. A stochastic matrix P was cre-
ated by normalizing edge weights at each node by the sum of outgoing edge weights,
such that the sum of outgoing edge weights in P sum to 1 for any node,

Pi j = w(ei j)/ ∑
∀k∈N(i)

w(eik). (11)

This matrix P is notably similar to the transition matrix of a Markov chain, in
which the transition probabilities are proportional the the expression level of neighbor-
ing nodes. The stationary distribution π of the graph, which represents the equilibrium
of a random walk on the graph and satisfies π = Pπ (i.e. π is an eigenvector of the
stochastic matrix P with an eigenvalue of 1) was taken as the normalized first eigenvec-
tor of P.

Using the normalized edge weights defined by P, we applied the combinatorial
Forman-Ricci curvature formula, in Eq. (5), to compute curvature at each edge. Then,
edge curvature values were used to compute nodal curvature values using Eq. (7). A
global average of curvature was computed for each sample, using the stationary dis-
tribution π to calculate a weighted average over the nodal curvatures, as in Eq. (8).
To compare entropy to curvature, the stochastic matrix P was used to compute local
Shannon entropy at each node and subsequent global entropy rate by Eq. (3).

For local curvature analysis, we develop a differential curvature analysis based on
the principles of differential expression analysis [39]. For each individual gene, local
curvature values across all samples within a group (i.e. cancer or non-cancer samples)
were compared to define a log2 fold-change in curvature (log2FC= log2(mean2/mean1))
and statistically assessed using an unpaired t-test, with the resulting p-values adjusted
for multiple comparisons using the Benjamini-Hochberg step-up procedure [40] to pro-
duce false discovery rates (FDR, or q-values). To select genes with significant changes
in curvature among the groups, we apply a cutoff of q<0.05 and absolute log2FC>2.
These genes with differential curvature were fed into Reactome pathway analysis [41],
which utilizes a hypergeometric test to determine pathway overrepresentation, to pro-
duce a list of pathways that were retained if the Reactome FDR was q<0.05.

4 RESULTS

We now present results on few experiments that illustrate the viability of utilizing gene
network Forman-Ricci curvature as an indicator for cellular pluripotency as well as
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Fig. 2. Stem-cell differentiation. A: Violin plot showing distributions of global average curvature
in differentiated cell types. Horizontal black bars are medians. A trend of decreasing curvature
with increasingly differentiated cell types is observed. B: Same as A but for global entropy. A
similar trend of decreasing entropy is observed. C: Scatter plot of global weighted-average nodal
curvature vs global entropy. The two quantities were strongly correlated at r=0.9287 (Pearson).

pathway robustness. The aim of this results section is to provide proof-of-concept and
is by no means a complete analysis. This said, the results herein lay a foundation for
future work, in which we aim to examine higher dimensional structures that more
accurately capture biological differentiation dynamics. As such, for the purposes of
demonstrating our approach of calculating Forman-Ricci curvature on biological gene
networks, we focused our analyses on two previously published single-cell RNA se-
quencing datasets, first from a stem cell differentiation study [42], and second from
a melanoma study including cancer and non-cancer cells [43]. This data is publicly
available through the NCBI GEO portal (https://www.ncbi.nlm.nih.gov/geo) under ac-
cession numbers GSE75748 and GSE72056, respectively.

4.1 Differentiation Cell Type (GSE75748)

We focused on a subset of the stem cell dataset examining a cell-type experiment, which
measured gene expression on n=1018 single cells from 6 different cell types represent-
ing increasingly differentiated cells derived from undifferentiated human embryonic
stem cells [42]. Cell-type abbreviations: hESC human embryonic stem cell, NPC neu-
ronal progenitor cell, DEC definitive endoderm cell, TB trophoblast-like cell, HFF hu-
man foreskin fibroblast, EC endothelial cell.

We assessed gene network Forman-Ricci curvature and entropy for each individ-
ual single-cell sample (Fig. 2). We observed an overall decrease in curvature in more
differentiated cells compared to stem and progenitor cells. In agreement with previous
studies examining network entropy on this same data [2], a similar trend was observed
for entropy. Notably, we observed curvature on these samples to exhibit strongly neg-
ative values, which indicated the local edge curvatures on average were predominantly
negative, whereas entropy values were normalized to the interval [0,1]. We emphasize
the magnitudes of individual curvature values are not nearly as important as the changes
in curvature between cell types as these changes reflect relative differences in pluripo-
tency. Pearson correlation between curvature and entropy values was 0.9287, suggesting
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Fig. 3. Melanoma. A: Box plot of global average curvature distributions for normal and tumor
cells of individual patients. An increase in curvature among tumor cells relative to normal cells
was observed in each patient. B: Violin plot of global average curvature in normal and tumor cells
across all patients. Horizontal black bars are medians.

a strong relationship of the two values as expected from the theoretical correlation of
entropy and curvature.

4.2 Melanoma (GSE72056)

The melanoma dataset contained n=4513 total single-cells from 19 melanoma patients,
of which nN=3256 were non-cancer (normal) cells and nT =1257 were cancer (tumor)
cells [43].

We again computed Forman-Ricci curvature for each single-cell sample (Fig. 3),
observing a clear trend of increased curvature in cancer cells compared to non-cancer
cells within each patient and across all patients. These findings indicate increased cel-
lular pluripotency or “stemness” in cancer relative to non-cancer tissue.

We extended this analysis to examine the local curvature at each node (gene), specif-
ically applying a differential curvature analysis approach in order to identify genes with
changing curvature between cancer and non-cancer in these melanoma cases. We iden-
tified 210 genes with significantly increased curvature and 250 genes with decreased
curvature. Subsequently, we utilized Reactome pathway analysis [41] to determine
gene pathways to which these increasing and decreasing curvature genes correspond.
We found 13 increased curvature pathways including the CCT/TriC protein folding
pathway, FGFR4 pathway (oncogene in melanoma [44]), and matrix remodeling path-
ways, each of which having been implicated in various aspects of melanoma patho-
genesis [44–46]. We also found 22 decreased curvature pathways including the FGFR2
pathway (tumor suppressor in melanoma [44]) and several immune pathways, which
would typically have protective effects against melanoma [47, 48]. Therefore, the ob-
servations of increased curvature in oncogenic pathways and decreased curvature in tu-
mor suppressive pathways highlights the relationship of Ricci curvature and robustness,
suggesting that cancer may exhibit increased curvature and thus robustness in pathways
beneficial to the cancer. These results demonstrate the capacity of Ricci curvature to
identify gene pathway functionality in pathologic processes such as cancer.
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5 CONCLUSIONS

In this work, we have presented Forman-Ricci curvature as a discrete geometric quantity
to evaluate biological gene networks. We were motivated by previous work examining
gene network entropy, which found global entropy to be a potential descriptor of dif-
ferentiation potential [1, 2, 14]. We extended theoretical findings linking entropy and
Ricci curvature to establish a relationship between the statistical quantity of entropy
and geometric quantity of Ricci curvature [15–17]. In accomplishing this, we selected
Forman-Ricci curvature as a discretization of Ricci curvature, owing to its flexibility
in assessing more general, high-order biological graph structures. Our findings indicate
that Ricci curvature decreases upon cellular differentiation and increases in cancer, sim-
ilarly to entropy. While network entropy has been previously shown to reflect cellular
pluripotency, to our knowledge this is the first example of Ricci curvature represent-
ing the same information. Additionally, we demonstrate local analysis of Ricci curva-
ture on a melanoma dataset to reveal several gene pathways with known relevance to
melanoma, which exhibits the capacity of Ricci curvature to reveal changes in robust-
ness related to pathway functionality in pathologic processes such as cancer.

While this approach is promising, there are caveats. Many specific details in the
gene network analysis are subject to consideration, such as the pre-processing tech-
nique, the PPI network topology, and the definitions of node and edge weights. Future
directions of this work should include extending the approach to higher-dimensional
graph structures, in particular to 2-dimensional simplicial complexes [26], as well as
exploring geometric flows such as Ricci flow on biological networks [25]. These av-
enues could reveal additional biological meaning in regards to cellular pluripotency
and differentiation trajectories.
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