Self-Supervised Bernoulli Autoencoders for
Semi-Supervised Hashing

Ricardo Nanculef, Francisco Mena
Department of Informatics
Federico Santa Maria Technical University
8940572 Santiago, Chile
Emails: {ricardo.nanculef, francisco.menat} @usm.cl

Abstract—Semantic hashing is an emerging technique for
large-scale similarity search based on representing high-
dimensional data using similarity-preserving binary codes used
for efficient indexing and search. It has recently been shown that
variational autoencoders, with Bernoulli latent representations
parametrized by neural nets, can be successfully trained to learn
such codes in supervised and unsupervised scenarios, improving
on more traditional methods thanks to their ability to handle the
binary constraints architecturally. However, the scenario where
labels are scarce has not been studied yet.

This paper investigates the robustness of hashing methods
based on variational autoencoders to the lack of supervision,
focusing on two semi-supervised approaches currently in use. The
first augments the variational autoencoder’s training objective
to jointly model the distribution over the data and the class
labels. The second approach exploits the annotations to define
an additional pairwise loss that enforces consistency between
the similarity in the code (Hamming) space and the similarity
in the label space. Our experiments show that both methods
can significantly increase the hash codes’ quality. The pairwise
approach can exhibit an advantage when the number of labelled
points is large. However, we found that this method degrades
quickly and loses its advantage when labelled samples decrease.
To circumvent this problem, we propose a novel supervision
method in which the model uses its label distribution predictions
to implement the pairwise objective. Compared to the best
baseline, this procedure yields similar performance in fully
supervised settings but improves significantly the results when
labelled data is scarce. Our code is made publicly available at
https://github.com/amacaluso/SSB-VAE,

I. INTRODUCTION

Given a dataset D = {x(M) 2 ... 2™}, with (¥ ¢
X V¢ € [N], similarity search is the problem of finding the
elements of D that are similar to a query object ¢ € X,
not necessarily in D. This is a fundamental task in computer
science, lying at the foundation of many algorithms for pat-
tern recognition. The rapid increase in the amount of high-
dimensional data such as images, audio and text, has increased
the interest for this type of search in the last years and raised
the need for methods that can approach the task with reduced
processing time and memory footprint.

If X is equipped with a similarity function s : X x X —
and n is small, a simple approach to solve this problem
is a linear scan: compare ¢ with all the elements in D

lthe greater the value of s, the more similar are the objects.

Antonio Macaluso, Stefano Lodi, Claudio Sartori
Department of Computer Science and Engineering
University of Bologna
40136 Bologna BO, Italy
Emails: {antonio.macaluso2,
stefano.lodi, claudio.sartori } @unibo.it

and return x(©) if s(x(®),q) is greater than some threshold
0. The value of 6 can be given in advance, computed to
return exactly k& results or, more often, chosen to maximize
information retrieval metrics such as precision and recall [1].
If X ¢ R?, with small d, tree-based indexing methods such
as KD-trees have been traditionally used to perform efficient
scans when N is large. Unfortunately, if also d is large, the
computational performance of these data structures quickly
degrades. Besides, if the similarity function s determining the
relevant results is not perfectly known, these methods cannot
be used.

Semantic hashing deals with similarity search by learning a
similarity-preserving hash function h(x) € {0,1}7 that maps
similar data to nearby positions in a hash table, preventing at
the same time undesirable collisions. Items similar to a query
q can be easily found by just accessing all the cells of the
table that differ a few bits from h(q). As binary codes are
storage-efficient, these operations can be performed in main
memory even for very large datasets.

Although early hashing algorithms were randomized meth-
ods devised to preserve specific and well-known similarity
functions (e.g. cosine) [8], it was soon realized that methods
based on machine learning could significantly reduce the num-
ber (B) of bits required to preserve similarity by exploiting
the fact that real data is often not uniformly distributed in
X. One of the first methods of this type [19] used a deep
probabilistic model to learn a manifold underlying the data
distribution. Unfortunately, training this model was hard in
practice and perhaps for this reason, most subsequent research
on hashing preferred to adopt more shallow architectures
or, slightly later, deterministic neural network models that
were easier to train. Shallow algorithms that flowered in this
period include Spectral Hashing [25], Iterative Quantization
[6], Kernel Locality Sensitive Hashing [[12] and LDA-Hash
[21]. Popular examples of non-probabilistic deep learning
methods include the Binary Autoencoder of [2]], UH-BDNN
[S], Deep Hashing [15]], most of them based on deterministic
autoencoders augmented with constraints.

In the last years, machine learning has seen a renewed
interest in probabilistic graphical models parametrized by
neural nets. A hallmark of this approach is the ability to
back-propagate gradients through stochastic layers with low

https://github.com/amacaluso/SSB-VAE

variance [10} [9], which has permitted to scale these models to
very large datasets and improve performance in many tasks.
In particular, stochastic models taking advantage of variational
autoencoders have shown to systematically outperform more
traditional hashing algorithms [3[]. It has been shown that
this advantage can be further improved using Bernoulli latent
representations that naturally encode the binary constraint
underlying hash codes and thus reduce the quantization error
arising from continuous representations [17]]. Other recent con-
tributions have shown that these models can be easily extended
to leverage supervision, that is labels conveying information
about the semantic content of the items to be indexed. Two
different supervision schemes have been proposed. One of
them, often termed pointwise supervision in earlier literature,
augments the training objective to predict the label distribution
of a training pattern [3]. The other method, often termed
pairwise supervision in previous art, exploits the labels to
define an additional objective in which pairs of items with the
same label are required to have similar hash codes and pairs
of items with different labels are enforced to have different
hash codes. This approach yields state-of-the-art performance
in [4] assuming that the labels of all the training examples are
known.

As in many real-world tasks, obtaining labelled data is
difficult and time-consuming, understanding the efficacy of
the current methods to exploit annotations when they are
scarce is a matter of significant importance in practice. In this
paper, we show that even if using the ground-truth labels to
introduce pairwise constraints can yield advantages when the
number of labelled samples is large, this approach degrades
quickly as the level of supervision decreases. We found that
in many cases, it actually looses its advantage with respect to
a model employing pointwise supervision only. To overcome
this limitation, we propose to equip the variational autoencoder
with a novel mechanism to exploit annotations in which the
label distributions required for the pairwise loss are replaced
by the model’s own predictions. Ground-truth labels are still
used to supervise the estimation of the label distributions but
the pairwise constraints ask now for a consistency between
the codes and the model’s own beliefs about the class of
the patterns. Experiments on text and image retrieval tasks
show that this procedure is competitive to the best baseline
in scenarios of label abundance, but it is more effective in
scenarios of label scarcity.

II. RELATED WORK

The problem of representing high-dimensional data using
binary codes that preserve their semantic content and support
efficient indexing has been extensively studied in the literature.
Traditionally, a first distinction is made between data depen-
dent and data independent methods. Data independent methods
are randomized techniques devised to preserve specific similar-
ity functions (e.g. cosine) or distance metrics (e.g. Euclidean)
[8]. They have good theoretical grounds, but usually they
require long hash codes to achieve satisfactory performance.
Data dependent methods can often obtain more effective and

compact hash codes by learning the underlying structure of
the dataset [25| |19]. Many techniques to achieve this goal
have been studied in the last years, including unsupervised,
supervised, and semi-supervised approaches.

Unsupervised methods rely purely on the properties of
the points to be indexed. For instance, Iterative Quantization
(ITQ) [6] computes the codes by applying PCA followed by
a rotation that minimizes the quantization error arising from
thresholding. Spectral Hashing (SpH) [25] poses hashing as
the problem of partitioning a graph that encodes information
about the geometry of the dataset. Recently, more flexible un-
supervised models based on autoencoders have been proposed.
In [2f], a classic (deterministic) autoencoder is trained for
hashing by minimizing the reconstruction error with an explicit
constraint to handle the quantization error. The constraint
prevents the model to be trained with back-propagation and
a mixed integer programming solver needs to be applied. The
method in [5] employs an deeper architecture for the encoder
but keeps the architecture of the decoder. Binary represen-
tations are enforced in the vein of [2], using constraints. In
spite of their computational complexity, experimental results
of [2] and [5] are encouraging and suggest that hashing based
on autoencoders can outperform other deep learning methods
such as [16]. Our work is more related to the methods in [3],
[17] and [4]], which make use of deep variational autoencoders
for hashing. Unlike classic autoencoders that learn a one-to-
one map between the input space and the Hamming space,
variational autoencoders learn the most likely region of the
code space where an input pattern should be allocated. In order
to reconstruct data from the latent representation, the model is
constrained to place similar data in a similar region of the code
space, reproducing in the training phase the mechanism that
will be used later for search. [3]] showed that this fundamental
difference between classic and variational autoencoders is
relevant for hashing and yields to significantly better results.
Later, [[17]] demonstrated that the use of Bernoulli instead of
Gaussian latent variables helps to reduce the quantization loss
arising from the use of continuous representations. This idea
is also used in [4] and extended to incorporate supervision.

Supervised hashing algorithms leverage information about
the semantics of the items in the dataset to improve the hash
codes. Pointwise methods such as [24] use labels or tags to
implicitly enforce a consistency between the codes and the
annotations. Pairwise methods assume that pairs of objects
have been annotated as similar or dissimilar and attempt to
explicitly preserve these similarities in the formulation. In
[16] pairwise similarity relations are derived from class labels
and integrated into the training objective of a neural net.
Deep methods that leverage information from triplets or lists
have also been proposed [[13[]. A different form of supervision
that is often combined with deep learning techniques is self-
taught hashing [28]]. In this approach, a classic (often shallow)
method is first used to find hash codes for a set of training
examples. Then, a supervised (often deep) model is used to
predict the codes of unseen data. A limitation of this approach
is the sensitivity of the first step to the features used to

represent the data, which may require to iterate the two steps.

Hashing methods tailored to semi-supervised scenarios, in
which labelled and unlabelled samples are available, have
started to be studied in the last years. They integrate supervised
and unsupervised learning mechanisms. The method in [5]
extends the objective function of a traditional (unsupervised)
auto-encoder with an term based on pairwise supervision. [23]]
presents various methods based on linear projections, which
combine pairwise supervision with an unsupervised learning
goal inspired in information theory (max entropy). In [20],
pointwise and pairwise supervision schemes and combined
with spectral methods [25]]. [18]] uses pairwise and triplet-wise
supervision to extend ITQ, a linear method for unsupervised
hashing [6]]. Building on the idea of self-training [22f, a
classic approach for dealing with partially labelled datasets,
[27] has recently explored an iterative method in which label
representations and hash codes are learned together in the
model. By predicting the labels of data without annotations,
the labelled dataset can be expanded and the model re-
trained. While fairly successful, this hashing model requires
iterative re-training. Our method differs from this approach
also in that it incorporates an explicit unsupervised learning
mechanism - the supervised one being complementary. Other
recent methods termed self-trained or self-supervised in the
literature use actually a different approach. The method in
[14] is based on learning label encodings that substitute
standard one-hot vectors. The method in [26] is actually an
application of self-taught hashing to cross-modality hashing in
which the first stage exploits pairwise supervision. In computer
vision, self-supervised hashing methods often uses domain
information that cannot be easily generalized to other tasks.
For instance [29] uses the different frames of a video to build
similar pairs of examples and randomly picked frames to form
dissimilar pairs. Image rotations or image patching have also
been employed in other works.

Besides being able to learn compact and effective hash
codes in a principled unsupervised way, variational autoen-
coders can be easily extended to exploit annotations. The
seminal method in [3] has shown indeed that by training
the model to learn both the data distribution and the label
distribution, one can dramatically increase the efficacy of the
hash codes in similarity search tasks. Building on this idea,
[4] proposed to further extend the objective function of the
model by using pairwise supervision. This approach yields
state-of-the-art performance in [4] assuming that the labels
of all the training examples are known. Our work extends
these recent studies by considering a semi-supervised scenario
in which a small set of instances have been annotated with
class labels. We show that in this setting, the advantage
of the pairwise method can significantly degrade when the
number of annotated samples is small. Up to the best of
our knowledge, the method we propose to deal with this
issue has not been previously explored. Certainly, it can be
connected with co-supervised methods [22] in which two or
more learners iteratively teach each other to substitute the
lack of annotations. These methods often used different and

conditionally independent feature representations of the data.
Our method does not use multiple training stages, resorts
on a single feature representation, is used inside the same
model and is specifically tailored to hashing with variational
autoencoders.

III. METHODS

A. Generative Model

As in related works [17], we pose hashing as an infer-
ence problem, where the objective is to learn a probability
distribution g, (b|x) of the code b € {0, 1} corresponding to
an input pattern x. This framework is based on a generative
process involving two steps: (i) choose an entry of the hash
table according to some probability distribution py(b), and (ii)
sample an observation & indexed by that address according
to a conditional distribution py(x|b). The parameters of this
random process are learnt in such a way that it approximates
the real data distribution.

B. Bernoulli Autoencoders

Following [10], the distribution g¢4(blz) is called the
encoder, and the distribution py(x|b) the decoder. In the
original construction, g4(blz) is chosen to be a Gaussian
N(pg(x), 07 (x)) and binary codes are obtained by thresh-
olding f14(x) around its empirical median [3]. In Bernoulli
variational autoencoders (B-VAEs) in contrast, the encoder
is chosen to be a multi-variate Bernoulli Ber(c(z)) with
activation probabilities «(x). This choice permits to handle
the binary constraint underlying hashing in an architectural
way, creating an inductive bias that can significantly reduce
the quantization loss incurred from thresholding Gaussian
representations [|17].

C. Parametrization by Neural Nets

To learn flexible non-linear mappings, the activation proba-
bilities of the encoder «(x) can be represented using a neural
net f(x; ¢). The architecture of this model is chosen according
to the dataset. In the simplest case, it is obtained as the
composition of L fully-connected layers fi o...fr_1 o fL
where f; : X — R™ accommodates the input data (a feature
vector) and fr, : R — [0,1]® produces the activation
probabilities. The latter is usually obtained by using a layer
of independent sigmoid neurons [7].

The architecture for the decoder depends also on the appli-
cation. In regression problems with real data, py(x|b) is often
implemented using a Gaussian N (ug(), 02) where pg(() is
predicted using a neural net g(b;6) with linear output layer.
In text and image retrieval applications it is more common to
represent the data using normalized features x; € [0, 1] (word
frequencies or pixels). In this case g(b; #) can be implemented
using anet gjo...gr/—10grs that ends with a layer of sigmoid
neurons (other layers can use other activations, e.g. ReLU).

(000000)
00060
&)

y

v

~

decoder
yoleqg-tuiw

sampling

2000

|
X

encoder

Fig. 1. Sketch of the architectures studied in this paper.

D. Unsupervised Training

As illustrated in Figll] the composition of the encoder
po(x|b) and the decoder ¢4(blx) leads to a stochastic auto-
encoder. This model can be trained without supervision using
variational methods [10]. If S = {x®) x® ... ™} de-
notes the set of training examples, the negative log-likelihood
corresponding to a single data point () € S, can be upper
bounded by the following loss function [17]:

£, = By, sjainy |~ logpo(@®),b) +log gy (bla™)| (1)
= Ey, b0 | ~108 20 (@?16)| +2 D (6(6]2?)]Ipa (b))

L1 Lo

The term £; measures the expected error in the recon-
struction of x from the hash code b. For instance, if the
decoder is Gaussian, £ is proportional to the squared loss
| — x||* between the decoder’s output & and the original
observation x. The term L, on the other hand, measures the
Kullback-Leibler divergence between the distribution learnt
by the encoder ¢,(b|x) and some prior py(b). For hashing
applications with Bernoulli autoencoders, this can be chosen
as po(b;) = Ber(0.5) Vi € [B], which expresses a preference
for balanced hash tables. With this choice, L2 can be computed
analytically [17].

The main complexity of optimizing using standard
techniques such as backpropagation [7]] is that the neural
nets f(x;¢) and g(b;6), parametrizing the autoencoder, get
connected by sampling. The net f(x;¢) predicts the bit
activation probabilities and then a hash b € {0,1}% is drawn
to feed g(b;0). Fortunately, one of the main achievements
of the last years in deep learning has been adapting back-
propagation to “pass” through stochastic layers like these [[10].
[3]] has shown that this method works well for hashing with
Gaussian representations. In the case of discrete distributions
the gradients can be estimated using the so-called Gumbel-

Softmax reparametrization trick [9]. Experiments in [17] show
that this method is stable and effective for hashing.

E. Semi-Supervised Training

If some examples in the training set S = {x(*)} have been
annotated with class labels describing its semantic content
y CcY = {t1,t2,...,txk}, the unsupervised objective can
be expanded to exploit this information. Hereafter we assume
that the annotations have been one-hot encoded as probability
distributions, i.e. y; = 1 if * € S has been annotated with
a label ¢; and y; = O otherwise. To accommodate the semi-
supervised scenario, we assume that only the first s < n
examples from .S have been labelled.

a) Pointwise Supervision: A simple way to guide the
model towards a more discriminative latent representation for
a pattern x is to train the model to learn not only p(x) but
also p(y|x). More specifically, if the neural net implementing
the encoder is f = f1 o... fr_1 0 fr, we burden the model
with the task of inferring p(y|x) from the representation
z = fyo...o fr_1 computed immediately before the bit-
activation probabilities (). This approach is illustrated in
Fig[l] Intuitively, if two patterns ("), 2:(2) have the same an-
notations, the model should learn that p(y|z™) ~ p(y|x?).
As p(y|z) is computed from z, we should have p(y|z)) ~
p(ylz®) = 2z ~ 22 However, as also the codes are
computed from 2z, we should have 2z~ 22 = p() x p@),
Therefore, the model should learn that patterns with the same
annotations have to be allocated in nearby addresses of the
hash table.

A similar type of supervision has been used in [3] and
[4]. However, in these works, p(y|x) is approximated from
the representation computed immediately after the decoder’s
output. Our choice is tailored to the self-supervision method
introduced below.

As sketched in Figll] we can approximate the distribution
p(y|x), augmenting the autoencoder with an extra fully con-
nected layer y(z;). The parameters v of this layer can be
jointly trained with the rest of the architecture to minimize the
cross-entropy loss between the predicted label distribution for
a labelled example 2(©) and the ground-truth. In the simplest
case (one-hot vectors representing mutually exclusive labels),
the loss takes the form

LY =-E [y“) logpw(ylw(“)} = Zkyff) logg”. ()

b) Pairwise Supervision: A more explicit way to enforce
a consistency between the similarities in the code space and
the similarities in the label space can be obtained by equipping
the model with a pairwise loss function. If b and b(*") denote
the codes assigned to a pair of examples (), z) sampled
from the labelled dataset, and y(©), y(e') denote their ground-
truth labels, a loss that penalizes/rewards differences between
the codes of similar/dissimilar pairs is

45/) _ I(y(f) _ y(m)D*(b(@,bw)) (3)
— I(y® £ y)D= (")y

where D* denote distance functions in the Hamming space.
Often, DT is chosen to be the standard Hamming distance
169 — b))z, but D~ is shrunk as D~ = —(p — [|[b®) —
b“)||g)4 to avoid wasting efforts in separating dissimilar
pairs beyond a margin p. This loss has been used in a
plethora of hashing algorithms (see e.g. [16]). In the context
of variational autoencoders, it has been proposed in [4].

c) Self-Supervision: Both the pointwise and the pairwise
schemes of supervision suffer the lack of labelled examples.
However, a hashing algorithm using the pairwise loss can
deteriorate faster than a method using only pointwise super-
vision. Arguably, this happens because if the labelled subset
is reduced to a fraction p of the training set, the fraction of
pairs that can be generated reduces to p?. This issue makes
the method more prone to over-fitting in semi-supervised
scenarios with label scarcity. To address this problem, we
propose a self-supervised learning mechanism in which the
ground-truth labels required for Eqn.(3) and substituted by
y(z;1), the predictions of the pointwisely supervised layer
of the autoencoder. To formally define the new loss function,
we first write (3) in matrix form. Indeed, as y(OTy¢) =0
if the points () have different labels and otherwise
yOTy() = 1, we have that the pairwise loss is equivalent to

“)

where we have used D, as a short-hand for D*(b(), b(*)).
The self-supervised loss is thus defined as

[:(“)

selfsup

[:(”)

pair (Z)T:y(Z)DZZ’ - (1 (E)T ())Dé_é’)

A(Z)Tg(f')DZw - (1- y(f)Tg(f'))DZLN G
Intuitively, minimizing the pointwise loss (Z) requires less
annotations than learning a label-consistent hash function.
Thus, after some training rounds we will have that g<f> will
approximate y(*) for many unlabelled observations. Hereafter
the self-supervised loss (3) approximates the more conven-
tional pairwise loss (). Note in addition that, as the label
distribution in (E]) is now trainable, the loss can be examined
as a function of the labels g assigned by the algorithm to the
different points of the Hamming space. Reordering the terms,
£l = (Dfy + Dy g7

~Dgy, (©

we see that the loss function penalizes correlations between
the label distributions in a way proportional to De v T Dy
The loss is 0 if and only if pairs (¢,¢') for which D* > 0
get assigned orthogonal label distributions. As there is a finite
number of (normalized) distributions on Y which are mutually
orthogonal, the proposed loss is minimized by reserving a
different labelling to distant regions of the Hamming space
(D* > 0).

F. Efficient Implementation

The final objective function for training the autoencoder in
semi-supervised scenarios is

_\" w0 s © n (e,0")
V- URE) SUVCLERS S)

where O, > 0 are hyper-parameters. Note that only the
supervised loss L, is computed on labelled instances. The
unsupervised loss and the self-supervised loss are computed
using all the available observations.

Algorithm 1: SSB-VAE.

Input: A set of examples S = {:13(1), el
semantic labels y(©) for the first s.
Output: Trained parameters ¢, 6, 1.
1 Initialize ¢, 0,;
2 while not converged do

(™} and

3 Randomly split S into n/M batches of size M;

4 foreach mini-batch B; do

5 Predict §(©) for any x(©) e By;

6 Average the gradients of and .) w.r.t.
¢, 0,1 among all the examples in Bj;

7 Average the gradient of .) w.r.t. ¢ among the
labelled examples in Bj;

8 Perform backpropagation updates for ¢, 8, 1);

9 end foreach

10 end while

We optimize using backpropagation. Indeed, thanks to
the Gumbel-Softmax estimator [9]], we can efficiently compute
the gradients of Eu“\up and L‘(fhfp) w.r.t. all the model’s parame-
ters ¢, 0, 1. Being §©) independent on the stochastic layer, the
gradients of ﬂfﬁ) can be computed classically. However, the
direct computation of the total gradient/loss has a quadratic
computational complexity in the number of examples. As
sketched in Alglll we c1rlcumvent this problem by forming
the pairs required for Ese,,fp) at a mini-batch level. In this way,
the computational cost of the algorithm is only O(nM), where
M is the mini-batch size, a small constant.

IV. EXPERIMENTS

We conduct experiments to evaluate the robustness of semi-
supervised variational autoencoders for hashing in scenarios
of label scarcity. The proposed approach is compared with
previous methods on text and image retrieval tasks, widely
used to assess this type of algorithms. Our code along with
instructions to reproduce the results is made publicly available
at: https://github.com/amacaluso/SSB-VAE.

a) Data: The text retrieval tasks are defined on three an-
notated corpora: 20 Newsgroups, containing 18000 newsgroup
posts on 20 different topics; TMC containing 28000 air traffic
reports annotated using 22 tags; and Google Search Snippets,
with 12000 short documents organized in 8 classes (domains).
We define an image retrieval task using the dataset CIFAR-
10, containing 60000 32 x 32 RGB images of 10 different
classes [11]. To facilitate comparisons, we represent the text
using TD-IDF features as in [3] and [[17]]. 20 Newsgroups
(hereafter abbreviated 20News) and TMC are used with the
train/validation/test split used in [3]]. For Snippets, we follow
[17] and randomly sample a test set of 1200 texts, a validation
set of the same size, and leave the rest for training. Images are

represented using deep VGG descriptors as in [5]. For CIFAR-
10, we use the pre-defined test set [[I1]. A validation set of
the same size is randomly sampled from the training set.

b) Methods: We compare three semi-supervised methods
based on variational autoencoders: (1) VDHS-S, a variational
autoencoder proposed in [3]] employing Gaussian latent vari-
ables, unsupervised learning and pointwise supervision; (ii)
PHS-GS, a variational autoencoder proposed in [4] employing
Bernoulli latent variables, unsupervised learning, pointwise
supervision and pairwise supervision; and (iii) SSB-VAE, our
proposed method based on Bernoulli latent variable, unsuper-
vised learning, pointwise supervision and self-supervision. As
you could note, other combinations of latent variables and
types of supervision are possible. For sake of brevity we
compare only with published methods. Note also that, as we
use the same features and train/validation/test split that [3] for
the text datasets, our results can be directly compared with the
performance of many other deep learning methods assessed in
this work, as in [4].

c) Technical Details: To implement the neural nets cor-
responding to the encoder/decoder, we adopted the same
architectures used in [3|], for all the methods. We trained
the models using 30 epochs, batch size M = 100, and the
Adam learning rate scheduler [[7]. The KL weight X in Eqn.(T)
was set to the values reported in [17]. The parameters /3
and o required for PHS-GS and SSB-VAE were selected
on the validation set, using a logarithmic search grid in the
range [1075,10%]. For a fair comparison, we also allowed
VDHS-S to select the weight of the supervised loss in the
objective function. The scores reported in figures and tables
were obtained as an average over 5 runs. All the codes were
implemented in Python 3.7 with TensorFlow 2.1 and executed
using a small GPU (GTX 1080Ti).

d) Evaluation: To evaluate the effectiveness of the hash
codes, each document/image in the test set is used as a query to
search for similar items in the training set. Following previous
works [4] 5], a relevant search result is one which has the same
ground-truth label (topic) as the query. To favour comparisons,
the performance is measured using p@100, the precision
within the first £ = 100 retrieved documents/images, sorted
according to the Hamming distances of their corresponding
hash codes to that of the query. We also compute the mean
average precision, the average of p@k varying k from 1 to
the length of the retrieved list. This score penalizes missing
relevant items among the first positions of the list.

To assess the robustness of the algorithms to label scarcity,
we train and evaluate the models at varying levels of super-
vision p = s/n, the ratio of labelled examples in the training
set. Starting from p = 1, which represents a fully supervised
setting, we stress the algorithms reducing p by steps of 0.1
until we get a 10% of supervision.

e) Results & Discussion: Table [[] shows the precision of
the different methods on the four datasets used for evaluation.
We present results for code lengths of B = 16 and B = 32
bits. It can be confirmed that when all the training instances
are labelled (p = 1), the model based on pointwise supervision

=@- PSH-GS =#— SSB-VAE == VDSH-S
0.86 0.85
8
S 078 0.78
@
£ 0.71
= 0.70 / '
- 20News 0.64 20News
0.63
02 04 06 08 1.0 02 04 06 08 10
0.90 g 0.88
o
S 084 0.80
4
% 0.79
g 0.73 /
0.73 CIFAR 0.65 CIFAR
02 04 06 08 1.0 02 04 06 08 10
»
0.69 /
o
S 0.65
4
Z 061
=
0.57 L4 Snippets 0.54 '\J Snippets
02 04 06 08 1.0 02 04 06 08 10
0.82
8 0.79
—
®
% 0.76
s
0.73

02 04 06 08 10 02 04 06 08 1.0

Level of supervision Level of supervision

Fig. 2. Mean average precision (MAP@100) of the different algorithms for
different levels of supervision. At left, the results with 32 hashing bits. At
right, the results with 16 bits.

(PSH-GS) often achieves better results than the method based
on pointwise supervision (VDSH-S). This tendency, previously
reported in the literature [4], is no longer clear if we reduce
the supervision level, specially below 50% (p < 0.5). For
instance, with only 20% of training images labeled, VDSH-
S gives a precision of 81.6% in CIFAR, 10% over PSH-
GS, in absolute terms. We see something similar in Snippets
and 20News/32Bits. In these cases, the performance of PSH-
GS suffers significantly more the lack of supervision, with a
precision loss over 20% in CIFAR, 25% in 20News and 20% in
Snippets. To better illustrate this point, we display in Fig[2] the
mean average precision (MAP) of the algorithms as a function
of p. In many cases (CIFAR, Snippets and 20News/32Bits)
the performance of PSH-GS is clearly decreasing faster as the

P@ 100 OF THE DIFFERENT METHODS FOR DIFFERENT LEVELS OF SUPERVISION p. A) 32 HASHING BITS AND B) 16 HASHING BITS. THE ALGORITHMS

TABLE I

PHS-GS [4]] AND VDHS-S [3] ARE ABBREVIATED PSH AND VDSH.

A) 20-NEWS | CIFAR | SNIPPETS | TMC

p PSH SSB-VAE VDSH | PSH SSB-VAE VDSH | PSH SSB-VAE VDSH | PSH SSB-VAE VDSH
0.1 0.589 0.734 0.648 0.687 0.825 0.805 0.501 0.565 0.540 | 0.738 0.750 0.730
0.2 0.606 0.765 0.697 | 0.708 0.840 0.816 | 0.490 0.599 0.558 | 0.749 0.754 0.725
0.3 0.630 0.787 0.738 0.737 0.847 0.820 0.542 0.620 0.576 | 0.757 0.759 0.736
04 0.682 0.791 0.771 | 0.781 0.873 0.838 | 0.551 0.620 0.595 | 0.765 0.775 0.740
0.5 0.762 0.824 0.788 0.818 0.879 0.844 0.564 0.641 0.634 | 0.772 0.778 0.743
0.6 0.784 0.843 0.818 | 0.857 0.881 0.849 | 0.550 0.634 0.633 | 0.782 0.788 0.758
0.7 0.815 0.841 0.831 | 0.889 0.880 0.852 0.553 0.644 0.648 | 0.790 0.795 0.768
0.8 0.831 0.864 0.851 | 0.901 0.898 0.854 | 0.598 0.637 0.647 | 0.798 0.802 0.769
09 0.867 0.880 0.866 | 0.903 0.901 0.863 0.644 0.648 0.656 | 0.806 0.813 0.781
1.0 0.866 0.878 0.876 | 0.906 0.910 0.867 | 0.696 0.657 0.661 | 0.806 0.818 0.788
B) 20-NEWS | CIFAR | SNIPPETS | T™MC

P PSH SSB-VAE VDSH | PSH SSB-VAE VDSH | PSH SSB-VAE VDSH | PSH SSB-VAE VDSH
0.1 0.595 0.711 0.582 0.635 0.816 0.781 0.482 0.621 0.522 | 0.723 0.725 0.705
02 0.618 0.758 0.635 | 0.684 0.834 0.782 | 0.472 0.576 0.553 | 0.731 0.742 0.694
0.3 0.678 0.762 0.705 0.718 0.849 0.789 0.569 0.612 0.580 | 0.740 0.751 0.719
04 0.731 0.799 0.733 | 0.765 0.866 0.796 | 0.589 0.627 0.591 | 0.743 0.759 0.721
0.5 0.752 0.770 0.744 0.820 0.870 0.811 0.598 0.614 0.623 | 0.750 0.763 0.715
0.6 0.789 0.833 0.789 | 0.851 0.879 0.817 | 0.588 0.629 0.613 | 0.756 0.775 0.739
0.7 0.802 0.829 0.794 | 0.877 0.884 0.818 | 0.551 0.634 0.627 | 0.764 0.782 0.753
0.8 0.837 0.848 0.815 | 0.894 0.893 0.821 | 0.596 0.629 0.636 | 0.768 0.790 0.744
09 0.826 0.870 0.831 | 0.904 0.906 0.832 | 0.635 0.647 0.647 | 0.768 0.803 0.770
1.0 0.872 0.873 0.846 | 0.906 0.909 0.836 | 0.666 0.641 0.649 | 0.759 0.808 0.777

amount of supervision decreases down to 10%. These results
suggest that, in scenarios of label scarcity, learning the label
distribution, i.e. minimising the expected pointwise loss, may
be easier than learning label consistent hash codes. As the lack
of annotations has a quadratic effect on the number of ground-
truth pairs that can be used, the pairwise approach is more
fragile in semi-supervised scenarios. The results in TMC and
20News/16Bits, in which PSH-GS and VDSH-S deteriorate at
more similar rates, may be explained by the fact that PSH-GS
implements both types of supervision, pointwise and pairwise.

In Tab[l] and Fig]2] we can see that the proposed method,
which uses the ground-truth labels to learn the label dis-
tribution, but employs its own predictions to implement the
pairwise loss, is much more robust to the lack of annotations.
Its performance decreases more smoothly as the fraction of
labelled instances reduces down, achieving noticeable im-
provements on PSH-GS for small amounts of supervision.
This illustrates the interest of the approach for semi-supervised
scenarios. For instance, with only 10% of training documents
labeled, the proposed method gives a precision of 73.4% in
20News/32Bits, an (absolute) improvement of 14.5% com-
pared to PSH-GS and 8.6% over VDSH-S. For the same level
of supervision, it gets a precision of 81.6% in CIFAR/32Bits, a
clear improvement over the 63.5% of the pairwise approach. In
Snippets/16Bits, SSB-VAE provides a precision only 2% less
than the precision achieved in the fully supervised case. In

some cases (TMC), the pairwise approach is able to keep its
advantage on VDSH-S almost uniformly as the supervision
becomes lower. If this is the case, the proposed method is
still competitive or better than the best baseline. Although
the most significant improvements are obtained for smaller
p, we also confirm that in scenarios of label abundance, using
pairwise supervision based on the ground-truth distributions
does not give a very significant advantage over the proposed
approach. Indeed, in many cases (6/8) SSB-VAE achieves
slightly better scores. To obtain an overall conclusion re-
garding the robustness of the proposed method, two types
of statistical tests are conducted. We employ the Friedman
test to assess whether there is enough statistical evidence to
reject the hypothesis that the three methods are statistically
equivalent (in terms of p@100), when considering different
levels of supervision. In this design, the method (SSB-VAE,
PSH, VDSH) serves as the group variable, and the level
of supervision serves as the blocking variable. In addition,
when rejecting the null hypothesis of Friedman’s test, we
compare the proposed method against PSH and VDSH using
the Nemenyi post-hoc test, to check for statistically significant
differences. The obtained p-values are presented in Tab[l} In
all but two cases we obtain values below 5%.

V. CONCLUSIONS

We studied the performance of semi-supervised hashing
algorithms based on variational autoencoders in scenarios of

TABLE II
P-VALUES OF THE STATISTICAL TESTS

Nemenyi Test

Friedman Test PSH VDSH
» 20-NEws 1.1x107% 6.3x1075 3.7x1072
& SNIPPETS 7.4x107% 1.0x1072 8.9x 1071
o TMC 45x107% 6.5x1072 2.3x107°
CIFAR 20%x1072 1.1x10"! 1.2x10°2
. 20-NEws 50x107* 4.9x1073 1.0x 1073
% SNIPPETS 74x1073 1.0x1072 89x10~t
© TMC 22x107% 19x1072 1.6x10"¢
CIFAR 1.8x 1073 19x1072 22x103

label scarcity. It was found that training the model to explicitly
preserve pairwise similarities derived from the annotations,
often yields better results than using pointwise supervision
(only), confirming results of previous works. However, we also
found that methods based on this type of supervision tend to
deteriorate more sharply when the number of labelled observa-
tions decreases. To overcome this problem, we proposed a new
type of supervision in which the model uses its own beliefs
about the class distribution to enforce a consistency between
the similarities in the code space and the similarities in the
label space. Experiments in text and image retrieval tasks
confirmed that this method degrades much more gracefully
when the models are stressed with scarcely annotated data, and
very often outperforms the baselines by a significant margin.
As in scenarios of label abundance, the proposed method
proved to be competitive or better than the best baseline, we
can conclude that it is a robust approach to semi-supervised
hashing. In future work we plan to equip the method with
adaptive loss weights and extend the experiments to cross-
domain information retrieval.

REFERENCES

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Informa-
tion Retrieval. ACM, 1999.

[2] M. A. Carreira-Perpindn and R. Raziperchikolaei.
“Hashing with binary autoencoders”. Proc. CVPR.
2015, pp. 557-566.

[3] S. Chaidaroon and Y. Fang. “Variational deep semantic
hashing for text documents”. SIGIR. 2017, pp. 75-84.

[4] S.Z. Dadaneh et al. “Pairwise Supervised Hashing with
Bernoulli Variational Auto-Encoder and Self-Control
Gradient Estimator”. Proc. UAI 2020.

[5] T.-T. Do et al. “Learning to hash with binary deep neural
network”. Proc. ECML. 2016, pp. 219-234.

[6] Y. Gong and S. Lazebnik. “Iterative quantization: A
procrustean approach to learning binary codes”. Proc.
CVPR. 2011, pp. 817-824.

[71 L Goodfellow et al. Deep learning. MIT press, 2016.

[8] P. Indyk and R. Motwani. “Approximate nearest neigh-
bors: towards removing the curse of dimensionality”.
Proc. ACM STOC. 1998, pp. 604-613.

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]
(28]

[29]

E. Jang et al. “Categorical Reparameterization with
Gumbel-softmax”. Proc. ICLR. 2017.

D. P. Kingma and M. Welling. “Auto-encoding varia-
tional Bayes”. Proc. ICLR. 2014.

A. Krizhevsky et al. “Imagenet classification with deep
convolutional neural networks”. NIPS. 2012, pp. 1097-
1105.

B. Kulis and K. Grauman. “Kernelized Locality-
sensitive Hashing”. IEEE Pattern Anal. Mach. Intell.
34.6 (2012), pp. 1092-1104.

H. Lai et al. “Simultaneous feature learning and hash
coding with deep neural networks”. Proc. CVPR. 2015,
pp. 3270-3278.

C. Li et al. “Self-supervised adversarial hashing net-
works for cross-modal retrieval”. Proc. CVPR. 2018,
pp. 4242-4251.

H. Liu et al. “Deep supervised hashing for fast image
retrieval”. Proc. CVPR. 2016, pp. 2064-2072.

J. Lu et al. “Deep hashing for scalable image search”.
IEEE Trans. Image Process. 26.5 (2017), pp. 2352—
2367.

F. Mena and R. Nanculef. “A binary variational autoen-
coder for hashing”. Proc. CIARP. 2019, pp. 131-141.

Y. Pan et al. “Semi-supervised hashing with semantic
confidence for large scale visual search”. Proc. SIGIR.
2015, pp. 53-62.

R. Salakhutdinov and G. Hinton. “Semantic hashing”.
International Journal of Approximate Reasoning 50.7
(2009), pp. 969-978.

T. Song et al. “Semi-supervised manifold-embedded
hashing with joint feature representation and classifier
learning”. Pattern Recognition 68 (2017), pp. 99-110.

C. Strecha et al. “LDAHash: Improved matching with
smaller descriptors”. IEEE Pattern Anal. Mach. Intell.
34.1 (2012), pp. 66-78.

I. Triguero et al. “Self-labeled techniques for semi-
supervised learning: taxonomy, software and empiri-
cal study”. Knowledge and Information Systems 42.2
(2015), pp. 245-284.

J. Wang et al. “Semi-supervised hashing for large-scale
search”. IEEE Pattern Anal. Mach. Intell. 34.12 (2012),
pp. 2393-2406.

Q. Wang et al. “Semantic hashing using tags and topic
modeling”. Proc. SIGIR. ACM. 2013, pp. 213-222.

Y. Weiss et al. “Spectral hashing”. NIPS. 2009.

G. Wu et al. “Joint image-text hashing for fast large-
scale cross-media retrieval using self-supervised deep
learning”. IEEE Transactions on Industrial Electronics
66.12 (2018), pp. 9868-9877.

H. Yang et al. “Adaptive labeling for hash code learning
via neural networks”. Proc. ICIP. 2019, pp. 2244-2248.
D. Zhang et al. “Self-taught hashing for fast similarity
search”. Proc. SIGIR. 2010, pp. 18-25.

H. Zhang et al. “Play and rewind: Optimizing binary
representations of videos by self-supervised temporal
hashing”. ACM Multimedia. 2016, pp. 781-790.

	Introduction
	Related Work
	Methods
	Generative Model
	Bernoulli Autoencoders
	Parametrization by Neural Nets
	Unsupervised Training
	Semi-Supervised Training
	Efficient Implementation

	Experiments
	Conclusions

