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Abstract. Both the amount of data available and the rate at which it is
acquired increases rapidly. The underlying data is often complex, mak-
ing it difficult (or somehow unnatural) to represent it by vectorial data
structures. Hence, graphs are a promising alternative for formalizing the
data. Actually a large amount of graph-based methods for pattern recog-
nition have been proposed. The vast amount of these methods rely on
graph matching procedures. In a recent paper a novel encoding of graph
matching information has been proposed. The idea of this encoding is to
formalize the stable cores of specific classes by means of graphs (called
matching-graphs). In the present paper we aim to further improve the rel-
evance of these matching-graphs by using an iterative creation algorithm.
In an empirical evaluation we show that these novel matching-graphs of-
fer a more stable and significant representation of their respective class
than the previous version.

Keywords: Graph Matching · Matching-Graphs · Graph Edit Distance.

1 Introduction and Related Work

Pattern recognition emerged to a major field of research which aims at solving
diverse problems like signature verification [1], situation recognition [2], or breast
cancer detection [3], to name just a few prominent examples. Roughly speaking
there are two main approaches for pattern recognition. Statistical approaches,
which use data structures like vectors for data representation and structural ap-
proaches, which use strings, trees, or graphs for the same task. Graphs provide a
powerful alternative to feature vectors and thus, they are widely used in various
pattern recognition applications, ranging from protein function/structure pre-
diction [4], over inferring the privacy risk of an image on social media [5], to the
detection of Alzheimer’s Disease [6]. The main drawback of graphs is, however,
the computational complexity of basic operations, which in turn makes graph
based algorithms often slower than their statistical counterparts.

A large amount of graph based methods for pattern recognition have been
proposed from which many rely on graph matching [7, 8]. Graph matching is

? Supported by Swiss National Science Foundation (SNSF) Project Nr. 200021 188496.
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typically used for quantifying graph proximity. Graph edit distance [9,10], intro-
duced about 40 years ago, is recognized as one of the most flexible graph distance
models available. In contrast with many other distance measures (e.g. graph ker-
nels [11]), graph edit distance generally offers more information than merely a
dissimilarity score, viz. the information which subparts of the underlying graphs
actually match with each other (known as edit path).

In a recent paper [12], the authors of the present paper propose to explicitly
exploit the matching information of graph edit distance. Formally, we encode
the matching information derived from graph edit distance into a data structure,
called matching-graph. The main contribution of the present paper is to further
improve the quality of these matching-graphs by means of an iterative process,
which selects the best matching-graphs of each iteration and continues to create
new matching-graphs from these selected parent graphs. The proposed algorithm
is remotely inspired by the idea of genetic algorithms that also aim at emulating
the process of natural selection and improvement of a population [13].

Moverover, our approach is similar in spirit to approaches from graph trans-
action based Frequent Subgraph Mining (FSM) [14]. This field also focuses on the
identification of frequent subgraphs within a set of graphs (extract all subgraphs
that occur more often than a specified threshold). We observe two main cate-
gories in FSM, viz. Apriori-based approaches and Pattern-growth approaches [14].
The apriori-based methods proceed to grow subgraphs by using a Breadth First
Search (BFS) strategy. Before they continue to graphs of size k+1 it first searches
for all frequent graphs of size k. Pattern-growth approaches, on the other hand,
work by using a Depth First Search (DFS) strategy, where one graph is extended
until all frequent supergrahs of this graphs are found.

Though the goal of our approach is comparable to that of FSM, our procedure
is quite unique. We identify common subgraphs of pairs of graphs by using a
graph matching procedure rather than using an algorithm stemming from one
of the two main categories discussed above (Apriori or Pattern Growth). We do
also not focus on finding comprehensive lists of frequent and large subgraphs
but rather we aim at improving our initial set of matching-graphs by iteratively
matching these matching-graphs with each other in order to extract more stable
and robust graph representatives for each class.

In the present paper we conduct both a quantitative and qualitative exper-
imental evaluation. First, we measure the frequencies of the found matching-
graphs in their correct class and second, we visualize and inspect the most fre-
quent subgraphs which in turn enables novel insights into the question which
graph substructures actually make up a class of patterns.

The remainder of this paper is organized as follows. Sect. 2 makes the paper
self-contained by providing basic definitions and terms used throughout this
paper. Next, in Sect. 3 the general procedure for creating a matching-graph is
explained together with a description of the novel algorithm that we propose.
Eventually, in Sect. 4, we empirically confirm that our algorithm produces indeed
a set of highly relevant graph structures. Finally, in Sect. 5, we conclude the paper
and discuss some ideas for future work.
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2 Graphs and Graph Edit Distance - Basic Definitions

Let LV and LE be finite or infinite label sets for nodes and edges, respectively.
A graph g is a four-tuple g = (V,E, µ, ν), where

– V is the finite set of nodes,
– E ⊆ V × V is the set of edges,
– µ : V → LV is the node labeling function, and
– ν : E → LE is the edge labeling function.

In the present paper we employ graph edit distance as basic dissimilarity
model for graphs. One of the main advantages of graph edit distance is its high
degree of flexibility, which makes it applicable to virtually any kind of graphs.

Given two graphs g1 and g2, the basic idea of graph edit distance is to trans-
form g1 into g2 using some edit operations. A standard set of edit operations is
given by insertions, deletions, and substitutions of both nodes and edges. We
denote the substitution of two nodes u ∈ V1 and v ∈ V2 by (u→ v), the deletion
of node u ∈ V1 by (u→ ε), and the insertion of node v ∈ V2 by (ε→ v), where
ε refers to the empty node. For edge edit operations we use a similar notation.

A set {e1, . . . , et} of t edit operations ei that transform a source graph g1

completely into a target graph g2 is called an edit path λ(g1, g2) between g1

and g2. Let Υ (g1, g2) denote the set of all edit paths transforming g1 into g2

while c denotes the cost function measuring the strength c(ei) of edit operation
ei. The graph edit distance can now be defined as follows.

Let g1 = (V1, E1, µ1, ν1) be the source and g2 = (V2, E2, µ2, ν2) the target
graph. The graph edit distance between g1 and g2 is defined by

dλmin
(g1, g2) = min

λ∈Υ (g1,g2)

∑
ei∈λ

c(ei) , (1)

Optimal algorithms for computing the edit distance of two graphs are typ-
ically based on combinatorial search procedures. A major drawback of those
procedures is their computational complexity, which is exponential in the num-
ber of nodes. To render graph edit distance computation less computationally
demanding, we employ the often used approximation algorithm BP [15].

3 Matching-Graphs

3.1 Creating Matching-Graphs

Our novel approach is based on matching-graphs originally proposed in [12]. The
general idea of the matching-graphs is to extract information on the matching of
pairs of graphs in a new data structure that formalizes and encodes the matching
parts of the two graphs.

Formally, we assume k sets of training graphs Gω1
, . . . , Gωk

stemming from
k different classes ω1, . . . , ωk. For all pairs of graphs gi, gj stemming from the
same class ωl, the graph edit distance is computed. Hence, a (suboptimal) edit
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path λ(gi, gj) is obtained for each pair of graphs gi, gj ∈ Gωl
× Gωl

. For each
edit path λ(gi, gj), two matching-graphs mgi×gj and mgj×gi are eventually built
(for the source and the target graph gi and gj , respectively). To this end, all
nodes of gi and gj that are actually substituted in edit path λ(gi, gj) are added
to mgi×gj and mgj×gi , respectively. Vice versa, all nodes that are deleted in gi
or inserted in gj are neither considered in the two matching-graphs.

Note that this procedure can result in matching-graphs with isolated nodes,
which are eventually removed. If a node is not included in the matching-graph
(since it was either deleted or inserted in the underlying edit path), the incident
edges of this node are not included in the resulting matching-graph. Edges that
connect two substituted nodes, however, are included in the matching-graphs.
That is, if two nodes u1, u2 ∈ Vi of a source graph gi are substituted with nodes
v1, v2 ∈ Vj in a target graph gj and there is an edge (u1, u2) ∈ Ei available,
(u1, u2) is actually included in the matching-graph mgi×gj (whether or not edge
(v1, v2) is available in Ej).

As shown in [12], the complete process leads to graph structures that can
be interpreted as denoised core structures of their respective class. The present
paper is built upon these matching-graphs by pursuing the goal of gradually
improving the matching-graphs of the first iteration.

3.2 Iterative Building of Matching-Graphs

Using the described procedure for creating matching-graphs out of two input
graphs, we now propose an algorithm that iteratively creates sets of matching-
graphs out of existing sets of matching-graphs. The proposed procedure is for-
malized in Algorithm 1.

Algorithm 1: Algorithm for iterative matching-graph creation.
input : sets of graphs from k different classes G = {Gω1 , . . . , Gωk

}, number of
matching-graphs c

output: sets of matching-graphs for each of the k different classes M = {Mω1
, . . . ,Mωk

}

1 Initialize M as the empty set: M = {}
2 foreach set of graphs G ∈ G do
3 Initialize M as the empty set: M = {}
4 foreach pair of graphs gi, gj ∈ G×G with j > i do
5 M = M ∪ {mgj×gi

,mgi×gj
}

6 end
7 reduce M to the c matching-graphs with highest quality q
8 do
9 foreach pair of graphs mi,mj ∈M ×M with j > i do

10 M = M ∪ {mmj×mi
,mmi×mj

}
11 end
12 reduce M to the c matching-graphs with highest quality q

13 while M has changed in the last iteration
14 M =M∪M
15 end
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The input of the algorithm is a set G that contains several sets of graphs
{Gω1 , . . . , Gωk

} each representing members of a certain class ωk. Additionally,
the number of matching-graphs per class is fixed to a user-defined value c. The
output is a setM which consists of k different sets Mω1

, . . . ,Mωk
each containing

c matching-graphs that represent one of the given classes.
First M is initialized to the empty set. The algorithm then actually starts

on line 2 by iterating over each set of graphs G ∈ G. For each of these sets the
corresponding result M is initialized as the empty set.

As seen on line 4 to 6, before beginning the main iterative process, we first
loop through all possible combinations of graphs gi, gj ∈ G × G, where j > i.
As mentioned in Sect. 3.1, from one edit path λ(gi, gj) two matching-graphs are
inferred, viz. mgi×gj and mgj×gi , where gi and gj is the source and target graph,
respectively (line 5). Hence, this process yields n(n−1) matching-graphs, where
n is the number of graphs in the current set G3.

On line 7 we proceed to select the c graphs from M with the highest quality q
by calculating the relative frequency of occurrence in their own class with respect
to the occurrence in other classes. Formally, for a matching-graph m ∈M derived
from graphs stemming from class ωl, we verify for all graphs g ∈ Gωl

whether or
not m is a subgraph of g and store the number of positive matches in f1. Likewise,
we count all graphs g′ ∈ Gωi , where ωi 6= ωl, that contain m as subgraph and
store this number in f2.

Clearly, the higher f1 and simultaneously the lower f2 for a given matching-
graph m, the better the quality of m. With f2 = max(1, f2) (in order to avoid
divisions by zero), we formalize the quality q of a matching-graph m by means
of

q(m) =
f1

f2
. (2)

Given this initial set M of matching-graphs, the whole process is eventually
repeated (lines 9 to 12). Yet, instead of creating the matching-graphs from the
training set G, we produce matching-graphs from pairs of existing matching-
graphs. This process is repeated as long as the c graphs in M have altered in
the last iteration (line 13). Once the algorithm terminates, we obtain k sets of c
matching-graphs for each class which are stored in M.

4 Experimental Evaluation

4.1 Experimental Setup

The main question – from the experimental point of view – is whether or not
our novel procedure is able to create more representative matching-graphs than

3 Note that edit path λ(gi, gj) is not necessarily the same as λ(gj , gi) and thus, it could
actually happen that the resulting matching-graphs stemming from these edit paths
also differ. Yet, due to computational reasons we omit the computations of the edit
paths and matching-graphs in both directions and assume two matching-graphs per
graph pair.
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the initial procedure (proposed in [12]). In order to answer this question, we
count the occurrences of the matching-graphs found in a given test set (via
subgraph isomorphism verification from graph-tool4 that is based on the VF2
algorithm [16]). That is, we create the matching-graphs using the aforementioned
algorithm, on the training sets and then count the actual occurences of the
created graphs as subgraphs in the corresponding test sets.

The proposed approach is evaluated on two different data sets from the IAM
graph repository both providing graphs from two classes [17]5:

– AIDS (active vs. inactive)
– Mutagenicity (mutagen vs. nonmutagen)

The single parameter of our algorithm – namely, the number of matching-
graphs being generated – is set to c = 15 in our experiments for the sake of
convenience.

4.2 Test Results and Discussion

First, we aim at researching whether or not the quality of the matching-graphs
actually improves from iteration to iteration. To this end, we plot the qualities
(according to Eq. 2) of the top c matching-graphs from the first to the last
iteration (see Fig. 1). It is clearly observable that the quality of the matching-
graphs increases by each iteration. For instance, for the AIDS data set and class
active the initial matching-graphs offer quality values between 20 and 38, while
the qualities of the final matching-graphs are between 39 and 45, which means
that the final matching-graphs occur about 39 to 45 times more often in their
own class than in the other class.

One could assume that this increase is mainly due to the fact that the
matching-graphs become smaller from iteration to iteration (and are therefore
found more often in the correct class). In fact, we observe only a marginal re-
duction of the average graph size (if any). This can be seen in Table 1 where
we show the number of iterations per data set and class as well as the average
number of nodes of the matching-graphs in the first and last iteration.

Table 1. Development of the average number of nodes from the top matching-graphs
between the first and last iteration.

# iterations
Avg. # nodes

first iteration

Avg. # nodes

last iteration

M
U
T
A nonmutagen 2 17.9 18.1

mutagen 2 14.4 14.3

A
ID

S inactive 4 6.6 5.5

active 3 14.5 12.1

4 https://graph-tool.skewed.de/static/doc/topology.htmlgraph tool.topology.subgraph isomorphism
5 www.iam.unibe.ch/fki/databases/iam-graph-database
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Next, we analyze the absolute frequencies of the resulting matching-graphs
in the correct and false classes (see Fig. 2). It can be clearly observed that
the resulting matching-graphs occur siginficantly more often in their correct
classes than in the wrong class for the AIDS active, Mutagenicity mutagen and
nonmutagen classes.
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Fig. 1. Evolution of the relative frequencies of which a matching-graph occurs in the
correct and incorrect class during the iterations.

In particular for AIDS active (Fig. 2 (a)) we can report exciting results, where
most of the matching-graphs occur in about 80% of the test graphs of the correct
class, and only about 1% in the other class. However, for the AIDS inactive (Fig.
2 (b)), the resulting matching-graphs do not seem to be representative.

Finally, we conduct a qualitative evaluation. In Fig. 3 we visualize the three
matching-graphs with the best quality (according to Eq. 2) of each class for
both data sets. Interestingly, as seen in Fig. 3 (a), the matching-graphs for the
AIDS active class consist of carbon atoms only (in very specific combinations,
that seems to be exclusive for this class). The matching-graphs of the inactive
class on the other hand consist of chains of various atoms, that seem to be
less common overall and not very specific to the inactive class (as seen in the
quantitative analysis in Fig. 2).
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Fig. 2. Percentage of frequency of the final c matching-graphs in the test set. Bars
in light gray show the frequency in the correct class while the darker bars show the
frequency in the incorrect class.
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Fig. 3. The three matching-graphs with the best quality for the AIDS data set (a) and
the Mutagenicity data set (b).
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In Fig. 3 (b) we show the top matching-graphs for the Mutagenicity data
set. One of the major differences is, that for the mutagen class the matching-
graphs found often contain carbon rings or partial carbon rings, whereas in the
nonmutagen class we find much more hydrogen atoms. Also very interesting to
see is that the second sample of the Mutagen class in Fig. 3 (b) contains a NO2

compound, which is well known to be mutagenic [18]. Overall theNO2 compound
occurs in 5 out of the 15 matching-graphs. This is especially interesting as the
matching-graphs are automatically created on the basis of the edit path between
training and matching-graphs without any further knowledge.

5 Conclusions and Future Work

We propose to build matching-graphs on the basis of the edit path between
two graphs. The resulting matching-graphs basically include the nodes that are
substituted via graph edit distance. In the present paper we advance the creation
of matching-graphs by means of an iterative algorithm. That is, starting with
an initial set of matching-graphs, novel sets of matching-graphs are iteratively
created by means of further matchings of matching-graphs.

In an experimental evaluation on two graph data sets, we empirically confirm
that our novel approach is able to produce matching-graphs that accurately
represent significant and frequent substructures of a given class. Moreover, by
means of a qualitative evaluation we confirm that our novel procedure offers high
potential for detecting novel and relevant substructures in sets of graphs. To the
best of our knowledge this is the first time that a graph matching algorithm is
employed for this specific task.

There are several promising paths to be pursued in future work. First we feel
that the classification accuracy of the framework presented in [12] can further
be increased by using the novel improved matching-graphs. Moreover, one could
evaluate the procedure on more data sets (especially on graphs with continuous
labels). Furthermore, it might be interesting to compare our novel method with
well known graph mining algorithms. Last but not least, one could integrate the
improved matching-graphs in a classification scheme (e.g. in a distance based
classifier or in a subgraph-kernel).
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