
ar
X

iv
:2

21
0.

03
93

4v
1

 [
cs

.F
L

]
 8

 O
ct

 2
02

2

Automata Equipped with Auxiliary Data

Structures and Regular Realizability Problems

Alexander Rubtsov∗ Mikhail Vyalyi†

October 11, 2022

Abstract

We consider general computational models: one-way and two-way fi-
nite automata, and logarithmic space Turing machines, all equipped with
an auxiliary data structure (ADS). The definition of an ADS is based on
the language of protocols of work with the ADS. We describe the con-
nection of automata-based models with “Balloon automata” that are an-
other general formalization of automata equipped with an ADS presented
by Hopcroft and Ullman in 1967. This definition establishes the con-
nection between the non-emptiness problem for one-way automata with
ADS, languages recognizable by nondeterministic log-space Turing ma-
chines equipped with the same ADS, and a regular realizability problem
(NRR) for the language of ADS’ protocols. The NRR problem is to verify
whether the regular language on the input has a non-empty intersection
with the language of protocols. The computational complexity of these
problems (and languages) is the same up to log-space reductions.

Keywords: Finite automata; Balloon automata; Auxiliary data struc-
tures

1 Introduction

Many computational models are derived from (one-way) finite automata (FAs)
via equipping them with an auxiliary data structure (ADS). The best-known
model of this kind is pushdown automata (PDAs), the deterministic version
of which is widely used in compilers. Other examples are k-counter automata,
(k, r)-reversal-bounded counter automata (equipped with k counters each of
which can switch between increasing and decreasing modes at most r times),
stack automata, nested stack automata, bag automata [5], set automata (SAs) [8]
and their another variant [9]; more examples can be found in [7].

∗Faculty of Computer Science, National Research University Higher School of Economics,

Pokrovsky boulevard 11, Moscow, 109028, Russia, rubtsov99@gmail.com
†Faculty of Computer Science, National Research University Higher School of Economics,

Pokrovsky boulevard 11, Moscow, 109028, Russia, vyalyi@gmail.com

1

http://arxiv.org/abs/2210.03934v1

During the investigation of balloon automata (BAs) [7], Hopcroft and Ull-
man connected the decidability of the membership and the emptiness problems
for one-way and two-way models; we denote them as M -xyBA and E-xyBA
respectively, where x = 1 denotes one-way and x = 2 denotes two-way mod-
els, and y ∈ {D,N} stands for determinism or nondeterminism respectively.
Eq. (1) summarizes results on decidability questions from [7], where ≤T is a
Turing-reduction and {A,B} means that A≤TB and B≤TA.

{M-1DBA,M-2DBA}≤T{E-1DBA,E-1NBA,M-1NBA,M-2NBA}≤T

≤T E-2DBA≤T E-2NBA.
(1)

We remark that the relation E-1NBA≤T E-1DBA was proved for the case of at
least a two-letter input alphabet.

While a lot of models can be described as BA, it is hard to invent such a
model with good computational properties. One of the reasons is that the equip-
ment of finite automata with a complex data structure (or with several simple
data structures) often leads to a universal computational model. For exam-
ple, FAs equipped with two pushdown stores are equivalent to Turing machines
(TMs), as well as FAs equipped with two non-restricted counters.

In this paper, we investigate the computational power of FAs equipped with
an ADS. We describe the model using the language of correct protocols of work
with the ADS. We provide a general approach to analyze the complexity of
the emptiness problem and prove the following non-trivial result. If FAs are
equipped with an ADS and nondeterministic logarithmic space TMs (log-TMs,
see the definition in [16]) are equipped with the same ADS, then the FAs’ non-
emptines problem and the TMs-recognizable languages are of the same com-
plexity (up to log-space reductions). Our key tool is the regular realizability
problem (see Definition 1 below).

1.1 Our Contribution

BAs were initially defined as automata with access to additional storage of
unspecified structure—the balloon. A rather general axioms were imposed for the
balloon and the interaction of the balloon and the automaton (see Definition 4
below). In this paper, we propose another definition based on a language of the
ADS’ protocols that we denote as P, so we refer to the ADS as BP. We prove
that languages recognizable by 1NBPA form not just a rational cone as in the
case of 1NBA [7], but a principal rational cone generated by P (we provide the
definition in Section 2.2).

This reformulation guarantees good structural properties, some of them fol-
low from the connection with BA (Section 4), and provides the relation between
E-1NBPA and the nondeterministic regular realizability problem.

Definition 1. Fix a formal language F called a filter, the parameter of regular
realizability problems DRR(F) and NRR(F) that are the problems of verifying
non-emptiness of the intersection of the filter F with a regular language L(A)

2

described via the DFA or NFA A respectively. Formally,

NRR(F) = {A | A is an NFA and L(A) ∩ F 6= ∅},

DRR(F) = {A | A is a DFA and L(A) ∩ F 6= ∅}.

RR problems have independently been studied under the name regular in-
tersection emptiness problems [21, 22]. A restricted version of RR problem (for
context-free filters only) is a well-known CFL-reachability problem, which is
related to problems in interprocedural program analysis [3, 4, 6, 10, 11, 23].

In this paper we focus on the computational complexity, so we use the weak-
est reduction suitable for our needs, the deterministic log-space reduction that
we denote as ≤log. If A≤log B and B≤log A we write A ∼log B and say that A
and B are log-space equivalent. Note that in our constructions, emptiness and
membership problems are the sets of instances’ descriptions with positive an-
swers, i.e., E-xyBPA = {〈M〉 | L(M) = ∅}, M-xyBPA = {〈M,w〉 | w ∈ L(M)},
where M is a xyBPA and 〈x〉 is the description of x. So, E-xyBPA = {〈M〉 |
L(M) 6= ∅}. We prove that E-1NBPA ∼log NRR(P). Based on this result,
we establish computational universality of E-1NBPA (see Theorem 34 below).
Note that in the universality result we need Turing reductions in polynomial
time instead of log-space reductions.

We equip with ADS not only FAs but also log-TMs. We denote deterministic
and nondeterministic log-TMs equipped with an ADS BP as DBPlog-TM and
NBPlog-TM respectively. We prove that

NRR(P) ∼log L (NBPlog-TM) = {L | L≤log NRR(P)}, (2)

hereinafter L (model) is the class of languages recognizable by the model. If
P is a problem (formal language) and S is a set of problems (class of formal
languages) the reductions mean as follows. P ≤ S means that ∃P ′ ∈ S : P ≤ P ′

and S ≤ P means that ∀P ′ ∈ S : P ′ ≤ P ; S ∼ P means (P ≤ S) ∧ (S ≤ P).
It is easy to verify that in the original proofs in [7], Turing reductions in (1)

can be replaced by the log-space reductions provided we replace the emptiness
problems with non-emptiness ones. So, we obtain

{M-1DBPA,M-2DBPA}≤log{E-1DBPA,E-1NBPA,M-1NBPA,M-2NBPA,

NRR(P),L (NBPlog-TM)}≤log E-2DBA≤log E-2NBA≤log E-NBPlog-TM.

(3)

We also prove the reduction

M-1DBPA≤log DRR(P). (4)

Results (3) combined with known facts imply assertions (5-8), where S is
the set data structure as in SA, S1 is the set data structure that supports
the insertion of at most one word, that cannot be removed further but can be
tested if a query-word in the set. In S1,|Γ|=1 the word in the set is over an unary

3

alphabet, PSPACE-c and NP-c are subclasses of complete languages.

P = L (NPDlog-TM), where PD is Pushdown store, (5)

PSPACE ⊇ L (NSlog-TM), ∃L ∈ L (NSlog-TM) : L ∈ PSPACE-c, (6)

PSPACE ⊇ L (NS1log-TM), ∃L ∈ L (NS1log-TM) : L ∈ PSPACE-c, (7)

NP ⊇ L (NS1,|Γ|=1log-TM), , ∃L ∈ L (NS1,|Γ|=1log-TM) : L ∈ NP-c. (8)

Assertion (5) is a well-known fact. Our technique here just shows a new con-
nection: (5) directly follows from the fact that the emptiness problem for PDA
is P-complete. Assertions (6-8) are new results to the best of our knowledge,
we prove them in Section 6. Assertions (7-8) lead to (3) for the corresponding
classes of automata. For (6), we have already obtained the result in [14] in the
same way and present in this paper the generalized technique.

2 Definitions

2.1 Notation on binary relations

We associate with a binary relation R ⊆ A × B the corresponding mappings
A → 2B and 2A → 2B that are denoted by the same letter R, so R(a) = {b :
aRb} and R(S) = ∪a∈SR(a). A relation R is the composition of the relations
P ⊆ A × C and Q ⊆ C × B if R = {(a, b) | ∃c : aPc ∧ cQb}; we denote the
composition as Q◦P . In the case of a set S ⊆ C we treat S as a binary relation
S ⊆ C × {0, 1} in the composition S ◦ P = S′ that returns the set S′ ⊆ A. We
denote the reflexive and transitive closure of R ⊆ A × A by R∗; the symbol ∗
can also be placed above the relation, e.g., ⊢

∗

. We denote by R−1 ⊆ B ×A the
inverse relation, i.e., aRb ⇐⇒ bR−1a.

2.2 Rational Transductions

Our technique is based on the connection of NRR problems with rational cones.
We recall the definitions borrowing them from the book [2]. A finite state
transducer (FST) is a nondeterministic finite automaton with an output tape,
and DFST is the deterministic version of FST. For the deterministic version, it
is important that a transducer can write a word (but not only a single symbol)
on the output tape on processing a letter from the input tape. Let T be an FST;
we also denote by T the corresponding relation, i.e., uTv if there exists a run
of T on the input u from the initial state to a final state such that at the end
of the run the word v is written on the output tape. The rational dominance
relation A≤ratB holds if there exists an FST T such that A = T (B), here A
and B are languages. The relations computable by FSTs are known as rational
relations. The following lemmata are algorithmic versions of well-known facts
(see [2], Chapter III), the first one is the algorithmic version of the Elgot-Mezei
theorem. The log-space algorithms follow from straight-forward constructions.

4

Lemma 2. For FSTs T1 and T2 such that T1 ⊆ Σ∗×∆∗, T2 ⊆ ∆∗×Γ∗, and FA
A such that L(A) ⊆ ∆∗, there exists an FST T such that T = T2 ◦T1 ⊆ Σ∗×Γ∗,
and NFA B recognizing the language T−1

1 L(A). So, the relation ≤rat is transitive.
Moreover, T and B are constructible in logarithmic space. We denote FST T
and NFA B as T2 ◦ T1 and A ◦ T1 respectively.

Lemma 3. For each FST T there exists an FST T−1 that computes the inverse
relation of the relation T . FST T−1 is log-space constructible by FST T .

A rational cone is a family of languages C that is closed under the rational
dominance relation: A≤rat B and B ∈ C imply A ∈ C. If there exists a language
F ∈ C such that L≤rat F for any L ∈ C, then C is a principal rational cone
generated by F ; we denote it as C = T (F).

Rational transductions for context-free languages were thoroughly investi-
gated in the 1970s, particularly by the French school. The main results of
this research were published in Berstel’s book [2]. As described in [2], it follows
from the Chomsky-Schützenberger theorem that CFL is a principal rational cone:
CFL = T (D2), where D2 is the Dyck language on two types of brackets.

2.3 Computational Models

Firstly, we define BA. We provide the definition that is equivalent to the original
definition from [7] but has technical differences, for the sake of convenience.
Then we provide the definitions of other models: the refined definition of Balloon
automata in terms of protocols and computational models based on log-TM that
are connected with NRR-problem as well as with 1NBPA.

As it said, the balloon is a storage medium of unspecified structure. Thus its
states are represented by (a subset of) positive integers. A BA can get limited
information about the state of the balloon (the balloon information function
in the definition below) and can modify the states of the balloon (the balloon
control function). Here we need 1BAs only. So we give the definition for them.
The definitions for 2BAs are similar, they are provided in [7].

Definition 4. A 1-way balloon automaton (1BA) is defined by a tuple

〈S,Σ⊲⊳, BS , BI , getBI
, updBS

, F, s0, δ〉, where

• S is the finite set of automaton states.

• Σ⊲⊳ = Σ∪ {⊲,⊳}, where Σ is the finite input alphabet and ⊲,⊳ are the
endmarkers. The input has the form ⊲w⊳, w ∈ Σ∗.

• BS ⊆ Z>0 is the set of the balloon states.

• BI is the finite set of the balloon information states.

• getBI
: BS → BI is a total computable function (balloon information

function).

5

• updBS
is a partially computable function from S × BS to BS (balloon

control function).

• F (S is the set of the final states.

• s0 ∈ S \ F is the initial state.

• δ is the transition relation (a partial function for deterministic automata)
defined as δ ⊆ (S × Σ⊲⊳,ε × BI) × S; hereinafter Γε = Γ ∪ {ε} for any
alphabet Γ.

Definition 5. A configuration of a 1BA is a triple (q, u, i) ∈ S × Σ∗
⊲⊳

× BS ,
where u is the unprocessed part of the input w so u is either ⊲w⊳ or a suffix
of w ⊳. The initial configuration of 1BA is (s0,⊲ w ⊳, 1), a move of 1BA
is defined by the relation ⊢ on configurations as follows: (q, σu, i) ⊢ (p, u, j),
where σ ∈ Σ⊲⊳,ε if j = updBS

(p, i), p ∈ δ(q, σ, getBI
(i)). A 1BA accepts the

input w if there exists a sequence of moves (computational path) such that after
processing of ⊲ w ⊳ the final state is reached, i.e., (s0,⊲ w ⊳, 1) ⊢

∗

(qf , ε, i),
where qf ∈ F, i ∈ BS .

It is not easy to define classes of balloon automata (like PDAs or SAs) since
one needs to define valid families of functions getBI

and updBS
. One can see

an example of PDAs definition in terms of BA in [7]. We suggest another
approach for the definition of BA classes in Section 4. The approach simplifies
the definitions since it is only needed to define a language of correct protocols
to define an ADS.

We define a protocol as a sequence of triples pi = uiqiri of the query-word
ui, the query qi and the response ri on the query. Numerous extra conditions
are listed in the following formal definition.

Definition 6. Let Γwrite,Γquery,Γresp be finite disjoint alphabets such that Γquery 6=
∅,Γresp 6= ∅. Let valid ⊆ Γquery × Γresp be a relation that provides the corre-
spondence between queries and possible responses. A protocol is a word p such
that p = p1 · · · pn, where n ≥ 0, pi = uiqiri, ui ∈ Γ∗

write, qi ∈ Γquery, ri ∈ Γresp,
and ri ∈ valid(qi). We call a word pi a query block. We say that a language
P ⊆ (Γ∗

writeΓqueryΓresp)
∗ is a language of correct protocols if the axioms (i-v) hold:

(i) ε ∈ P;

(ii) ∀p ∈ P : p is a protocol;

(iii) ∀p ∈ P : if p = p1p2 and p1 is a protocol, then p1 ∈ P;

(iv) ∀p ∈ P ∀u ∈ Γ∗
write ∀q ∈ Γquery ∃r ∈ Γresp : puqr ∈ P;

(v) ∀puqr ∈ P : if p′ ∈ P and p′ = puqr′s, then r′ = r;

(vi) ∃q ∈ Γquery, r ∈ Γresp ∀p1, p2 ∈ P : p1qrp2 ∈ P.

6

Axiom (vi) does not hold in the general case, e.g., for SAs and counter
automata without zero tests. It is needed to describe the connection of automata
with an ADS with BAs in Section 4.

A language of correct protocols P generates the corresponding class of lan-
guages, the principal rational cone T (P). All examples of BAs languages classes
in [7] can be presented as T (P). We provide here only two examples.

Example 7. It is well-known [2] that CFL = T (D2), where D2 is the Dyck
language with two types of parentheses. It is also well-known that a Dyck word
is a protocol of the stack. We transform the language D2 into a language of
protocols D2-PROT as follows.

We define the alphabets Γwrite = ∅, Γquery = {push(, push[, pop}, Γresp =
{(,), [,]}, valid = {(push[, [), (push(, (), (pop,]), (pop,))}. To define correct pro-
tocols we use an FST T that erases all symbols from Γquery of the input. So,

D2-PROT = {p | T (p) ∈ D2}.

By the definition D2≤rat D2-PROT, so we have that T (D2) ⊆ T (D2-PROT).
It is also easy to show that D2-PROT≤ratD2, so T (D2-PROT) = T (D2) = CFL.

Note that we set here Γwrite = ∅ for the sake of simplicity. One can use
another variant: Γwrite = {(, [}, Γquery = {multipush, pop}, Γresp = {pushed,),]}.

The following example is a starting point for the generalization presented in
this paper.

Example 8. The data structure Set consists of the set S which is initially
empty. Set supports the following operations: in(x) : S → S∪ {x}, out(x) : S →

S \ {x}, test(x) : x
?
∈ S. We define the protocol language SA-PROT consistently

with [13, 14], so the elements of alphabets below are individual symbols while
they are words in [13, 14]. Γwrite = {a, b}, Γquery = {#in,#out,#test},Γresp =
{#,+#,−#}, valid = {(#in,#), (#out,#), (#test,+#), (#test,−#)}.

It was proved in [13] that L (1NSA) = T (SA-PROT).

Definition 9. Fix a language of correct protocols P. An automaton equipped
with auxiliary data structure BP (defined by P) is defined by a tuple

〈S,Σ⊲⊳,Γwrite,Γquery,Γresp, F, s0, δ〉, where

• S, Σ⊲⊳, F , s0 are the same as in Definition 4, so as Σ⊲⊳,ε.

• S = Swrite ∪ Squery, Swrite ∩ Squery = ∅.

• P ⊆ (Γ∗
writeΓqueryΓresp)

∗.

• δ is the transition relation defined as

δ ⊆ ([Swrite × Σ⊲⊳,ε]× [Γ∗
write × S]) ∪ (Squery × Γquery × Γresp × Swrite).

7

The automaton has a one-way write-only query tape. During the processing of
the input, it writes query-words ui ∈ Γ∗

write on the query tape, performs queries
qi, and receives responses ri such that u1q1r1 · · ·unqnrn ∈ P. After each query,
the query tape is erased.

A configuration of an ADS-automaton is a tuple

(s, v, u, p) ∈ S × Σ∗
⊲⊳

× Γ∗
write × (Γ∗

writeΓqueryΓresp)
∗,

where v is the unprocessed part of the input w, i.e., v is the suffix of ⊲w⊳, u is
the content of the work tape, and p is the protocol of the automaton operating
with the data structure. A move of an automaton is defined via the relation ⊢
on configurations which is defined as follows:

(s, av, u, p) ⊢ (s′, v, ux, p), if s ∈ Swrite, (s, a, x, s
′) ∈ δ, (9)

(s, v, u, p) ⊢ (s′, v, ε, puqr), if s ∈ Squery, (s, q, r, s
′) ∈ δ, puqr ∈ P. (10)

A configuration is initial if it has the form (s0,⊲w ⊳, ε, ε), a configuration is
accepting if it has the form (sf , ε, ε, p), where sf ∈ F, p ∈ P. A word w is accepted
by an automaton with ADS if (s0,⊲w⊳, ε, ε) ⊢

∗

(sf , ε, ε, p). An automaton is
deterministic if for all configurations c, c1, c2 from c ⊢ c1 and c ⊢ c2 follows
c1 = c2.

For the next two models, we provide the definitions on the implementation
level only.

Definition 10. A DBPlog-TM (NBPlog-TM) is a deterministic (nondetermin-
istic) log-TM M equipped with an ADS defined by the language of correct
protocols P. I.e., M is equipped with an additional write-only one-way query
tape that is used to write down a query word ui and perform a query. After
a query qi is performed, the tape is erased and the finite state control of M
receives the result ri of the query qi. The query results are consistent with P,
i.e., p1 · · · pn ∈ P, pi = uiqiri.

A configuration of BPlog-TM is a triple (c, u, p) where c is the configuration
of log-TM-part, u is the word written on the query tape, and p ∈ P is the
protocol that is the result of all the performed queries. A BPlog-TM M accepts
a word w if (c0(w), ε, ε) ⊢

∗

(cf , ε, p), where c0(w) is the initial configuration of
the log-TM-part of M , cf is the accepting configuration of log-TM-part of M ,
and p ∈ P, the relation ⊢ corresponds to the M ’s moves.

Definition 11. Let F be an arbitrary formal language (filter). A DAF log-TM
(NAF log-TM) is a deterministic (non-deterministic) log-space TM equipped
with a read-only one-way infinite tape called advice tape. At the beginning
of the computation, the advice tape contains a word yΛ∞, where y ∈ F and Λ
is a symbol that indicates empty cells.

A configuration of an AF log-TM M is a pair (c, u) where c is the configura-
tion of the log-TM-part of M , u is the unprocessed part of y. M accepts a word
x if there exists y ∈ F such that (c0(x), y) ⊢

∗

(cf , ε), where c0(x) is the initial
configuration of the log-TM-part of M , cf is the accepting configuration of the
log-TM-part of M .

8

An equivalent model to DAF log-TMs appeared in [17] and its journal ver-
sion [19] under the name “models of generalized nondeterminism (GNA)” and
lead to the appearance of the DRR(F) problem. In this paper we repeat the
steps of [17, 19] to establish the connection between NAF log-TM and NRR(F)
problem in Section 5 to prove one of the main results of the paper Eq. (2). We
also show the equivalence between DAF log-TMs and GNA. The difference is
that in GNA it is allowed not to process the advice till the end of the word, so
it was demanded for F to be a prefix-closed language in [17, 19].

3 Principal Rational Cones and

the NRR-Problem

In this section, we provide the core of our technique. We prove that L (1NBPA)
is a principal rational cone generated by the language of correct protocols P,
i.e., L (1NBPA) = T (P); it is the first main result of the section. This fact
yields structural results about the family L (1NBPA), as well as the results
on the complexity of the emptiness problem. We focus in this section on the
connection between the non-emptiness problem and the NRR(P) problem. We
prove that these problems are equivalent under log-space reductions, it is the
second main result of the section. It leads us to the main results of the paper
in Section 5. We provide in this section structural results that naturally arise
in the proofs. Other structural results are discussed in Section 4 since their
relation to [7].

Most of the results of this section directly generalize the results of [13, Sec-
tion 3] (see the full journal version [15]). In most cases, to get a generalized
result, one can substitute SA protocols (see Example 8) with general protocols
as defined in Definition 6. So, our general approach comes from the generaliza-
tion of the technique that was developed for SAs. One can also find in [15] more
technically detailed proofs.

Lemma 12. There exists a 1NBPA MP recognizing P.

Proof. Let us assume that MP has on the input the word of the form p1 · · · pn,
where pi = uiqiri (since it is a regular condition). MP writes a word ui on the
query tape, performs the query qi and tests that the responce is ri. If all tests
are correct than p is accepted; otherwise, it is rejected.

Lemma 13. For each language of correct protocols P ⊆ (Γ∗
write

ΓqueryΓresp)
∗

there exists a language of correct protocols P{a,b} ⊆ ({a, b}∗ΓqueryΓresp)
∗, pro-

vided (Γquery ∪ Γresp) ∩ {a, b} = ∅, such that the following properties hold

• L (1NBPA) = L (1NBP{a,b}
A),

• L (1DBPA) = L (1DBP{a,b}
A),

• There exists a DFST T such that T (P) = P{a,b} and T−1 is a DFST,

9

• For each 1xBPA M there exists an equivalent 1xBP{a,b}
A M{a,b} such that

M{a,b} is log-space constructible by M and vice versa (x ∈ {N,D}).

Proof. Enumerate all letters from Γwrite and encode the i-th letter as abia. Such
encoding is computable by a DFST T and the inverse encoding is computed by
T−1 that is a DFST as well. So, P{a,b} = T (P) (we assume that T preserves
letters from Γquery ∪ Γresp). Now we show that for each 1NBPA M there exists
an equivalent 1NBP{a,b}

A M{a,b}.
By our construction, M{a,b} simulates M , i. e., M{a,b} has states of the form

(s, aux) where s is a state of M and aux is an auxiliary information needed
for simulation; so for each configuration ((s, aux), v, u′, p′) of M{a,b} there is
a corresponding configuration (s, v, u, p) of M , where p′ = T (p) and u′ is a
prefix of T (u). M{a,b} computes T (u) by simulation of T via finite control and
information of this simulation is stored in aux; the other part of finite control
simulates M ’s transitions.

Each 1NBP{a,b}
A M{a,b} can be simulated by a 1NBPA M in the same way,

one shall use T−1 instead of T . Note that described simulations preserve de-
terminism and the transformations between M and M{a,b} are log-space com-
putable.

Lemma 14. Let T be an FST with the input alphabet ∆ and the output alphabet
Σ and M be a 1NBPA over the alphabet Σ. There exists a 1NBPA M ′ = M ◦ T
recognizing the language T−1(L(M)). If T is a DFST and M is a 1DBPA then
M ′ is a 1DBPA as well.

Proof. The simulation is performed in a straight-forward way. M ′ guesses an
image w ∈ T (w′) of the input word w′ such that w ∈ L(M) if T (w′)∩L(M) 6= ∅,
computes w by simulation of T and simulates M on the input w. M ′ has
configurations of the form ((s, aux), v′, u, p) that correspond to configurations
(s, v, u, p) of M . As in the proof of Lemma 13, the aux information is used to
simulate T via finite state control. The construction preserves determinism of
1DBPA if T is a DFST.

Lemma 15. Let M be a 1NBPA. There exists an FST TM such that w ∈ L(M)
iff TM (w) ∩ P 6= ∅. Moreover, p ∈ TM (w) iff M has a run on w such that
(s0, w, ε, ε) ⊢

∗

(sf , ε, ε, p).

We denote by s
a
−→
x

s′ the move of TM from the state s to the state s′ on

which it reads a from the input tape and writes x on the output tape.

Proof. One can construct TM by M as follows. TM has the same states as M
(and the same initial state and set of accepting states). In the case of move (9),

TM has the move s
a
−→
x

s′, and in the case of move (10), TM has moves s
ε

−−→
qr′

s′

for all r′ such that (s, q, r′, s′) ∈ δM .
Assertion p ∈ TM (w) ∩ P implies that M has the corresponding run by

axiom (v) in Definition 6. So, if TM (w) contains a correct protocol p then M
has the run (s0, w, ε, ε) ⊢

∗

(sf , ε, ε, p). The implication in the other direction
directly follows from the construction of TM .

10

Definition 16. An FST TM from Lemma 15 called extractor (of protocols).

Theorem 17. L (1NBPA) = T (P).

Proof. Lemma 15 implies that for each 1NBPA M there exists an extractor TM

such that L(M) = T−1
M (P), and by Lemma 3 there exists FST T = T−1

M such
that L(M) = T (P), so L(M)≤rat P and therefore L (1NBPA) ⊆ T (P).

The inclusion T (P) ⊆ L (1NBPA) follows from Lemmata 12 and 14: for each
L = T ′(P) we take an FST T = T ′−1 and apply the lemmata.

Theorem 18. E-1NBPA≤log NRR(P)≤log E-1NBPA.

Proof. Let M be the input of the non-emptiness problem E-1NBPA and TM be
the corresponding extractor. By Lemma 15, w ∈ L(M) ⇐⇒ TM (w) ∩ P 6= ∅.
So, L(M) 6= ∅ ⇐⇒ TM (Σ∗) ∩ P 6= ∅. Construct an NFA A recognizing
TM (Σ∗) by Lemma 2 in log space. So,

L(M) 6= ∅ ⇐⇒ L(A) ∩ P 6= ∅
Def. 1
⇐⇒ A ∈ NRR(P).

So we have proved E-1NBPA≤log NRR(P).

The reduction NRR(P)≤log E-1NBPA follows from Lemmata 12 and 14. We
construct by A on the input of NRR(P) the automaton M = MP ◦ T , where
xTy ⇐⇒ (x = y) ∧ (x ∈ L(A)).

Theorem 19. M-1DBPA≤log DRR(P).

Proof. We construct a DFA A on the input of DRR(P) by (w,M) on the input
of M-1DBPA via a log-space transducer. The idea is that A simulates M ’s run
on the input w and checks the correctness of the protocol by reading the input
word, that is a protocol p ∈ P. The protocol p is accepted iff p is the protocol
of M on processing of w and M accepts w.

A state of A is a tuple (s, i, aux) where s ∈ SM , i is the index of the letter wi

over the M ’s head and aux is the auxiliary information needed for the simulation.
To simulate a transition of M , the following actions are performed by A. If M
writes a word v (a subword of the future query word) to the query tape, A
stores v in the finite memory (a part of aux component of its states) and checks
whether the unprocessed part of its input begins with v (if not, the input word p
is rejected). If M performs a query q, A verifies that the unprocessed part of its
input begins with qr and performs the transition that M does after receiving r

as a response. A accepts the input p if it was not rejected during the simulation,
i = |w|+ 1 (i.e., M ’s head is over ⊳) and M is in accepting state.

It follows from the construction that A accepts p iff p is the protocol of M
processing the input w. Note that this protocol is unique since M is a 1DBPA.
Also since M is 1DBPA, A is log-space constructible. Finally, L(A) ∩ P 6=
∅ ⇐⇒ w ∈ L(M), so M-1DBPA≤log DRR(P).

11

4 Connection with Balloon Automata

We provide a high-level description of classes MB of BAs. The definition in a
more formal style could be found in [7].

Definition 20. A subset of BAs MB is a class of BAs if the following conditions
hold.

(I) MB contains all automata with getBI
such that, for each state s,

updBS
(s, i) is either i for all i or updBS

(s, i) = j for all i and some
constant j.

(II) If A,B ∈ MB, updABS
, getBBI

, updABS
, updBBS

are the corresponding functions

of A and B, then MB includes each automaton C such that getCBI
and

updCBS
are the functions that are obtained from the functions of A and

B via finite control, i.e., for each state s ∈ SC getCBI
(s, i) equals to either

getABI
(s, i) or getBBI

(s, i) for all i, for each i, j if updCBS
(i) 6= updCBS

(j) then

either updABS
(i) 6= updABS

(j) or updBBS
(i) 6= updABS

(j).

Property (I) implies that MB contains automata that can reset any state i
of the balloon to the initial state 1 (or to some fixed state j as well). Together
with Property (II) it implies that the balloon has a reset operation that sets the
balloon’s state to the initial state. This property does not hold for SAs, so there
is no direct correspondence between classes of languages of BAs and automata
with an ADS in the general case.

Theorem 21. For each ADS BP there exists a balloon B and a subset of BAs
MB such that the corresponding classes of languages coincide, i.e. L (xyBPA) =
L (xyBA) and Property (II) holds. If P has the reset operation (vi), Property (I)
also holds, i.e MB is a class (in terms of Definition 20).

Proof. We begin with the construction of the balloon B and the bijection from
xyBPA to xyBA such that xyBA form the set MB satisfying Property (II). A
state of the balloon B is an integer that is the encoding of pairs of words (p, u),
where p is the current protocol, i.e., the protocol of all previous operations before
the upcoming move, and u is the word on the query-tape. We enumerate all
p ∈ P and all u ∈ Σ∗ and use the standard enumeration of pairs of integers.

Firstly, we define functions updBS
and getBI

for the BA MB
P recognizing P.

Recall that for any language of correct protocols P there exists 1DBPA MP

recognizing P by Lemma 12. The function updBS
simulates write operations

and queries: it just updates the ballon’s state according to the encoding. The
function getBI

: Z>0 → Γresp ∪ {⊥} returns responses or ⊥ if there were no
query. For an arbitrary xyBPA M the xyBA MB is constructed as follows. The
function getMBI

is the same as for MB
P for any MB. The function updMBS

is a

modification of the function for MB
P according to the finite state control of M .

We define the class F (updBS
) more formally below to show that Property (II)

holds.

12

As the result, the states of the ballon B just encode the part of xyBPA that
describes the data structures, and updBS

and getBI
simulate the work with the

data structure defined by P. So we provided the bijection between xyBPA and
xyBA.

We move to a formal definition of the class F (updBS
). At first, we define

F1(updBS
) satisfying Property (II). Assume that MP writes at most one letter

to the query tape per move and it also has a state sε in which it neither writes
nor performs query. So, updBS

(sε, i) = i for all i (hereinafter in MB
P). We mark

a state s as sa if MP writes a on the output tape and mark a state s as sq if M
performs query q. From definition follows that updBS

(sm, i) = updBS
(s′m, i) for

all states s and s′ marked by the same mark (a, ε or q). So we define a function
updPBS

: (Γwrite,ε ∪ Γquery) × Z>0 → Z>0 so that updPBS
(m, i) = updBS

(sm, i). So

for any xyBA M the function updMBS
defined as follows. The states of M are

marked by symbols from Γwrite,ε ∪ Γquery and updMBS
(sm, i) = updPBS

(m, i). It is
easy to see that from our definition of F1(updBS

) follows the bijection between
xyBPA and xyBA and Property (II) holds as well.

If P has the reset operation (vi), then we shall modify the interpretation
of B since F (updBS

) does not satisfy our definition anymore. Firstly we de-
scribe the interpretation of updBS

functions for xyBA MB from Property (I).
If updBS

(s, i) = j, i and j encode pairs (pi, ui) and (pj , uj) respectively and
(pj , uj) is not obtained from (pi, ui) by a single move of MB

P , then we inter-
pretate the state change i → j as follows. The corresponding to MB xyBPA
M performs the reset operation and then performs sequence of queries that
move the configuration from (ε, ε) to (pj , uj) during ε moves. Note that by the
definition of Property (I) MB has finitely many j’s in the range of updBS

so
M is well-defined. Denote updBS

functions for automata from Property (I) as
FI(updBS

). So F (updBS
) is a closure of FI(updBS

) and F1(updBS
) in terms of

Property (II). From Property (II) and our construction of xyBPA’s for Prop-
erty (I) follows the construction of xyBPA for any of xyBA from the closure in
terms of Property (II). So, we have proved the second part of the theorem.

So all the results from [7] that do not rely on (I) hold for BP-automata. We
are most interested in (1) and its complexity analogue (3). Many structural
results from [7] follow from the fact that L (1NBPA) is a principal cone (Theo-
rem 17), namely, closure of L (1NBPA) over union and rational transductions1.
We shall also mention the closure over gsm inverse mappings proved in [7] for
all xyBA that implies the same closure for all xyBPA.

Lemma 22. If BP contains the reset operation then L (1NBPA) is closed over
concatenation and iteration.

Proof. We construct 1NBPA’s M2 and M∗ by 1NBPA M recognizing L(M) ·
L(M) and L(M)∗ respectively in a straight-forward way. M2 simulates M and
nondeterministically guess the split of the input uv such that u, v ∈ L(M) at the

1Intersection and quotient with regular languages, gsm forward mapping are the partial

cases of rational transductions.

13

end of the u. If after processing of u, M is in an accepting state, M2 performs
the reset operation and simulates M on v. M∗ guesses the split of the input
into u1u2 . . . um, ui ∈ L(M) and acts in the similar way.

The standard technique from [2] implies the following lemma.

Lemma 23. If P#P≤rat P, # 6∈ Γ, then L (1NBPA) is closed over concatena-
tion. If (P#)∗ ≤rat P, # 6∈ Γ, then L (1NBPA) is closed over iteration.

Proof idea. The construction is similar to the one from the proof of Lemma 22.
FSTs TL2 and TL∗ uses marks # to split the input and simulate an FST TL

corresponding to the language L, i.e., L = TL(P).

Remark 24. We leave open the question of the reduction in the opposite direc-
tion. I.e., does for each class of BAs exist a language of correct protocols P such
that BAs recognize the same class of languages as BP automata? The essence of
the problem is as follows. If axioms (I-II) for the class of BAs are satisfied, does it
imply that there exists a “universal” BA MU such that L (1NBA) = T (L(MU))
and for each M ∈ 1NBA there exists an FST T such that L(M) = L(MU ◦ T)?

5 RR Problems and log-TM Models

5.1 AF log-TM models

In [17, 19] it was shown that DRR(Pref(FΛ∗)) is a complete problem in the
class of languages recognizable by GNA with advices from F (this model corre-
sponds to DAF log-TM, Pref(L) is the set of all prefixes of L). We prove that
DRR(Pref(FΛ∗)) and DRR(F) are complete problems in the class L (DAF log-TM).
We begin with the proof of similar result for NRR(F) and L (NAF log-TM). We
introduce the following auxiliary lemma for the sake of the proof.

Lemma 25 ([12]). F1 ≤rat F2 ⇒ NRR(F1)≤log NRR(F2).

Lemma 26. L (NAF log-TM)≤log NRR(F).

Proof. An NAF log-TM M takes on the input a word x and also takes y ∈ F on
the advice tape. x ∈ L(M) ⇐⇒ ∃y ∈ F : M(x, y) = 1, where M(x, y) = 1 if
M halts in an accepting state, M(x, y) = 0 if M halts in a rejecting state.

A surface-configuration of a NAF log-TM is a tuple (q,mem, i, j) of the state
q, log-space memory configuration mem and the positions i of the head on
the input tape and j of the head on the advice (one-way) tape. The tuples
(q,mem, i) are the states of finite automata A on the input of NRR(F) problem
constructed by M and x. The initial state is (q0,∅, 0), where q0 is the initial
state of the NAF log-TM, accepting states are states of the form (qf ,mem, i)
where qf is an accepting state of the NAF log-TM. The transitions between
the states are determined by letters of y, i.e. (q,mem, i, j) ⊢ (q′,mem′, i′, j′),
i′ ∈ {i − 1, i, i + 1}, j′ ∈ {j, j + 1} if (q′,mem′, i′) ∈ δA((q,mem, i, j), yj). The

14

list of the A’s transitions δA is log-space computable so as the set of the A’s
states as well.

Without loss of generality, we assume that M always processes y till the end,
i.e. till mits Λ on the advice tape. So, by the construction of A, we obtain

x ∈ L(M) ⇐⇒ ∃y ∈ F : M(x, y) ⇐⇒ ∃y ∈ F, k ≥ 0 : yΛk ∈ L(A) ⇐⇒

⇐⇒ A ∈ NRR(FΛ∗)
Lemma 25
⇐⇒ A′ ∈ NRR(F),

where A′ is constructed by A due to the reduction in Lemma 25. Since M is
fixed, we get that

x
?
∈ L(M)≤log A

?
∈ NRR(FΛ∗)≤log A

′ ?
∈ NRR(F),

and we obtain that L (NAF log-TM)≤log NRR(F) by the transitivity of the log-
space reductions.

Remark 27. Note that F ∼rat FΛ∗ ∼rat Pref(FΛ∗) so the NRR problems for
these filters are equivalent (up to ≤log reductions). The equivalence holds since
nondeterministic FST’s can have several images for the same word, particularly
write many Λ’s at the end of the word. It does not hold for deterministic FSTs,
so FΛ∗

�❅≤dratF . So to obtain the corresponding lemma for DAF log-TM we need
to modify the proof of Lemma 26.

Lemma 28. L (DAF log-TM)≤log DRR(F).

Proof. We repeat the steps of the proof of Lemma 26. Note that A is a DFA,
since M is a deterministic machine. To construct A′ we construct an auxiliary
DFA A′′ by A as follows. A′′ has the states (q,❅Λ) and (q,Λ) for each state
q of A. The auxiliary bit of a state indicates whether A′′ met Λ. So for each

transition q
Λ
−→ p of A there are two corresponding transitions (q, b)

Λ
−→ (p,Λ),

b ∈ {Λ,❅Λ }. For states (q,Λ) A′ has only transitions by Λ. For the transitions

q
a
−→ p, a 6= Λ, A′′ has transitions (q,❅Λ)

a
−→ (p,❅Λ). A state (q, b) is an accepting

if q is an accepting state of A.
Now we construct A′. It is obtained from A by removing all Λ-transitions.

Each A’s accepting state is an accepting for A′ and A′ also has accepting states
determined as follows. If (q,❅Λ) has Λ-path to an accepting state (qf ,Λ) in
A′′, then q is an accepting state in A′. It is easy to see that y ∈ L(A′) ⇐⇒
∃k ≥ 0 yΛk ∈ L(A) and A′′ is log-space computable from A and A′ is log-space
computable from A and A′′.

Lemma 29. NRR(F)≤log L (NAF log-TM) and DRR(F)≤log L (DAF log-TM).
Moreover, there exist an NAF log-TM MNRR that recognizes the problem NRR(F)
and MDRR that recognizes DRR(F) as well.

Proof. The proof is straightforward. MNRR gets on the input an NFA A and
verifies whether A accepts the word y ∈ F written on the advice tape. If y ∈
L(A), MNRR nondeterministically guesses the A’s run on y. So, by Definition 11,
A ∈ L(MNRR) iff ∃y ∈ F : y ∈ L(A) ⇐⇒ A ∈ NRR(F).

The construction for MDRR is the same.

15

Theorem 30.

L (NAF log-TM) = {L | L≤log NRR(F)},

L (DAF log-TM) = {L | L≤log DRR(F)}.

Proof. By the definition of ≤log, L≤log NRR(F) iff there exists a log-TM trans-

ducer T that maps the input x of the problem x
?
∈ L to the input T (x) of

the problem NRR(F). We construct an NAF log-TM M recognizing L via the
composition of T and NAF log-TM MNRR from Lemma 29.

So {L | L≤logNRR(F)} ⊆ L (NAF log-TM); the opposite inclusion follows
from Lemma 26. We repeat the same arguments for the deterministic case and
apply Lemma 28 for the opposite inclusion.

5.2 BPlog-TM models

In Section 3 we exploited the following idea. In the case of a nondeterministic
model, performing queries one by one and proceeding the computation depend-
ing on the queries’ results computationally equivalent to guessing all the queries
results and verifying whether all the results were correct in the end (by test-
ing whether obtained protocol was correct). In fact, this idea works even in
the case of a deterministic model in Theorem 19. Now we exploit it again for
log-TM-based models.

Lemma 31.

M-NAPlog-TM ∼log M-NBPlog-TM and M-DBPlog-TM≤log M-DAPlog-TM.

We provide only the proof idea since the proof follows our general technique
that we have applied above a lot.

Proof idea. Let MA be a NAPlog-TM, MB be a NBPlog-TM, and x be an input
word. Since both kinds of log-TMs are nondeterministic, MA can guess and
verify MB’s successful run on x provided that MB’s protocol is written on the
advice tape; MB can guess y ∈ P and a successful run of MA on (x, y), and
verify it: the transitions on configurations are simulated on log space and the
fact y ∈ P is verified by performing subsequently the queries from the sequence y.

The case of deterministic models is similar to Theorem 19. MA just simulates
MB and tests whether the query words on the advice tape, queries an the results
are the same as MB has during processing of the input.

Combining all together, we obtain the main theorem of the section.

Theorem 32.

NRR(P) ∼log L (NBPlog-TM) = {L | L≤log NRR(P)}, (11)

L (DBPlog-TM)≤log DRR(P), (12)

L (DBPlog-TM) ⊆ {L | L≤logDRR(P)}. (13)

16

Proof. We begin with the proof of (11). By Lemma 31

M-NBPlog-TM ∼log M-NAPlog-TM. (14)

By Lemmata 26 and 29

L (NAPlog-TM) ∼log NRR(P). (15)

Eqs. (14) and (15) imply

L (NBPlog-TM) ∼log NRR(P). (16)

By Theorem 30

L (NAPlog-TM) = {L | L≤log NRR(P)}. (17)

Eqs. (14) and (17) imply

L (NBPlog-TM) = {L | L≤log NRR(P)}. (18)

Eqs. (16) and (18) form (11).
Now we move to the proof of (12) and (13). By Lemma 28

L (DAPlog-TM)≤log DRR(P). (19)

By Lemma 31
M-DBPlog-TM≤log M-DAPlog-TM. (20)

Eqs. (19) and (20) imply (12). By Theorem 30

L (DAPlog-TM) = {L | L≤log DRR(P)}. (21)

Eqs. (20) and (21) imply (13).

6 Applications

In this section we prove the applications (5-8) described in Section 1.1.

Theorem 33. Assertions (5-8) hold.

Proof. SA-PROT was defined in Example 8. It was proved in [14] that the prob-
lems E-1NSA ∼log NRR(SA-PROT) are PSPACE-complete. So we obtain (6)
by applying Theorem 32. We prove (5) in the same way by combining the facts
D2-PROT ∼rat D2 (Example 7) and NRR(D2) is P-complete [12], and apply
Lemma 25 and Theorem 32.

To prove (7-8) we use facts about the filters Perk = {(w#)k | w ∈ Σk},
where Σk is a k-letter alphabet. The problem NRR(Per1) is NP-complete and
NRR(Perk), k > 1, is PSPACE-complete [1, 18]. We construct set-protocols
based on these languages as follows. Let Γwrite = Σk, Γquery = {in, test},
Γresp = {+,−}. The response to the in-query is positive only for the first query,

17

test-queries are the same as in Example 8. We denote the language of correct pro-
tocols with Γwrite = Σk as S1,kPROT. It is easy to see that Perk ≤rat S1,kPROT:
an FST T maps words of the form win + wtest + · · ·wtest+ to w#w# · · ·w#
by replacing queries and responses by #; the sequence of queries with responses
in+, test+, . . . , test+ is verifiable via a finite state control (the inputs with in-
valid sequence are rejected by the FST), so NRR(Perk)≤log NRR(S1,kPROT) by
Lemma 25.

Now we prove that S1,kPROT≤rat Perk. The FST T takes on the input a
word (w#)n and acts as follows. While translating a block w# to the output,
it has the following options: (i) change at least one letter, (ii) erase at least
one letter and maybe change others, (iii) add at least one letter and maybe
change others, (iv) do not change w. Until T has not write in, it replaces # by
test− in the cases (i-iii), and either by test− or by in+ in the case (iv). After
T wrote in+, it replaces # by test+ in the case (iv) and either by test− or by
in− in the cases (i-iii). It is easy to see that T ((w#)n) consists of all correct
protocols with either w first in-query or without in-queries at all, and exactly n
queries. So T (Perk) = S1,kPROT and assertions (7-8) follows from Lemma 25
and Theorem 32.

7 On computational complexity

of correct protocol languages

Theorem 18 essentially says that the computational complexity of the non-
emptiness problem for ADS-automata is the same as the computational com-
plexity of the NRR problem for the corresponding correct protocols languages.
It can be used to answer the question about the range of complexities of the non-
emptiness problems for ADS-automata. It extends the known results about the
complexity of RR problems [20]. It appears that these complexities are almost
universal. It means that for any nonempty language X there exists a language
of correct protocols P such that X is reducible to E-1NBPA. The reductions in
the two directions differ. In one direction it is a log-space m-reduction. In the
other, we present the proof only for Turing reductions in polynomial time.

Theorem 34. For any nonempty language X ⊆ {0, 1}∗ there exists a language
of correct protocols P such that

X ≤log E-1NBPA
Th. 18
∼log NRR(P)≤P

T X.

In the proof of Theorem 34 we use the language of protocols defined as
follows. Set Γwrite = {0, 1}, Γquery = {#, r}, Γresp = {+,−, r}. The relation valid

is defined as follows: valid(#) = {+,−}, valid(r) = {r}. The language of correct
protocols P consists of protocols such that, for every query block uiqiri, either
qi = ri = r and ui = ε, or qi = #, ri = + and ui ∈ L, or qi = #, ri = − and
ui /∈ L. Here L ⊆ {0, 1}∗ is a language depending on X in the statement of the
theorem.

18

The exact choice of L is complicated. So we start with the presentation of
basic ideas behind the proof of Theorem 34. We encode binary words using a
log-space computable injective map sq : {0, 1}∗ → {0, 1}∗ such that sq(X) ⊆ L
and sq(X̄) ⊆ L̄. It suffices for the first reduction in the theorem, X ≤log NRR(P),
since the protocol sq(x)#+ is correct iff x ∈ X .

For the second reduction, i.e., NRR(P)≤P
T X , we need much more require-

ments. Let A be an input automaton for NRR(P) and S be its state set. We
are going to decide L(A) ∩ P 6= ∅ in polynomial time using oracle calls of the
oracle X . For this purpose we reduce the question L(A)∩P 6= ∅ to the question
R 6= ∅ for some regular language R ∈ {y, n,#,+,−, r}∗. By definition, w ∈ R
if there exists an accepting run of A that processes a correct protocol p such
that p is obtained from w by substitutions of letters y and n with words of L
and L̄ respectively (different words may be used for different occurrences of the
letters). To check the correctness of the run processing the protocol, we need
to compute, for all pairs s′, s′′ ∈ S, all possible transitions from s′ to s′′ by
processing words from L only as well as all possible transitions from s′ to s′′ by
processing words from L̄ only.

Thus, the main part of the reduction consists of solving NRR problems
L(As′s′′) ∩ L 6= ∅ and L(As′s′′) ∩ L̄ 6= ∅ for all pairs s′, s′′ ∈ S. Here As′s′′

are auxiliary automata. The states and the transitions of As′s′′ coincide with
the states and the transitions of A. The initial state of As′s′′ is s′ and the only
accepting state is s′′.

Note that L(As′s′′) may be infinite and it causes the first difficulty: one
need to consider arbitrary long words in the protocol language. To avoid this
difficulty we require that any infinite regular language intersects both L and L̄.
Therefore L(As′s′′) ∩ L 6= ∅ and L(As′s′′) ∩ L̄ 6= ∅ if L(As′s′′) is infinite.

If L(As′s′′) is finite, it means that the transition graph is DAG (after re-
moving states that are not reachable and coreachable in As′s′′). The second
difficulty: it might be exponentially many words in L(As′s′′). Again, to over-
come it, we pose specific requirements on L to guarantee that that verifying
L(As′s′′)∩L 6= ∅ and L(As′s′′)∩ L̄ 6= ∅ requires polynomially many oracle calls
of the oracle X .

Now we provide formal arguments for the above plan of proof. We encode
binary words by the injective map

sq : x 7→ β(x)11β(x)11, (22)

where β : {0, 1}∗ → {0, 1}∗ is the morphism defined on the symbols as β(0) = 01,
β(1) = 10.

For an NFA A with the state set S we define a relation

s′
u
−֒→ s′′

that holds if A can reach s′′ on processing u starting from the state s′.
Now we list the requirements on the language L.

1. As it mentioned before, sq(X) ⊆ L and sq(X̄) ⊆ L̄.

19

2. There exists a language W ⊆ {0, 1}∗ such that both W ∩ L and W ∩ L̄
are recognized in polynomial time, and, for any NFA A over the alphabet
{0, 1} and any pair of its states s1, s2, either L(As1s2) is finite, or there
exist w1 ∈ L∩W , w2 ∈ L̄∩W such that w1 ∈ L(As1s2) and w2 ∈ L(As1s2).

3. The language W is sparse: |W ∩ {0, 1}≤n| = poly(n). Moreover, the lists
of words in L ∩W ∩ {0, 1}≤n and, respectively, in L̄ ∩W ∩ {0, 1}≤n can
be generated in polynomial time.

4. If |u| = |v|, u 6= v, and uv /∈ W then uv ∈ L iff u ≺ v, where ≺ is the
lexicographical order.

5. If |w| is odd and w /∈ W then w ∈ L. If w = xx and w /∈ sq({0, 1}∗) ∪W
then w ∈ L.

The sets of L-transitions and L̄-transitions are defined as follows:

δLA(s) =
{

s′ ∈ S : ∃u s
u
−֒→ s′, u ∈ L

}

, δL̄A(s) =
{

s′ ∈ S : ∃u s
u
−֒→ s′, u ∈ L̄

}

.

The main part of the proof of Theorem 34 is the following lemma.

Lemma 35. Let L be a language satisfying Requirements 1–5. Then there exists
a polynomial time algorithm with the oracle X that outputs the sets δLA(s), δ

L̄
A(s),

where A is an input of NRR(P) and s is its state.

Before presenting the algorithm from the lemma, we analyze the most diffi-
cult case separately.

Proposition 36. Let L be a language satisfying Requirements 1–5 and A be an
NFA with the initial state s0 and the unique accepting state sf such that L(A)
is finite, L(A) ∩ W = ∅, and each word in L(A) has an even length. Then
conditions sf ∈ δLA(s0) and sf ∈ δL̄A(s0) can be verified by a polynomial time
algorithm with the oracle X.

Proof. By solving the reachability problem, one can detect the set of reachable
and coreachable states of A. All other states can be deleted without affecting
L(A). From now on, we assume that all the states s ∈ S are reachable and
coreachable.

Since L(A) is finite, the transition graph of A is a DAG as well as all its
subgraphs. For each pair of states s1, s2 ∈ Q, let ℓ(s1, s2) be the set

{

k : ∃u s1
u
−֒→ s2 and |u| = k

}

.

Using topological sorting, one can construct all the sets ℓ(s1, s2) in polynomial
time by the backward induction based on the relation

ℓ(s1, s2) =
⋃

s∈N(s1)

(

1 + ℓ(s, s2)
)

,

where N(s1) is the set of states that are reachable from s in one move and
1 +X = {y : y = 1 + x, x ∈ X}.

20

For a positive integer ℓ and a state s of A, we define

Left(s, ℓ) =
{

u : s0
u
−֒→ s, |u| = ℓ

}

, Right(s, ℓ) =
{

u : s
u
−֒→ sf , |u| = ℓ

}

.

We order the sets Left(s, ℓ) and Right(s, ℓ) in the lexicographical order. Let
min0(s, ℓ) be the minimal word in Left(s, ℓ), and max0(s, ℓ) be the maximal word
in Left(s, ℓ), and min1(s, ℓ) be the minimal word in Right(s, ℓ), and max1(s, ℓ)
be the maximal word in Right(s, ℓ).

There exists an inductive procedure that computes min0(s, ℓ), max0(s, ℓ),
min1(s, ℓ), and max1(s, ℓ) in polynomial time. The procedure also verifies
the conditions Left(s, ℓ) 6= ∅, Right(s, ℓ) 6= ∅. We describe computation of
min0(s, ℓ), the other words are computed similarly.

Suppose that u is the prefix of min0(s, ℓ) of the length 0 ≤ k < ℓ (if k = ℓ,

then the procedure returns u and stops). Let Sk = {s′ : s0
u
−֒→ s′}. This set

can be computed in polynomial time. If there exists s′ ∈ Sk and s′′ ∈ S such
that s′′ ∈ δA(s

′, 0) and ℓ − k − 1 ∈ ℓ(s′′, s), then u0 is a prefix of min0(s, ℓ)
of the length k + 1. Otherwise, if there exists s′ ∈ Sk and s′′ ∈ S such that
s′′ ∈ δA(s

′, 1) and ℓ− k − 1 ∈ ℓ(s′′, s), then u1 is a prefix of min0(s, ℓ). If both
conditions are not satisfied, then Left(s) = ∅.

According to Requirement 4 on L, if there exist a state s and an integer ℓ
such that min0(s, ℓ) ≺ max1(s, ℓ), then sf ∈ δLA(s0). Otherwise, max1(s, ℓ) �
min0(s, ℓ) for all s, ℓ. Since L(A)∩W = ∅, in this case sf ∈ δLA(s0) if and only
if there exist a state s and an integer ℓ such that min0(s, ℓ) = max1(s, ℓ) and
either min0(s, ℓ) = β(x)11 and x ∈ X or min0(s, ℓ)max1(s, ℓ) /∈ sq({0, 1}∗) due
to Requirements 1, 5. The condition x ∈ X can be verified by an oracle call,
the rest of conditions can be verified in polynomial time.

A similar check can be done for the condition sf ∈ δL̄A(s0). It is equivalent to
the following: there exist a state s and an integer ℓ such that either min1(s, ℓ) ≺
max0(s, ℓ), or min1(s, ℓ) = max0(s, ℓ) = β(x)11 and x /∈ X .

Proof of Lemma 35. The algorithm maintains the sets S+ ⊆ S, S− ⊆ S. Ini-
tially, S+ = S− = ∅. We will prove that at the end S+ = δLA(s), S

− = δL̄A(s).
The algorithm analyzes states s′ ∈ S one by one and adds s′ to the sets S+, S−

according to the following rules.
In the first step, the algorithm decides whether L(Ass′) is infinite. It can

be done in polynomial time. If the answer is ‘yes’, then the algorithm adds s′

to both sets S+, S− and continues with the next state. The correctness of this
step is guaranteed by Requirement 2.

If the answer at the first step is ‘no’, the lengths of words in L(Ass′) do not
exceed |S| (otherwise, there exists a run of A from s to s′ containing a cycle,
which implies that L(Ass′) is infinite). In the second step, the algorithm checks
whether L(Ass′) ∩L∩W 6= ∅ and, respectively, whether L(Ass′)∩ L̄∩W 6= ∅.
It can be done in polynomial time due to Requirement 3. If the first condition
holds, then the algorithm adds s′ to S+. If the second condition holds, then the
algorithm adds s′ to S−.

21

In the third step, the algorithm constructs an NFA A′ recognizing L(Ass′) \
W . Let P be the set of prefixes of all words in W ∩ {0, 1}≤|S|. Due to Require-
ment 3, |P | = poly(|S|) and P can be constructed in polynomial time. The
states of A′ are the pairs (s̃, p), s̃ ∈ S, p ∈ P ∪ {⊥}. The set of transitions
δA′((s, p), a) consists of pairs (s̃, p′) such that s̃ ∈ δA(s, a) and p′ = pa ∈ P ,
and pairs (s̃,⊥) such that s̃ ∈ δA(s, a) and p′ = pa /∈ P . The set of transitions
δA′((s,⊥), a) consists of pairs (s̃,⊥) such that s̃ ∈ δA(s, a). The initial state is
(s, ε). Accepting states are pairs (s′,⊥) and (s′, p), where p /∈ W . This definition
implies that A′ can be constructed in polynomial time. To prove the correctness
of the construction, note that processing a word w ∈ W ∩ {0, 1}≤|S| from (s, ε)
finishes at the state (s′, w) which is not accepting. For a word w ∈ L(Ass′) \W
there exists an accepting run of Ass′ . The corresponding run of A′ finishes at a
state of the form (s′, w) or (s′,⊥). Thus, w is accepted by A′.

In the fourth step, the algorithm checks whether L(Ass′)\W contains a word
of odd length. It can be done in polynomial time since words of odd length
form a regular language and the intersection of this language with L(Ass′) \W
is recognized by an NFA with 2|S′| states, where S′ is the state set of A′. If the
answer is ‘yes’, then the algorithm adds q′ to S+. The correctness of this step
is guaranteed by Requirement 5.

In the fifth step, the algorithm constructs an NFA A′′ that accepts exactly
the words of even length from L(Ass′) \W , apply to it the algorithm of Propo-
sition 36, updates S+, S− if necessary, and continues with the next state.

It is clear from the above remarks that at the end S+ ⊆ δLA(s), S
− ⊆ δL̄A(s).

Suppose that s′ ∈ δLA(s). If L(Ass′) is infinite then s′ is added to S+ at the
first step. If L(Ass′) ∩W ∩ L ∩ {0, 1}≤|Q| 6= ∅, then s′ is added at the second
step. Otherwise, (L(Ass′) ∩ L) \W should be non-empty. If there are words of
odd length in L(Ass′) \W , then s′ is added at the fourth step. And, finally, if
L(Ass′) \W consists of words of even length only, s′ is added at the fifth step
due to Proposition 36. Therefore, S+ = δLA(s) at the end of the algorithm.

Suppose that s′ ∈ δL̄A(s). If L(Ass′) is infinite then s′ is added to S− at the
first step. If L(Ass′) ∩W ∩ L̄ ∩ {0, 1}≤|S| 6= ∅, then s′ is added at the second
step. Otherwise, (L(Ass′)∩ L̄) \W 6= ∅ and s′ is added at the fifth step due to
Proposition 36. Therefore, S− = δL̄A(s) at the end of the algorithm.

Now we prove that Requirements 1–5 on L are compatible.

Lemma 37. There exists L satisfying Requirements 1–5.

Proof. We define W at first. For each triple a, b, c of non-empty binary words
there are two words in W in the form ab2r(a,b,c)c and ab2q(a,b,c)+1c and for each
w ∈ W there exists a unique triple a, b, c such that either w = ab2r(a,b,c)c or
w = ab2q(a,b,c)+1c. The definition of W is inductive. Order all triples x, y, z of
non-empty binary words with respect to the length of xyz and order the triples
with the same length of xyz with respect to the lexicographical order on the
triples of binary words (binary words are also ordered lexicographically).

Assume that for all (x, y, z) less than (a, b, c) we have defined s(x, y, z) and
t(x, y, z) properly. Thus the set W ′ ⊆ W has been already defined. The total

22

number of (x, y, z) less than (a, b, c) does not exceed
(

|abc|−1
2

)

· (2|abc|− 1). Thus,

there are at most 2
(

|abc|−1
2

)

· (2|abc| − 1) words from W ′ having lengths in the

range [23|abc|+3, 23|abc|+4 − 1]. So, there exist at least

23|abc|+3

2
(

|abc|−1
2

)

· (2|abc| − 1)
− 1 > 2|abc| > 2|b|

consecutive integers i in the range such that no word in W ′ has the length i. At
least |b| of them are even and at least |b| of them are odd. It guarantees that
the sets

E = {j : ab2jc /∈ W ′, 23|abc|+3 ≤ |ab2jc| < 23|abc|+4} and

O = {j : ab2j+1c /∈ W ′, 23|abc|+3 ≤ |ab2j+1c| < 23|abc|+4}

are non-empty. Set r(a, b, c) be the minimal j in E and q(a, b, c) be the minimal
j in O.

To define L, we require that the words from W in the form ab2q(a,b,c)+1c are
in L, while the words from W in the form ab2r(a,b,c)c are in L̄. Note that it
implies Requirement 2, since any infinite regular language contains all words in
the form abkc, k > 0, for some a, b, c.

By construction, for each w ∈ W the length of defining triple a, b, c is loga-
rithmic in the length of w. Thus |W ∩ {0, 1}≤n| = poly(n). To construct the
list of words in L ∩W ∩ {0, 1}≤n and the list of words in L̄∩W ∩ {0, 1}≤n one
need to perform only polynomial number of steps of the defining procedure and
each step can be performed in polynomial time. Therefore, Requirement 3 is
satisfied.

The rest of L is defined to satisfy Requirements 1, 4, and 5. Note that
sq({0, 1}∗) ∩W = ∅, since, for each x ∈ {0, 1}∗, sq(x) does not contain proper
periodic subwords of length greater |sq(x)|/2 but each word in W do contain such
words. It means that the construction of W does not conflict with Requirement 1.

Now Theorem 34 follows from Lemma 35 and Lemma 37.

Proof of Theorem 34. Choose L as in the proof of Lemma 37. The reduction
X ≤log NRR(P) is given by a map x 7→ sq(x)#+. It is clear that the map
is computed in logarithmic space. The correctness of reduction follows from
Requirement 1.

Now we describe the second reduction, NRR(P)≤P
TX . Let A be an input

NFA for NRR(P). The reducing algorithm computes all sets δLA(s), δ
L̄
A(s) using

Lemma 35.
Let B be an NFA with the same state set as A. The alphabet of B is

{y, n,#,+,−, r}. Transitions δB(s, a) coincide with transitions δA(s, a) for a ∈
{#,+,−, r}. For the rest of transitions, δB(s, y) = δLA(s) and δB(s, n) = δL̄A(s).
The initial state and the accepting states of B and of A coincide.

Let R = L(B) ∩
(

y#+ | n#− | rr
)∗

. Then L(A) ∩ P 6= ∅ iff R 6= ∅. The
latter condition is verified in polynomial time since R is regular.

23

Acknowledgments

This work is supported by the Russian Science Foundation grant 20–11–20203.

References

[1] T. Anderson, J. Loftus, N. Rampersad, N. Santean, and J. Shallit. Special
Issue: LATA 2008 Detecting palindromes, patterns and borders in regular
languages. Information and Computation, 207(11):1096–1118, 2009.

[2] J. Berstel. Transductions and context-free languages. Ed. Teubner, 1979.

[3] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown
automata: Application to model-checking. In International Conference on
Concurrency Theory, pages 135–150. Springer, 1997.

[4] D. Chistikov, R. Majumdar, and P. Schepper. Subcubic certificates for cfl
reachability. Proc. ACM Program. Lang., 6(POPL), jan 2022.

[5] M. Daley, M. Eramian, and I. Mcquillan. The bag automaton: A model
of nondeterministic storage. J. Autom. Lang. Comb., 13(3):185–206, June
2008.

[6] D. Dolev, S. Even, and R. Karp. On the security of ping-pong protocols.
Information and Control, 55(1):57–68, 1982.

[7] J. E. Hopcroft and J. D. Ullman. An approach to a unified theory of
automata. In SWAT 1967, pages 140–147, 1967.

[8] M. Kutrib, A. Malcher, and M. Wendlandt. Set automata. International
Journal of Foundations of Computer Science, 27(02):187–214, 2016.

[9] K.-J. Lange and K. Reinhardt. Set automata. In Combinatorics, Com-
plexity and Logic; Proceedings of the DMTCS’96, pages 321–329. Springer,
1996.

[10] D. Melski and T. Reps. Interconvertibility of a class of set constraints and
context-free-language reachability. Theoretical Computer Science, 248(1-
2):29–98, 2000.

[11] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow anal-
ysis via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’95,
page 49–61, New York, NY, USA, 1995. Association for Computing Ma-
chinery.

[12] A. Rubtsov and M. Vyalyi. Regular realizability problems and context-free
languages. In DCFS 2015, volume 9118 of LNCS, pages 256–267. Springer,
2015.

24

[13] A. Rubtsov and M. Vyalyi. On computational complexity of set automata.
In DLT 2017, pages 332–344, Cham, 2017. Springer International Publish-
ing.

[14] A. Rubtsov and M. Vyalyi. On emptiness and membership problems for
set automata. In CSR 2018, pages 295–307, Cham, 2018. Springer Interna-
tional Publishing.

[15] A. Rubtsov and M. Vyalyi. On computational complexity of set automata.
Information and Computation, to appear.

[16] M. Sipser. Introduction to the theory of computation. Cengage Learning,
2013.

[17] M. Vyalyi. On models of a nondeterministic computation. In CSR 2009,
pages 334–345, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[18] M. Vyalyi. On the models of nondeterminizm for two-way automata (in
Russian). Proceedings of VIII international conference «Discrete models in
the theory of control systems»., pages 54–60, 2009.

[19] M. N. Vyalyi. On regular realizability problems. Probl. Inf. Transm.,
47(4):342–352, 2011.

[20] M. N. Vyalyi. On expressive power of regular realizability problems. Probl.
Inf. Transm., 49(3):276–291, 2013.

[21] P. Wolf. On the decidability of finding a positive ilp-instance in a regular
set of ilp-instances. In DCFS 2019, volume 11612 of LNCS, pages 272–284.
Springer, 2019.

[22] P. Wolf and H. Fernau. Regular intersection emptiness of graph problems:
Finding a needle in a haystack of graphs with the help of automata. CoRR,
abs/2003.05826, 2020.

[23] M. Yannakakis. Graph-theoretic methods in database theory. In Proceed-
ings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, PODS ’90, page 230–242, New York, NY, USA,
1990. Association for Computing Machinery.

25

