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Abstract

Although regular expressions do not correspond univocally to regular

languages, it is still worthwhile to study their properties and algorithms.

For the average case analysis one often relies on the uniform random gener-

ation using a specific grammar for regular expressions, that can represent

regular languages with more or less redundancy. Generators that are uni-

form on the set of expressions are not necessarily uniform on the set of

regular languages. Nevertheless, it is not straightforward that asymptotic

estimates obtained by considering the whole set of regular expressions are

different from those obtained using a more refined set that avoids some

large class of equivalent expressions. In this paper we study a set of ex-

pressions that avoid a given absorbing pattern. It is shown that, although

this set is significantly smaller than the standard one, the asymptotic aver-

age estimates for the size of the Glushkov automaton for these expressions

does not differ from the standard case.

1 Introduction

Average-case studies often rely on uniform random generation of inputs. In
general, those inputs correspond to trees, and generators are uniform on the set
of these trees, but not on the set that those inputs represent (such as languages
or boolean functions). Koechlin et al. [7, 8] studied expressions that have subex-
pressions which are (semantically) absorbing for a given operator, calling them
absorbing patterns. For instance, (a + b)⋆ is absorbing for the union of regular
expressions over the alphabet {a, b}, since α+(a+ b)⋆, or (a+ b)⋆+α, is equiv-
alent to (a + b)⋆ for any expression α. After repeatedly applying the induced
simplification, in the example above replacing α + (a+ b)⋆ by (a + b)⋆, the re-
sulting expression can be significantly smaller. For uniformly random generated
expressions of a given size, Koechlin et al. showed that the expression resulting
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from this simplification has constant expected size. That result led the authors
to the conclusion that uniform random generated regular expressions lack ex-
pressiveness, and in particular that uniform distribution should not be used to
study the average case complexity in the context of regular languages. This
conclusion is misleading in at least two aspects. First, as pointed out above,
one is considering regular expressions and not regular languages themselves. For
instance, if one wants to estimate the size of automata obtained from regular
expressions, one disregards whether they represent the same language or not.
What is implied by the results of Koechlin et al. is that, if one uniformly random
generates regular expressions, one cannot expect to obtain, with a reasonable
probability, regular languages outside a constant set of languages. This means
that a core set of regular languages have so many regular expression representa-
tives that the remaining languages very scarcely appear. While neither regular
expressions (RE) nor nondeterministic finite automata (NFA) behave uniformly
when representing regular languages, it is known that deterministic automata
(DFA) are a better choice, in the uniform model, as they are asymptotically
minimal [10]. In this sense, minimal DFAs are a perfect model for regular lan-
guages. However, in practice, regular expressions are usually preferred as a
representation of regular languages, and are used in a non-necessarily simplified
form. Moreover, all of these objects (REs, NFAs, and DFAs) are combinatorial
objects per se that can have their behaviour, as well as of the algorithms having
them as input, studied on average and asymptotically. One should not con-
fuse regular expressions by themselves with the languages that they represent.
Second, the results of Koechlin et al. do not imply that asymptotic estimates
obtained by considering the whole set of regular expressions are different from
those obtained by using a more refined set with less equivalent expressions. For
instance, some results obtained for expressions in strong star normal form co-
incide with the ones for standard regular expressions [2]. In order to further
sustain the above claim, in this paper we consider the set R of regular expres-
sions avoiding an absorbing pattern which extends the pattern in the example
above and was the one considered by Koechlin et al. It is shown that, although
the set R is significantly smaller than the set RE, the asymptotic estimates
for the size of the Glushkov automaton on these sets is the same. Given the
complexity of the grammars expressing the classes here studied, we had to deal
with algebraic curves and polynomials of degree depending on the size of the
alphabet, k, which brought up challenges that are new, as far as we know. Not
only we had to use the techniques developed in our previous work [3], but also
some non-trivial estimates using Stirling approximation, and some asymptotic
equivalence reductions in order to obtain the asymptotic estimates, and their
limits with k.

2 The analytic tools

Given some measure of the objects of a combinatorial class, A, for each n ∈ N0,
let an be the sum of the values of this measure for all objects of size n. Now,
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let A(z) =
∑

n anz
n be the corresponding generating function (cf. [5]). We will

use the notation [zn]A(z) for an. The generating function A(z) can be seen
as a complex analytic function. When this function has a unique dominant
singularity ρ, the study of the behaviour of A(z) around it gives us access to
the asymptotic form of its coefficients. In particular, if A(z) is analytic in some
indented disc neighbourhood of ρ, then one has the following [5, Corol. VI.1,
p. 392]:

Theorem 1. The coefficients of the series expansion of the complex function

f(z) ∼
z→ρ

λ
(

1− z
ρ

)ν

, where ν ∈ C\N0, λ ∈ C, have the asymptotic approxima-

tion [zn]f(z) = λ
Γ(−ν) n

−ν−1ρ−n+o
(

n−ν−1ρ−n
)

. Here Γ is, as usual, the Euler’s

gamma function and the notation f(z) ∼
z→z0

g(z) means that lim
z→z0

f(z)
g(z) = 1.

2.1 Regular Expressions

Given an alphabet Σ = {σ1, . . . , σk}, the set RE of (standard) regular expres-
sions, β, over Σ contains ∅ and the expressions defined by the following grammar:

β := ε | σ ∈ Σ | (β + β) | (β · β) | (β⋆). (1)

The language associated to β is denoted by L(β) and defined as usual (with
ε representing the empty word). Two expressions β1 and β2 are equivalent,
β1 = β2, if L(β1) = L(β2). The (tree-)size |β| of β ∈ RE is the number of sym-
bols in β (disregarding parentheses). The alphabetic size |β|Σ is the number of
letters occurring in β. The generating function of RE is Bk(z) =

∑

β∈RE z
|β| =

∑

n>0 bnz
n, where bn is the number of expressions of size n,cf. [9, 1]. From

grammar (1) one gets Bk(z) = (k + 1)z + 2zBk(z)
2 + zBk(z). Considering

the quadratic equation this yields Bk(z) =
1−z−

√
1−2z−(7+8k)z2

4z . To use Theo-
rem 1 one needs to obtain the singularity, ρ, as well as the constants ν and λ.
Following Broda et al [1, 3], we have

Bk(z) ∼
z→ρk

−
√
2− 2ρk
4ρk

(

1− z

ρk

)
1

2

,

where the singularity ρk = 1
1+

√
8+8k

is the positive root of pk(z) = 1− 2z− (7+

8k)z2. Thus, applying Theorem 1 and noting that Γ(− 1
2 ) =

√
π, the number of

expressions of size n is asymptotically given by

[zn]Bk(z)∼
n

√
2− 2ρk
8ρk

√
π

n− 3

2 ρ−nk , (2)

where we use the notation ∼
n

instead of ∼
n→∞

.

3 Regular Expressions without Σ⋆ in Unions

We consider the set R of all regular expressions α such that Σ⋆ does not occur in
an union. Here Σ⋆ denotes any expression (σi1 + · · ·+σik)⋆ where σi1 , . . . , σik is
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a permutation of Σ. Note that Σ⋆ represents an absorbing pattern in the sense
of [7], i.e. (α + Σ⋆) = (Σ⋆ + α) = Σ⋆, and that R still generates all regular
languages over Σ. We first consider Σ = {a, b}, for which we have the following
grammar G2 for R.

α := ε | a | b | (α · α) | (α⋆) | (αP + αP ) (3)

αP := ε | a | b | (α · α) | (α⋆Σ) | (αP + αP )

αΣ := ε | a | b | (α · α) | (α⋆) | γ
γ := (αab + αab) | (αab + a) | (αab + b) | (a+ αab) | (b+ αab) | (a+ a) | (b+ b)

αab := ε | (α · α) | (α⋆Σ) | (αP + αP ).

The set of expressions generated by the nonterminals of G2, are, respectively,

[[α ]] = R,

[[αP ]] = {α ∈ R | α 6= (a+ b)⋆ ∧ α 6= (b + a)⋆ },
[[αΣ ]] = {α ∈ R | α 6= (a+ b) ∧ α 6= (b+ a) },
[[ γ ]] = { (α1 + α2) ∈ R | {α1, α2} 6= {a, b} },

[[αab ]] = {α ∈ [[αP ]] | α 6= a ∧ α 6= b }.

In particular, we obtain the correctness of G2.

Lemma 2. An expression α ∈ RE is generated by G2 if and only the absorbing
pattern (a+ b)⋆ or (b+ a)⋆ does not occur in a union.

Let R2(z) denote the generating function for the class R when |Σ| = 2. It
follows from (3) that R2(z) = 3z+ zR2(z)

2+ zR2(z)+ zRP (z)
2, where RP (z) is

the generating function for the class of expressions generated by αP . Comparing
[[α ]] and [[αP ]], one observes that the only expressions not generated by αP are
(a + b)⋆ and (b + a)⋆, which are both of size 4. Thus, RP (z) = R2(z) − 2z4.
In general, for an arbitrary alphabet Σ = {σ1, . . . , σk}, the expressions α ∈ R

satisfy the following grammar Gk

α := ε | σ1 | · · · | σk | (α · α) | (α⋆) | (αP + αP ), (4)

where [[αP ]] = {α ∈ R | α 6= (σi1 + · · · + σik)
⋆ ∧ {σi1 , . . . , σik} = Σ }. As

before, we obtain the following two equations for the corresponding generating
functions, where (k−1)!

(

2k−2
k−1

)

denotes the number of expression (σi1+· · ·+σik)⋆
with {σi1 , . . . , σik} = Σ, each of which has size 2k.

Rk(z) = (k + 1)z + zRk(z)
2 + zRk(z) + zRP,k(z)

2, (5)

RP,k(z) = Rk(z)− (k − 1)!

(

2k − 2

k − 1

)

z2k. (6)

In the next section, the asymptotic estimates of [zn]Rk(z) are computed.
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3.1 Asymptotic Estimates for the Number of Expressions

in R

The generating function Rk = Rk(z) satisfies the following equation:

2zR2
k − rkRk + zsk = 0, (7)

where

rk = rk(z) = 1− z + 2z2k+1Ck,

sk = sk(z) = 1 + k + z4kC2
k ,

Ck =

(

2k − 2

k − 1

)

(k − 1)! =
(2k − 2)!

(k − 1)!
.

The discriminant of equation (7) is ∆k = ∆k(z) = pk(z)+4z2k+1Ckhk(z), where

pk = pk(z) = 1− 2z − (7 + 8k)z2,

hk = hk(z) = 1− z − Ck z
2k+1.

Thus,

Rk = Rk(z) =
rk −

√
∆k

4z
, (8)

where the choice of the sign is determined by noticing that rk(0) = ∆k(0) = 1.
Let us now show that Rk(z) has a unique determinant singularity in the interval
]0, 1[, for all k. The ideia is to use the fact that the polynomial pk(z) has only
one positive zero, namely ρk, use Rouché’s Theorem to show that, in the disk
|z| < 1√

8+8k
, the polynomial ∆k(z) has exactly one root in that disk, and finally

show that that unique root is real. We recall that Rouché’s Theorem states
that, in particular, for polynomials f(z) and g(z) such that |f(z) − g(z)| <
|f(z)| + |g(z)| holds for all |z| = R, in the complex plane, then f(z) and g(z)
have the same number of roots, taking into account multiplicities, in the disk
|z| < R [11, Thm 3.3.4]. In order to estimate |∆k(z) − pk(z)|, we start by

noticing that from Stirling approximation,
√
2π nn+

1

2 e−n ≤ n! ≤ nn+
1

2 e1−n,
valid for all n ∈ N, one gets that, for all k ≥ 2,

√
2π (2k − 2)2k−

3

2 e2−2k

(k − 1)k−
1

2 e2−k
≤ Ck =

(2k − 2)!

(k − 1)!
≤ (2k − 2)2k−

3

2 e3−2k

√
2π (k − 1)k−

1

2 e1−k
,

i.e., √
2π 22k−

3

2 (k − 1)k−1

ek
≤ Ck ≤ 22k−

3

2 (k − 1)k−1

√
2π ek−2

. (9)
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Therefore, for |z| = 1√
8+8k

,

|∆k(z)− pk(z)| ≤ 4Ck
1

(8 + 8k)k+
1

2

|hk(z)|

≤ (k − 1)k−1

√
2π ek−2 2k+1(k + 1)k+

1

2

(

1− 1√
8 + 8k

− Ck

(8 + 8k)k+
1

2

)

≤ 1.48

(2e)k(k − 1)
√
k + 1

(

1− 1√
8 + 8k

− Ck

(8 + 8k)k+
1

2

)

.

Noticing that, from (9), one has
√
2π (k − 1)k−1

ek2k+3(k + 1)k+
1

2

≤ Ck

(8 + 8k)k+
1

2

≤ (k − 1)k−1

√
2π ek−22k+3(k + 1)k+

1

2

,

one concludes that lim
k→∞

|∆k(z)− pk(z)| = 0.

Let us now find the minimum of |pk(z)| on the circunference |z| = 1√
8+8k

=

R. Put z = Reiθ. One has

|pk(z)|2 = |1− 2Reiθ − (7 + 8k)R2e2iθ|2
= (1− 2R cos θ − (7 + 8k)R2 cos 2θ)2 + (1− 2R sin θ − (7 + 8k)R2 sin 2θ)2

= 2 + 4R2 + (7 + 8k)2R4 − 4R(cos θ + sin θ)− 2(7 + 8k)R2(cos 2θ + sin 2θ)

+4R3(7 + 8k)(cos θ cos 2θ + sin θ sin 2θ)

= 2 +
1

2 + 2k
+

(

7 + 8k

8 + 8k

)2

− 2(cos θ + sin θ)√
2 + 2k

− (7 + 8k)(cos 2θ + sin 2θ)

4 + 4k

+
(7 + 8k)(cos θ cos 2θ + sin θ sin 2θ)

4(k + 1)
√
2 + 2k

.

It follows that lim
k→∞

|pk(z)|2 = 3− 2(cos 2θ+ sin 2θ). Since max
θ

(cos θ+ sin θ) =
√
2, one concludes that lim

k→∞
|pk(z)|2 ≥ 3−2

√
2 > 0. From all this, one concludes

that |∆k(z) − pk(z)| < |pk(z)| for large enough values of k, and so Rouché’s
Theorem applies to show that the polynomial ∆k(z) has exactly one root in the
open disk |z| < 1√

8+8k
. 1 Since ∆k(0) = 1, in order to show that that root must

be real it suffices to show that one has ∆k

(

1√
8+8k

)

< 0. This can be shown as

follows. Since

∆k

(

1√
8 + 8k

)

= 2−6k− 7

2 (k + 1)−2k−1
(

23k+2
(

4
√
k + 1−

√
2
)

(k + 1)kCk

−4
√
2C2

k − 64k
(

8
√
k + 1−

√
2
)

(k + 1)2k
)

,

we want to show that

23k
(√

8k + 8− 1
)

(k + 1)kCk < C2
k + 26k−2

(

2
√
8k + 8− 1

)

(k + 1)2k.

1It is actually true that |∆k(z)− pk(z)| < |pk(z)| for all |z| = 1
√

8+8k
and k ≥ 2.
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Using (9), it is enough to show that

2kek+2
(√

8k + 8− 1
)

√
π

< 22k
(

2
√
8k + 8− 1

) (k + 1)k

(k − 1)k−1
e2k + π

(k − 1)k−1

(k + 1)k
,

that follows from this trivially true inequality

√
8k + 8− 1√

π
< 2k

(

2
√
8k + 8− 1

) (k + 1)k

(k − 1)k−1
ek−2.

The singularity of Rk(z) is therefore given by the unique root of ∆k(z) in

the interval
]

0, 1√
8k+8

[

, which will henceforth denote by ηk. It also follows

from Rouché’s Theorem that this root has multiplicity one. Now, ∆k(z) =
(

1− z
ηk

)

ψk(z), for some ψk(z) ∈ R[z]. Using L’Hôpital’s Rule, one has

ψk(ηk) = −ηk∆′
k(ηk). (10)

Then, one has Rk(z) ∼
z→ηk

−rk(ηk)−
√
ψk(ηk)

(

1− z
ηk

) 1

2

4ηk
. By Theorem 1, one gets

the following asymptotic approximation for the number of regular expressions

Theorem 3. With the notations above, one has

[zn]Rk(z)∼
n

√

ψk(ηk)

8ηk
√
π
n− 3

2 η−nk .

Using (2), we have

Theorem 4. The asymptotic ratio of the number of expressions in R and the
number of expressions in RE is given by,

[zn]Rk(z)

[zn]Bk(z)
∼
n

√
ψk(ηk)

8ηk
√
π
n− 3

2 η−nk
√
2−2ρk

8ρk
√
π
n− 3

2 ρ−nk
=

√

ψk(ηk)√
2− 2ρk

(

ρk
ηk

)n+1

.

Since, as seen before, ηk > ρk, for all k, this yields that, for every k, this
ratio tends to 0 as n → ∞. As such, considering R instead of RE, actually
avoids a significant set of redundant expressions. Such an improvement, in the
sense of [7], might influence the results obtained by asymptotic studies. In the
following section we show that is not the case for the average asymptotic size of
the Glushkov automaton in terms of states and transitions [9, 1].

4 Asymptotic Average Size of the Glushkov Au-

tomaton

The Glushkov automaton [6] is constructed from an equivalent regular ex-
pression β using the set Pos(β) of positions of the letters in β, as the set
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of states (plus one initial state). Let Pos(β) = {1, 2, . . . , |β|Σ}, Pos0(β) =
Pos(β) ∪ {0} and β denote the expression obtained from β by marking each
letter with its position in β. The construction is based on the position sets
First(β) = { i | (∃w) σiw ∈ L(β) }, Last(β) = { i | (∃w) wσi ∈ L(β) },
and Follow(β) = { (i, j) | (∃u, v) uσiσjv ∈ L(β) }. The Glushkov automa-
ton for β is APOS(β) = 〈Pos0(β),Σ, δPOS, 0, F 〉 with the set of transitions
δPOS = { (0, σj, j) | j ∈ First(β) } ∪ { (i, σj , j) | (i, j) ∈ Follow(β) } and the
set of final states F = Last(β) ∪ {0} if ε ∈ L(β), and F = Last(β), otherwise.

In the next subsection, we estimate the average number of letters in α ∈ R,
i.e., the number of states of APOS(α). In the last subsection we consider the
number of transitions.

4.1 Estimates for the Number of Letters

The average number of letters in uniform random generated regular expressions
of a given size have been estimated for different kinds of expressions [9, 3]. For
standard regular expressions that value is half the size of the expressions as the
size of the alphabet goes to ∞. In the following we obtain the same value for
expressions in R. To count the number of letters in all expressions of a given
size we use the bivariate generating function Lk(u, z) =

∑

n,i≥1 cn,iu
izn, where

cn,i is the number of regular expressions of size n with i letters. Therefore, the
total number of letters in all the regular expressions of size n is given by the
coefficients of the sum of the two series

Lk(z) =
∂Lk(u, z)

∂u

∣

∣

∣

∣

u=1

=
∑

n,i≥1

i cn,i z
n.

From grammar (4) the generating function Lk(z) satisfies the following.

Lk(z) = kz + 2zLk(z)Rk(z) + zLk(z) + 2zPk(z)RP (z), (11)

Pk(z) = Lk(z)− k!

(

2k − 2

k − 1

)

z2k. (12)

Using equations (5),(6),(16),(12) and Buchberger’s algorithm [4] one obtains
the following equation, which is satisfied by the generating function Lk = Lk(z):

∆kL
2
k + r̄kLk − s̄k = 0, (13)

where

r̄k = kz2kCk∆k,

s̄k = kz2 + k2z2k+1 Ck
(

(z − 1)(1 + 2z4k+1C2
k) + 2Ck(2 + k) + 2z6k+1C3

k

)

.

The discriminant of equation (13) can be shown to be

∆̄k(z) = z2k2∆k(z)gk(z)
2, (14)

8



where
gk(z) = 2− Ckz

2k−1
(

hk(z)− Ckz
2k−1

)

. (15)

Therefore,

Lk(z) =
kz2kCk∆k(z)±

√

∆̄k(z)

2∆k(z)
=
kz2kCk

2
± kzgk(z)

2
√

∆k(z)
.

Using the fact that we know L′
k(0) = k, one deduces that

Lk(z) =
kz2kCk

2
+

kzgk(z)

2
√

∆k(z)
. (16)

Now, applying the procedure described in Broda et al. [3] one obtains:

Theorem 5. With the same notations as above, where ηk is as defined in page 7,

[zn]Lk(z)∼
n

k ηk gk(ηk)

2
√
π
√

ψk(ηk)
n− 1

2 η−nk .

Therefore, from Theorems 3 and 5, one deduces:

Theorem 6. The asymptotic ratio of letters in the expressions in R is given by

[zn]Lk(z)

n[zn]Rk(z)
∼
n

4k η2k gk(ηk)

ψk(ηk)
.

Let us now see that

lim
k→∞

k η2k =
1

8
. (17)

Since we know that ∆k(0) = 1, and ∆k(x) has exactly one real root in the

interval
[

0, 1√
8+8k

]

, in order to show that ηk > ρk for all k, it is enough to show

that:
∆k(ρk) = pk(ρk) + 4ρ2k+1

k Ckhk(ρk) > 0, i.e. hk(ρk) > 0.

Now, hk(ρk) > 0 ⇐⇒ 1 > ρk + Ckρ
2k+1
k ⇐⇒

√
8 + 8k > Ck

(1+
√
8+8k)2k

. From

(9) it follows that

Ck

(1 +
√
8 + 8k)2k

≤ 22k−
3

2 (k − 1)k−1

√
2π ek−2(1 +

√
8 + 8k)2k

.

It is therefore enough to show:

22k−
3

2 (k − 1)k−1

√
2π ek−2(1 +

√
8 + 8k)2k

<
√
8 + 8k,

which is equivalent to

22k−
3

2 (k − 1)k−1 <
√
2π ek−2(1 +

√
8 + 8k)2k

√
8 + 8k.
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This is the same as

(

4

e

)k

(k − 1)k−1 <
2

3

2

√
2π

e2
(1 +

√
8 + 8k)2k

√
8 + 8k,

which follows from:

(

4

e

)k

(k − 1)k <
2

3

2

√
2π

e2
22k+1(2 + 2k)k+

1

2 .

That is obvious when rewritten as

(

4

e

)k

(k − 1)k <

(

2
3

2

√
2π

e2
2

)

4k(2 + 2k)k+
1

2 .

Thus, we conclude that

ρk =
1

1 +
√
8 + 8k

< ηk <
1√

8 + 8k
. (18)

From this it immediately follows that lim
k→∞

k η2k = 1
8 , and then lim

k→∞
pk(ηk) = 0.

Using the right hand inequality in (9) together with (18), it is not hard to show
the following result.

Lemma 7. For all t, s ∈ R, one has

lim
k→∞

Ckk
tη2k+sk = 0. (19)

From all this, and from (15) and (10), one easily gets lim
k→∞

gk(ηk) = lim
k→∞

ψk(ηk) =

2, and thus:

lim
k→∞

4k η2k gk(ηk)

ψk(ηk)
=

1

2
. (20)

This means that the following result holds.

Theorem 8. In regular expressions without Σ⋆ in unions, the asymptotic ratio
of letters goes to 1

2 as k goes to ∞.

4.2 Estimates for the Number of Transitions

The transitions of the Glushkov automaton are defined using the sets of positions
First, Last and Follow. These sets can be inductively define for α ∈ R, as it is
usually done [1]. Let αε ∈ R be the set of expressions such that ε ∈ L(αε) and
let αε represent the set of expressions such that ε /∈ L(αε). We have that those
sets satisfy the following grammars:

αε := ε | (αε · αε) | (α⋆) | (αP,ε + αP ) | (αP,ε + αP,ε) (21)

αε := σ ∈ Σ | (αε · α) | (αε · αε) | (αP,ε + αP,ε), (22)
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where αP,ε and αP,ε represent the expressions αP such that ε ∈ L(αP,ε) and
ε /∈ L(αP,ε), respectively. Note that then α ∈∈ R could be defined by: α := αε |
αε. With this we have the following definitions.

First(ε) = ∅,
First(σi) = {i},
First(α⋆) = First(α),

First(αP + α′
P ) = First(αP ) ∪ First(α′

P ),
First(αε · α) = First(αε) ∪ First(α),
First(αε · α) = First(αε).

The definition of Last is almost identical and differs only for the case of concate-
nation, which is Last(α · αε) = Last(α) ∪ Last(αε) and Last(α · αε) = Last(αε).
Following Broda et al. [1] the set Follow satisfies

Follow(ε) = Follow(σi) = ∅,
Follow(αP + α′

P ) = Follow(αP ) ∪ Follow(α′
P ),

Follow(α · α′) = Follow(α) ∪ Follow(α′) ∪ Last(α) × First(α′),

Follow(α⋆) = E
⋆(α), where

E
⋆(ε) = ∅, E

⋆(σi) = {(i, i)}, E
⋆(α⋆) = E

⋆(α),

E
⋆(αP + α′

P ) = E
⋆(αP ) ∪ E

⋆(α′
P ) ∪ Cross(αP , α

′
P ),

E
⋆(αε · α′

ε) = E
⋆(αε) ∪ E

⋆(α′
ε) ∪ Cross(αε, α

′
ε),

E
⋆(αε · α′

ε) = Follow(αε) ∪ Follow
⋆(α′

ε) ∪ Cross(αε, α
′
ε),

E
⋆(αε · α′

ε) = Follow
⋆(αε) ∪ Follow(α′

ε) ∪ Cross(αε, α
′
ε),

E
⋆(αε · α′

ε) = Follow(αε) ∪ Follow(α′
ε) ∪ Cross(αε, α

′
ε),

with Cross(α, α′) = Last(α) × First(α′) ∪ Last(α′)× First(α).
The generating functions for αε and αε, respectively, Rε,k(z) = Rε,k and

Rε,k(z) = Rε,k, satisfy

Rε,k = z + zR2
ε,k + zRk + 2zRP,ε,kRP,k − zR2

P,ε,k,

Rε,k = Rk −Rε,k,

RP,ε,k = Rε,k,

RP,ε,k = RP,k −Rε,k = Rε,k − Ckz
2k.

From that we conclude that

Rε,k = z + zRk + zR2
P,k − zR2

k + 2zRε,kRk (23)

The function that counts the cardinality of First(α) is f(α) and is defined as
follows:

f(σi) = 1,

f(αP + α′
P ) = f(αP ) + f(α′

P ),

f(αε · α′) = f(αε) + f(α′),

f(αε · α′) = f(αε),

f(α⋆) = f(α),

(24)
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Note that f((σi1 + · · · + σik)
⋆) = k for any permutation σi1 , . . . , σik of Σ =

{σ1, . . . , σk}. The correspondent generating function Fk(z) =
∑

α f(α)z
|α| = Fk

satisfies the following equations

Fk = kz + zFk + 2zFP,kRP,k + zFkRε,k + zFkRk,

FP,k = Fk − kCkz
2k,

Rε,k = z + zRk + 2zRε,kRk + zC2
kz

4k − 2zRkCkz
2k,

Let s(α) be the function that counts the cardinality of Last(α) and Sk(z) the
correspondent generating function. By symmetry we have that Sk(z) = Fk(z).
The functions counting the cardinalities of Follow(α) and E

⋆(α) are e(α) and
e
⋆(α), respectively. Those functions are defined as follows:

e(σ) = e(ε) = 0,

e(αP + α′
P ) = e(αP ) + e(α′

P ),

e(α · α′) = e(α) + e(α′) + s(α) f(α′),

e(α⋆) = e
⋆(α),

(25)

where e
⋆(α) is given by

e
⋆(ε) = 0, e

⋆(σ) = 1,

e
⋆(αP + α′

P ) = e
⋆(αP ) + e

⋆(α′
P ) + c(αP , α

′
P ),

e
⋆(αε · α′

ε) = e
⋆(αε) + e

⋆(α′
ε) + c(αε, α

′
ε),

e
⋆(αε · α′

ε) = e
⋆(αε) + e(α′

ε) + c(αε, α
′
ε),

e
⋆(αε · α′

ε) = e(αε) + e
⋆(α′

ε) + c(αε, α
′
ε),

e
⋆(αε · α′

ε) = e(αε) + e(α′
ε) + c(αε, α

′
ε),

with c(α, α′) = s(α) f(α′) + s(α′) f(α). From the above the corresponding
generating functions Ek(z) =

∑

α e(α)z
|α| = Ek and E⋆k(z) =

∑

α e
⋆(α)z|α| =

E⋆k , respectively, satisfy the following equations.

Ek = 2zEP,kRP,k + 2zEkRk + zF 2
k + zE⋆k ,

E⋆k = kz + 2zE⋆P,kRP,k + 2zF 2
P,k + 2zE⋆ε,kRε,k + 2zFε,kFε,k

+ zE⋆ε,kRε,k + zEε,kRε,k + 2zFε,kFε,k + zEε,kRε,k

+ zE⋆ε,kRε,k + 2zFε,kFε,k + 2zEε,kRε,k + 2zFε,kFε,k + zE⋆k

= kz + 2zE⋆P,kRP,k + 2zE⋆kRε,k + 2zEk(Rk −Rε,k)

+ 2zF 2
P,k + 2zF 2

k + zE⋆k ,

EP,k = Ek − k2Ckz
2k,

E⋆P,k = E⋆k − k2Ckz
2k.

The last two equations follow from the fact that e((σi1 + · · · + σik )
⋆) =

e
⋆((σi1 + · · · + σik)

⋆) = k2, for any permutation σi1 , . . . , σik of Σ. The cost
function t(α) = f(α)+ e(α) computes the number of transitions in the Glushkov
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automaton of α. The generating function associated to t is given by Tk(z) =
Fk(z) + Ek(z). Setting w = Tk(z), one has

c2w
2 + c1w + c0 = 0,

where the ci = ci(k, z). Therefore,

w =
−c1 ±

√

c21 − 4c0c2
2c2

.

Now, one can see that c1 = ∆ksk, c2 = ∆kakb
2
k and c21 − 4c0c2 = k2∆kq

2
k, from

which it follows that

w = − sk
2akb2k

± kqk

2akb2k
√
∆k

.

With ηk as defined in p.7, one can now deduce, as above, that

Tk(z) ∼
z → ηk

kqk(ηk)

2ak(ηk)bk(ηk)2
√

ψk(ηk)

(

1− z

ηk

)
1

2

,

and therefore

[zn]Tk(z)∼
n

kqk(ηk)

2
√
πak(ηk)bk(ηk)2

√

ψk(ηk)
η−nk n− 1

2 .

From all this, one gets:

[zn]Tk(z)

[zn]Rk(z)
∼
n

4kηkqk(ηk)

ak(ηk)bk(ηk)2ψk(ηk)
n.

With the help of a symbolic and numeric computing system one can explicitly
find out the polynomials2 ak, bk, qk, and then reducing them modulo ∆k (which
has ηk as a root), and then using Lemma 7 and (17), one obtains:

ak(ηk)∼
k

1

2
kηk ; bk(ηk)∼

k

1

8
kηk ; qk(ηk)∼

k

1

2048
k.

This yields

lim
k→∞

4kηkqk(ηk)

ak(ηk)bk(ηk)2ψk(ηk)
= 1.

We have thus obtained the following result.

Theorem 9. For expressions of size n over an alphabet of size k, the number
of transitions in the Glushkov automaton for regular expressions, without Σ⋆ in
unions, is asymptotically, with respect to n, given by λkn, where lim

k→∞
λk = 1.

To grasp the progression of λk, observe that λ2 = 4.03, λ5 = 2.91, λ10 = 2.30,
λ10 = 1.89, λ50 = 1.54, λ100 = 1.38, λ10000 = 1.03. Theorems 8 and 9 show
that the size of the Glushkov automaton, both in states and transitions, is,
on average and asymptotically, independent of whether we consider all regular
expressions or the restricted set R mentioned by Koechlin et al.

2These polynomials are quite large, e.g. qk has 437 monomials and degree 10 + 28k.
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