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Abstract. Right ventricular (RV) segmentation from magnetic reso-
nance imaging (MRI) is a crucial step for cardiac morphology and func-
tion analysis. However, automatic RV segmentation from MRI is still
challenging, mainly due to the heterogeneous intensity, the complex vari-
able shapes, and the unclear RV boundary. Moreover, current methods
for the RV segmentation tend to suffer from performance degradation at
the basal and apical slices of MRI. In this work, we propose an automatic
RV segmentation framework, where the information from long-axis (LA)
views is utilized to assist the segmentation of short-axis (SA) views via
information transition. Specifically, we employed the transformed seg-
mentation from LA views as a prior information, to extract the ROI
from SA views for better segmentation. The information transition aims
to remove the surrounding ambiguous regions in the SA views. We tested
our model on a public dataset with 360 multi-center, multi-vendor and
multi-disease subjects that consist of both LA and SA MRIs. Our exper-
imental results show that including LA views can be effective to improve
the accuracy of the SA segmentation. Our model is publicly available at
https://github.com/NanYoMy/MMs-2.

Keywords: RV Segmentation · Short-Axis and Long-Axis MRI · Infor-
mation Transition

1 Introduction

The segmentation of right ventricular (RV) is an essential preprocessing step
for the cardiac functional assessment, such as the volume of ventricles, regional
wall thickness, and ejection fraction. Manual delineations of the RV from short-
axis (SA) and long-axis (LA) MRIs can be subjective and labor-intensive. How-
ever, automatic RV segmentation remains challenging, mainly due to the het-
erogeneous intensity, the complex variable shapes, and the unclear boundary of
RV [4].

In literature, most methods jointly segment both ventricles, and only a few
methods focus exclusively on RV segmentation [15,16,2]. The joint segmentation
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of ventricles aims to employ the similar gray levels in their blood cavities and the
relatively stable positions of two ventricles. Therefore, conventional atlas-based
methods and model-based approaches combining with prior anatomical knowl-
edge, are commonly used in these joint optimization methods [12]. Recently, with
the development of deep learning (DL) in medical image computing, several DL-
based algorithms have been proposed for automatic RV segmentation [9,13,8].
The superiority of employing both the SA and LA images instead of only the
SA images has been demonstrated [7]. However, most current RV segmentation
studies mainly focus on the algorithms solely using SA cardiac MRI [1]. Instead,
the research on employing other views of MRIs to guide the segmentation of
SA especially on the apical and basal slices, is rather rare. Moreover, due to
the scarce of multi-center and multi-disease clinical dataset, the challenges of
RV segmentation on the data from different centers and pathologies are rarely
considered.

In this work, we propose a multi-view (LA and SA view) segmentation frame-
work to delineate RV from multi-center and multi-disease MRIs. The framework
is consists of a 2D and a 3D nnU-Net [5], which aim to segment RV from LA
and SA views in successive. The nnU-Net has the advantage of self-automatic
configuration, and therefore alleviates the burden of manual effort in the network
configuration. Moreover, LA views can provide comprehensive information for
the apical and basal slices of SA views, and also visualize atria clearly. We there-
fore employ an information transition scheme to assist the SA view segmentation
via the corresponding LA view.

Related Literature. For the literature of the RV segmentation, one could
refer to the review paper [1], where over forty research papers were evaluated.
The review paper showed that current RV segmentation methods still can not
properly solve all existing RV challenging issues. For the simultaneous SA and
LA MRI segmentation, Koikkalainen et al. [7] employed both SA and LA MRI
to segment ventricles and atria by transforming them into a same coordinate
system. Vigneault et al. [13] proposed an Ω-net to segment ventricles and atria
from MRIs with SA, four-chamber and two-chamber views. They simultaneously
transformed all these views into a canonical orientation, and then performed the
segmentation on the transformed images. Oghli et al. [11] assumed that RV cavity
is continuous in the LA direction, and then transited the seed point of region
growing method along the LA direction. Chen et al. [3] segmented left ventricular
(LV) myocardium from SA views by combining the learned anatomical shape
priors from various views. It is still an open question about how to effectively
employ LA views for the RV segmentation of SA views.

2 Methodology

2.1 Segmentation Framework

Fig. 1 presents the proposed segmentation framework, where SA and LA
images are segmented via 3D and 2D nnU-Net [5], separately. We firstly segment
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Fig. 1. The proposed RV segmentation framework for both SA and LA images. The
framework includes three steps: the LA segmentation, ROI extraction from SA with
assistant of LA information, and the SA segmentation. Here, the 3D cardiac image
adopted from Kevil et al. [6].

RV and LV from LA images, and then use this segmentation to localize the
ventricles, which is used to guide the SA view segmentation. More specifically,
we transform this information into the coordinate system of SA view, and utilize
this information to crop the SA view (see Section 2.2). The segmentation loss
functions of the framework are defined as follows,

Lseg
SA = LCE

SA + λSALDice
SA , (1)

Lseg
LA = LCE

LA + λLALDice
LA , (2)

where λSA and λLA are balancing parameters, and LCE and LDice are the cross
entropy (CE) loss and Dice loss, separately. Note that though our final target is
to segment RV, here we also include the LV (both LV cavity and myocardium)
label when minimizing the loss. We argue that the relatively stable space rela-
tionship of two ventricles can be helpful for the RV segmentation, especially in
the boundary regions. Besides, we do not separate the LV cavity and myocardium
to avoid overly attention on the supervision of noncritical small targets, i.e., LV
myocardium.

2.2 Information Transition from the LA view

To employ the information from the LA view, we need to align the SA and
LA views into a common coordinate system, as shown in Fig. 2. The transfor-
mation parameter between SA and LA views can be extracted from the header
information of images. Specifically, the physical coordinates of SA and LA views
can be defined as follows,

x′SA = TSA(xSA), (3)
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Fig. 2. Example of transformations between the the label images of the SA and LA
views. One can see that the transformed LA label only has one straight line traversing
the ventricles. In contrast, the transformed SA label covers the whole ventricles but
missing some apical regions.

x′LA = TLA(xLA), (4)

where T is the transformation matrix that converts the image coordinate x into
the physical coordinate x′. We assume that the physical coordinates of SA and
LA views are consist, so the transformed LA and SA views can be defined as
follows,

xLA→SA = T−1SA(TLA(xLA)), (5)

xSA→LA = T−1LA(TSA(xSA)). (6)

Fig. 3 presents the aligned LA and SA views in the coronal plane. One can
see that in the SA view, the basal regions of the RV tends to be confused with
the right atrium. In contrast, LA views can provide relatively clear boundary in
the ambiguous regions. Therefore, with the assist of the LA information, one can
classify the SA view as RV or non-RV regions in the coronal plane. Specifically, we
employed the transformed LA segmentation (see Fig. 2) as a prior information,
to extract the ROI from SA views for better segmentation. Note that, the ROI
excludes the aforementioned non-RV regions, where the SA segmentation tends
to be inaccurate.

3 Materials

3.1 Data Acquisition and Pre-processing

The dataset is from the Multi-Disease, Multi-View & Multi-Center Right
Ventricular Segmentation in Cardiac MRI (M&Ms-2) [10] challenge event. The
challenge dataset is consisted of 360 multi-center and multi-vendor subjects that
are divided into three parts: 160 training data, 40 validation data, and 160 test
data. It covers both healthy volunteers and patients with different pathologies
in both SA and LA views, as presented in Table 1. Two pathologies (tricuspidal
regurgitation and congenital arrhythmogenesis) do not appear in the training
dataset, but are included in the validation and testing sets. The data setting
aims to evaluate the model generalization ability to unseen pathologies.
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Fig. 3. The correspondence between SA and LA views in the coronal planes. There
may be some inconsistencies in the apical and basal regions between the SA and LA
views. Therefore, the SA plane can be marked as RV or non-RV region based on its
correspondence with the LA plane. Note that here the orientation of images has been
adjusted for better visualization.

Table 1. Pathology distribution among the training data, validation data, and test
data. HCM: hypertrophic cardiomyopathy; CAM: congenital arrhythmogenesis; TOF:
tetralogy of fallot; IC: interatrial comunication; TR: tricuspidal regurgitation.

Pathology Num. training Num. validation Num. test

Normal/Dilated LV/HCM 40/30/30 5/5/5 30/25/25
CAM/TOF/IC 20/20/20 5/5/5 10/10/10
Dilated RV/TR 0/0 5/5 25/25

3.2 Gold Standard and Evaluation

All the MRIs were manually delineated by experienced clinicians from the
respective centers, and the label consistency between SA and LA images in basal
and apical slices was confirmed. The manual segmentation includes the contours
of RV, LV and LV myocardium. As this study focus on the RV segmentation, we
only employ the RV manual label as the gold standard in the final evaluation.

For evaluation, Dice score (DS) and Hausdorff distance (HD) were applied.
The final evaluation score is obtained by applying 0.75 and 0.25 weighting coef-
ficients to the SA and LA segmentation accuracy, respectively.

score =
0.75(DSSA + HDSA) + 0.25(DSLA + HDLA)

2
, (7)

where DSSA/LA = (DSED + DSES)/2 and HDSA/LA = (HDED + HDES)/2.

3.3 Implementation

The proposed framework was implemented in PyTorch, running on a com-
puter with a Core i7 CPU and an NVIDIA GeForce RTX 1080. To train the
segmentation networks in proposed framework, λSA and λLA were set to 1 (see
Equation 1 and 2). An Adam optimizer with an initial learning rate of 0.01 was
adopted, and the networks were trained with 500 epochs.
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Table 2. The performance on the validation set using different schemes to utilize LA
information for the RV segmentation of SA views. The best and second results are in
bold and underline, respectively.

Matrix W/o-utilization Post-utilization Joint-utilization Pre-utilization

DSSA ↑ 0.914 0.901 0.900 0.913
HDSA (mm) ↓ 11.2 11.3 10.5 10.6

4 Experiment

4.1 Comparison Experiment

We implemented a baseline scheme and three utilization strategies to employ
LA information for the segmentation of SA views.

(1) W/o-utilization: one can train a nnU-Net purely on SA views without
using any information from LA views. It can be considered as the baseline.

(2) Post-utilization: one can remove the non-RV regions of SA views via the
prior segmentation of LA views.

(3) Joint-utilization: one can train a modified nnU-Net with an additional
slice-level task at the bottom of network [14]. Here, the additional task aims
to identify whether a slice includes the RV regions.

(4) Pre-utilization: The proposed framework. One can first perform ROI ex-
tractions on SA views via transformed LA views (see Section 2.2), and then
train a nnU-Net to segment the RV on the ROI.

Table 2 presents the results of different strategies on validation dataset.
Though w/o-utilization strategy obtained the best DS, it performed slightly
worse than the joint- and pre-utilization schemes in terms of HD. The post-
utilization scheme did not present any advantages compared to the baseline,
and the joint-utilization strategy tended to decrease the DS. Therefore, we ar-
gue that the pre-utilization scheme is the most reliable and robust among all
these strategies.

4.2 Performance on the Data with Different Pathologies

Table 3 presents the accuracy of each pathology on the test data. One can
see that the best performance was obtained on the subjects with congenital
arrhythmogenesis (CAM), though the most number of training data is from
normal subjects. It may indicate that the accuracy of each pathology did not
solely rely on the number of training data. There are two unseen pathologies
in the training stage (see Table 1), i.e., dilated RV and TR. One can see that
only the accuracy of dilated RV had an evident decrease for the segmentation
of LA views. It can be attribute to the irregular RV shape in the dilated RV
patients. Therefore, the model generalization ability on the unseen pathologies
is generally promising.
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Table 3. The performance on the test data for each pathology. Here, † denotes the
unseen pathologies in the training stage.

Pathology DSSA HDSA (mm) DSLA HDLA (mm)

Normal 0.916± 0.042 9.36± 4.14 0.931± 0.033 5.27± 3.00
Dilated LV 0.920± 0.069 11.2± 5.53 0.915± 0.052 6.08± 3.13
HCM 0.930± 0.052 9.11± 4.86 0.926± 0.033 5.35± 2.62
CAM 0.943± 0.025 8.52± 4.04 0.934± 0.034 5.88± 5.70
TOF 0.920± 0.035 11.8± 2.72 0.909± 0.034 7.56± 3.16
IC 0.915± 0.042 11.6± 4.18 0.916± 0.070 6.43± 4.49

Dilated RV† 0.917± 0.047 11.1± 3.30 0.888± 0.136 7.80± 8.32

TR† 0.910± 0.047 10.5± 5.52 0.915± 0.036 5.98± 3.05

Table 4. The performance on the test data for both ED and ES phases.

Phase DSSA HDSA (mm) DSLA HDLA (mm)

ED 0.933± 0.039 10.6± 4.89 0.930± 0.050 6.25± 3.73
ES 0.907± 0.056 10.1± 4.45 0.902± 0.080 6.10± 5.38

Average 0.920± 0.050 10.3± 4.67 0.916± 0.068 6.17± 4.61

4.3 Performance on the ED and ES Phase

Table 4 presents the quantitative results of the proposed method on the
ED and ES phases. One can see that the performance on the ES phase was
statistically significant (p<0.001) worse than that on the ED phase in terms of
DS, but no significant difference (p>0.1) in terms of HD. As we know Dice score
belongs to volumetric overlap measurement, and can be sensible to the size of
target volume. Therefore, it could attribute to the larger surface of RV in the
ED phase compared to that in the ES phase.

5 Conclusion

In this work, we have proposed a framework for the RV segmentation of both
SA and LA views. The proposed model has been tested on 160 subjects and
obtained promising results, even on the unknown pathologies. The experimental
results also demonstrated the effectiveness of the proposed information transi-
tion scheme. A limitation of this work is that the SA and LA view segmentation
are achieved separately, as LA segmentation is regarded as a prior for the SA
segmentation. In the future, we will develop more elegant and effective infor-
mation transition algorithm for the simultaneous segmentation of SA and LA
views.
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