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Abstract. Free space estimation is an important problem for autonomous robot
navigation. Traditional camera-based approaches rely on pixel-wise ground truth
annotations to train a segmentation model. To cover the wide variety of environ-
ments and lighting conditions encountered on roads, training supervised models
requires large datasets. This makes the annotation cost prohibitively high. In this
work, we propose a novel approach for obtaining free space estimates from im-
ages taken with a single road-facing camera. We rely on a technique that gen-
erates weak free space labels without any supervision, which are then used as
ground truth to train a segmentation model for free space estimation. We study
the impact of different data augmentation techniques on the performances of free
space predictions, and propose to use a recursive training strategy. Our results are
benchmarked using the Cityscapes dataset and improve over comparable pub-
lished work across all evaluation metrics. Our best model reaches 83.64% IoU
(+2.3%), 91.75% Precision (+2.4%) and 91.29% Recall (+0.4%). These re-
sults correspond to 88.8% of the IoU, 94.3% of the Precision and 93.1% of the
Recall obtained by an equivalent fully-supervised baseline, while using no ground
truth annotation. Our code and models are freely available online.
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1 Introduction

Perception is the first step towards autonomous robot navigation. To be able to safely
act in the world, a robot needs to perceive its environment and identify traversable free
space. In the context of autonomous driving, free space is usually defined as road areas
that are not occupied by either static objects such as traffic signs and road dividers, or by
dynamic entities such pedestrians and cars [18]. Since collision-free planning requires
a fine-grained understanding of the environment around the vehicle, we attempt to label
each pixel of a front-facing camera as traversable or not.

This work focuses on systems that use a single road-facing camera. Monocular free
space segmentation has traditionally been approached using supervised segmentation
techniques. Although effective, these techniques require vast amounts of pixel-wise
annotated frames. Studies have shown that such pixel-level ground truth is significantly
more expensive to craft than image-level labels or bounding boxes [27]. In addition to
the large labor costs entailed by labeling each frame [7], such approaches are held back
by the wide variety of environments and lighting conditions that are present at runtime
and need to be captured in training data. This need for ever larger annotated datasets
makes supervised learning unsuitable for solving this problem. Instead, we tackle it in
a different way: relying on a method that generates weak, noisy, free space annotations
without any supervision [42], we train a neural network to generalize past the label
noise using data augmentation and recursive training.

Our contributions can be summarized as follows: (1) we study the impact of data
augmentation on weakly-supervised free space segmentation, (2) we propose a recur-
sive training scheme that uses a progressively refined ground truth, (3) we establish
a new state-of-the-art for weakly supervised free space estimation on the Cityscapes
dataset, improving over previous efforts by +2.3% in IoU, +2.4% in Precision, and
0.4% in Recall, (4) we discuss the limitations of our simple recursive training approach,
and (5) we release our code and models for reproduction and further work.

The remainder of this paper is organized as follows: In Section 2, we review the
recent literature for free space estimation, data augmentation in the context of semantic
segmentation, and recursive training. In Section 3, we introduce our data augmentation
and recursive training schemes. In Section 4, we describe our use of the Cityscapes
dataset [7] and detail the experimental setup of this study. In Section 5, we carry out
experiments and present the qualitative and quantitative results achieved. Finally, we
summarize our contributions and share further research directions.
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2 Related Work

Over the last decades, free space estimation has been approached with methods that
leverage a wide variety of sensors, e.g. GNSS [24], LiDAR [45] or cameras [35]. In
this work, we place a particular focus on recent camera-based learning methods that
use Convolutional Neural Networks (CNNs). Our work builds on recent advances in
network architectures for segmentation and on unsupervised methods specific to free
space estimation. We present this background material in the following sections.

2.1 Supervised Learning for Segmentation

As a segmentation task, supervised free space estimation has directly benefited from
progress in semantic segmentation. Pixel-level prediction carries a crucial challenge for
network design: an optimal prediction can only be achieved by combining fine-grained
local information with global contextual cues. Fully Convolutional Networks (FCNs)
rely on skip connections to carry these cues in their encoder-decoder architecture [28],
while SegNets ease the upsampling task by reusing encoder max-pooling indices in the
decoder [3]. Building on similar ideas, U-Nets combine entire encoder feature maps
with decoder features at each step of the expansion path of the network [40]. U-Nets
have attracted a lot of attention in recent years, and researchers have proposed refine-
ments such as the use of dense connections [19] and dilated convolutions [51], the in-
tegration of attention mechanisms [34], or extensions to volumetric images [32]. In this
work, we will rely on a simple U-Net architecture. Our choice is motivated by a recent
finding that many recent architecture improvements are outperformed by a well-tuned
vanilla U-Net [17].

2.2 Weakly-Supervised Semantic Segmentation

The major drawback of supervised techniques is their reliance on extensive human-
annotated datasets. The cost of labeling is particularly important in segmentation tasks,
where the total time required to annotate every pixel in a single frame can reach 1.5
hours in some cases [7]. The reuse of models pre-trained on very large datasets such as
ImageNet [11] partially alleviates this problem, but several thousands of training images
are still routinely needed to reach adequate performance. In recent years, researchers
have devised strategies to reduce or eliminate the need for human annotations during
training.

In cases where fine-grained annotations are available for at least a subset of the data,
semi-supervised approaches such as Co-Training can be applied [37]. In the complete
absence of pixel-wise ground truth labels, researchers have proposed to use domain
adaptation from synthetic datasets [16], or to rely on weaker ground truth. Existing
techniques rely on coarser labels, such as bounding boxes [9,20,21,46], image-level
labels [38,12,43], class activation maps [5], single points [4], or scribbles [26].

2.3 Unsupervised and Weakly-Supervised Monocular Free Space Segmentation

Monocular free space estimation has been approached in many different ways that dif-
fer in the representation they use. Stixel-like approaches represent obstacles as verti-
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cal sticks [2,8] or horizontal curves [48], but ignore free space lying behind obstacles.
Monocular SLAM relies on video sequences to obtain point-clouds which do not ex-
plicitly represent free space [13,33,10]. Using temporal sequences and structure-from-
motion to jointly learn an explicit representation of free space and obstacle footprints
has also been recently proposed [44]. Our work uses a different strategy: we learn dense
free space estimates from single frames using approximate masks that are obtained
without human-supervision. Such weak labels have historically been generated using
depth information from stereo pairs before localizing the ground plane, for example
using the v-Disparity algorithm [23,14,31]. Other attempts exploit strong road texture
and location priors, by dividing the input into superpixels and clustering them based on
saliency maps [43] or semantic features [35]. We stress that using weak labels departs
from previously mentioned approaches that leverage coarse ground truth, since weak
labels contain false positives and negatives.

2.4 Training Strategies for Weakly-Supervised Segmentation

Recent research shows that it is possible to train over-parametrized models to generalize
past some of the label noise using Stochastic Gradient Descent (SGD) schemes com-
bined with early stopping [25]. Dealing with label noise at training time has become an
important research area over the past few years. Solutions to this problem include label
cleaning [6], noise-aware network architectures [41], or noise reduction through robust
loss functions [30,29,39].

Besides work on training algorithms themselves, researchers have also largely ex-
plored regularization through data augmentation in unsupervised settings. Traditional
augmentation strategies (scaling, color jittering, flipping, cropping, etc.) change pixel
values in a single input image without altering its semantic content. More recently,
researchers have proposed augmentations that combine several images and their la-
bels. Two notable examples are MixUp [50] and CutMix [49]. MixUp is a method that
augments the training set using convex combinations of image pairs and labels, while
CutMix overlays random crops of other samples on top of original frames.
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3 Methodology

In this work, we train U-Net models to predict dense free space from RGB images by
learning on approximate labels that can be generated without any supervision. Since our
focus is on improving training aspects rather than on improving weak labels generation,
we will reuse the weak labels from [42]. We look at improving training across two
dimensions: data augmentation and recursive training.

3.1 Data Augmentation

We study the impact of data augmentation on weakly-supervised free space estimation.
We cover both traditional augmentation techniques that operate on single images, as
well as MixUp and CutMix, which are more recent and combine multiple samples.

Color-Flip-Crop To represent traditional augmentation techniques, we use a combina-
tion of color jittering, horizontal flips and random cropping, which we will refer to as
Color-Flip-Crop or CFC in the remainder of the text. Each augmentation is indepen-
dently applied with a 50% probability. The color jittering randomly affects brightness,
contrast, saturation, and hue using the bounds defined in the Torchvision implementa-
tion [1]. In order to preserve most of the original image, cropping is performed with a
randomly chosen rectangle that occupies between 25% and 50% of the image area. The
aspect ratio is also randomly chosen, with the constraint that the height is at least 10%
of the height of the original image. Figure 1 shows some examples of the effect of CFC
on a single randomly chosen training image.

Fig. 1: Seven possible Color-Flip-Crop augmentations on a random training sample.
The original sample is on the top-left. We show ground truth mask for illustration pur-
poses, they are not used during training.

MixUp Rather than augmenting isolated images, Mixup trains models on convex com-
binations of samples [50]. By training on synthesized samples that lie between the
original training samples, MixUp encourages the network to exhibit a linear behav-
ior between samples and helps preventing memorization. During training, each sample
(x1, y1) is combined with another random sample (x2, y2) from the batch using Equa-
tions 1 and 2, where we sample λ uniformly in [0, 1]. The effect of combining input
samples is illustrated on Figure 2.
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xmixup = λx1 + (1− λ)x2 (1)

ymixup = λy1 + (1− λ)y2 (2)

(a) (b) (c)

Fig. 2: MixUp augmentation combining two random samples (a) and (b) from the train-
ing set. The convex combination using λ = 0.5 is shown as (c). We show ground truth
mask for illustration purposes, they are not used during training.

CutMix Similar to Mixup in spirit, CutMix also combines two random input samples
(x1, y1) and (x2, y2) from the same batch [49]. Rather than combining them over the
entire image, CutMix overlays a crop of x2 over x1, and the same crop of y2 over y1.
Equations 3 and 4 formalize this process using a random binary maskM ∈ {0, 1}H×W

to denote the cropped area (◦ denotes the element-wise product). Like for the CFC aug-
mentation, the cropping mask M occupies between 25% and 50% of the image area
with a random aspect ratio. Figure 3 illustrates four different instances of CutMix aug-
mentation on a chosen training sample. CutMix generates more natural images than
MixUp and allows the network to learn more localizable features since the transforma-
tion is only applied to a fraction of the input image.

xcutmix = (1−M) ◦ x1 +M ◦ x2 (3)
ycutmix = (1−M) ◦ y1 +M ◦ y2 (4)

3.2 Recursive Training

We are training neural networks to estimate free space by learning on approximate
labels yweak. Since neural networks trained with SGD variants are partially robust to
noise in their training targets [25], the outputs y will tend to approximate the unknown
ground truth y∗ better than yweak. Assuming the outputs y are better estimates of free
space than yweak, it is natural to treat them as cleaner targets for a second round of
training. This process can in principle be iterated to obtain progressively cleaner outputs
y2, y3, etc. This approach was already attempted in the context weakly-supervision free
space segmentation [43], but we revisit its impact in the presence of data augmentation
and with different weak labels. Figure 4 illustrates the process for a given training round.
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Fig. 3: Four instances of the CutMix augmentation on a random training sample.
We show ground truth mask for illustration purposes, they are not used during training.

Augment

Previous Model

ℒ𝑜𝑠𝑠 𝑦𝑖 , 𝑦𝑖−1
+

𝑥

𝑥+

𝑦𝑖−1

𝑦𝑖−1
+

𝑦𝑖Current Model

Fig. 4: Recursive training procedure. The current model is trained on augmented outputs
from the model obtained at the previous training round. In this example, CFC is used
for augmentation. The process is similar for other augmentation strategies.
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4 Experimental Setup

4.1 Dataset

Our experiments leverage the Cityscapes dataset, which provides pixel-wise ground
truth labels for 30 visual classes in 5000 frames [7]. The official test set has no public
annotation, and we therefore treat the 500 frames of its validation set as our test set and
randomly split the Cityscapes training set into 2380 training and 595 validation frames.
Since we are interested in estimating drivable free space in the context of autonomous
vehicle navigation, we consider free space equivalent to the road class. Cityscapes also
contains 1.6% of frames with no road pixel. For these frames, visual inspection con-
firmed that free space correspond to the ground class, and that label was used for free
space instead of road. Finally, the semantic labels include 6 void classes such as unla-
beled, out of the region of interest or ego-vehicle. Following official Cityscapes segmen-
tation benchmarks, we ignore pixels corresponding to such classes at evaluation time
using a binary evaluation mask. We note that this evaluation mask is never used during
training or validation, only to evaluate models on the test set.

4.2 Evaluation Metrics

We use three evaluation metrics: the Intersection-over-Union (IoU), Precision and Re-
call. IoU is a standard metric in segmentation tasks to reflect the overall quality of
the predictions. However, IoU does not immediately capture false free space positives.
These pixels that are labeled as part of the road but are actually occupied are extremely
harmful in robotic path-planning scenarios. For this reason, we also monitor the Preci-
sion of the free space class, i.e. the fraction of our free space prediction that is indeed
free space. To obtain a complete picture of prediction quality, we also monitor Recall.
We however note that missing free space in predictions has less impact than false free
space positives in robot navigation contexts. Given a single free space prediction ŷ,
ground truth y, and evaluation mask m, the metrics for a single frame of shape H ×W
are computed with Equations 5, 6 and 7, where ŷ, y, m ∈ {0, 1}H×W .

IoU =

∑
i ŷiyimi∑

i(ŷi + yi − ŷiyi)mi
(5)

Precision =

∑
i ŷiyimi∑
i ŷimi

(6)

Recall =

∑
i ŷiyimi∑
i yimi

(7)

4.3 Network architectures

Following recent research that shows that a well-tuned vanilla U-Net can outperform
many refined variants on most segmentation tasks [17], we opt for a U-Net structure
based on a ResNet18 residual network backbone [40,15,47]. To allow for comparison
with prior art, we also implement and train the SegNet model described in [42]. For
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computational reasons, we use a 512×1024 input resolution in all experiments. Outputs
are however re-scaled using nearest neighbor interpolation in order to compute IoU and
Precision in the original 1024× 2048 resolution.

4.4 Training procedure

We use the PyTorch framework [36] and train randomly initialized models to minimize
a binary cross-entropy loss using the Adam optimizer [22], a batch size of 8 and an
initial learning rate of 0.001. We train our models on single NVIDIA V100 for up to
200 epochs, with an early stopping strategy that halts training when the validation loss
has not improved by at least 10−4 for 50 consecutive epochs. For each experiment, we
select the model that minimizes the validation loss.

4.5 Use of ground truth data

The Cityscapes dataset provides ground truth annotations for all training and validation
frames used in this study. We stress that these annotations are only used to train the
fully-supervised baseline for comparison with our weakly-supervised approach. Out-
side of the fully-supervised experiment, ground truth labels are never used for training,
hyperparameter tuning, or to perform early stopping. Ground truth IoU, Precision and
Recall are computed only once on the test set, after all these steps have been performed.
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5 Results

This section describes the experiments carried out to benchmark our proposed method,
using Precision, IoU and Recall. We present results for three main categories of mod-
els: 1) a fully-supervised upper-bound, 2) unsupervised and weakly-supervised base-
lines, and 3) U-Nets trained on the weak labels using recursive training and different
augmentation strategies. The quantitative results for each category are summarized in
Table 1. In this section, we analyze the results of each category, discuss the limitations
of recursive training, and present qualitative results.

5.1 Fully-Supervised Results

Since Cityscapes provides pixel-wise ground truth annotations for our training and vali-
dation data, we use it to train a fully-supervised U-Net for comparison with its unsuper-
vised counterpart. When trained on ground-truth labels, our U-Net model reaches high
IoU (94.12%), Precision (97.26%) and Recall (97.27%). Since this fully-supervised
model is the only one that uses ground truth labels at any point during training and
validation, it is expected to produce an upper-bound for our unsupervised experiments.

5.2 Unsupervised and Weakly-Supervised Baselines

Competing unsupervised approaches are often focused on generic semantic segmenta-
tion rather than free space estimation, and use other datasets than Cityscapes as bench-
marks [9,46,38,12,5]. Among weakly-supervised approaches that tackle free space esti-
mation [14,48,43,16], only two publish results for Cityscapes. Distant Supervision [43]
and Unsupervised Domain Adaptation [16] respectively obtain an IoU of 80% and
70.4%, but do not report Precision or Recall values.

We generate approximate labels without supervision using the technique described
in [42]. Evaluating these raw weak labels, we obtain an IoU of 79%, a Precision of
87.78% and a Recall of 89.24%. These results can be further improved by training
a neural network to generalize beyond the noise in these labels. This was already at-
tempted using the SegNet architecture in [42], which we also implement and train for
comparison. SegNet is able to improve results over raw weak labels in IoU (+2.3%),
Precision (+1.58%) and Recall (+0.91%).

5.3 Data Augmentation & Recursive Training

We train the same U-Net model using different data augmentation strategies. Since the
outputs of our different augmented U-Nets are better than the initial weak labels, we use
them as target for a second round of training. We iterate this recursive training process
four times for each of the data augmentation strategies under study. We limit training to
four rounds for computational reasons and because it is enough for IoU values to reach
their peak.
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No Augmentation We start by training a U-Net with the weak labels as targets and with-
out any data augmentation. We observe that it compares favorably with the results from
SegNet, reaching an IoU of 81.85%, a Precision of 90.65%, and a Recall of 89.76%.
Without resorting to data augmentation, recursive training over several rounds is unable
to meaningfully improve IoU, and slightly decreases Precision in favor of Recall.

MixUp Applying MixUp allows to improve Precision compared to not using data aug-
mentation by 0.5% in the first training round. IoU is maintained, but Recall decreases
by 0.45%. Iterative training is however not effective when combined with MixUp, since
we observe a drop in Precision after each round. As discussed in Section 4.2, free space
IoU and Precision are more important than Recall in an autonomous navigation sce-
nario. In this case, increases in Recall are not enough to compensate this effect, and we
observe a steady decrease in IoU.

Color-Flip-Crop Traditional data augmentation consisting of color jittering, horizontal
flips and random cropping is able to improve IoU over not using augmentation and over
using MixUp. After a single training round, CFC allows to reach an IoU of 81.99%
through increasing Recall by 1.47% compared to the first round without augmentation.
Subsequent training rounds are able to improve both Precision and IoU. After 3 itera-
tions, the model reaches an IoU of 82.34% and a Precision of 90.75%.

CutMix The CutMix augmentation can be seen as providing the advantages of cropping
and MixUp. Like MixUp, it synthesizes new input samples by combining pairs of ex-
isting ones. However, CutMix produces more natural images and its effect is localized
since it only affects the area of a random crop. The locality of CutMix has been shown
to allow models to learn more localizable features in classification scenarios [49], and
it is not surprising that such features are helpful in this segmentation context. Indeed,
models trained with CutMix augmentation outperform all other models by a wide mar-
gin. After a single training round, CutMix improves over not using augmentations in
IoU (+1.2%), Precision (+0.5%), and Recall (+0.26%).

Since our application scenario favors Precision over Recall, our best overall model
is obtained after the fourth training round, reaching an IoU of 83.64% and a Precision
of 91.75%. Compared to the prior state-of-the-art results from SegNet [42], it improves
IoU by 2.3%, Precision by 2.4% and Recall by 0.4%. Although our model does not rely
on any human-annotated ground truth, its relative performance compared to the fully-
supervised variant is impressive: we reach 88.8% of its IoU, 94.3% of its Precision, and
93.1% of its Recall.

5.4 Limits of Recursive Training

While CutMix results are impressive, we note that the success of recursive training is
limited. When not applying data augmentation or when using MixUp, recursive train-
ing does not improve on IoU or Precision. In the case of CFC and CutMix augmenta-
tions, results are more encouraging, but the improvements are limited to three rounds of
training. Starting with the fourth round of training, IoU results start to degrade, some-
times getting worse than those obtained after a single round of training. Explaining
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this effect is not straightforward: given that target labels on round 4 are superior to
those used on round 3 in both IoU and Precision, we would expect to either observe im-
proved or plateauing results. Such recursive training strategy has been successfully used
in foreground class segmentation contexts with results improving over more than 10
rounds [21]. As opposed to our completely unsupervised approach, the authors of [21]
could exploit coarser ground truth in the form of bounding boxes in order to refine pre-
dictions after each round. We postulate that the absence of such refinement step in our
approach is the reason we are unable to further leverage recursive training. Designing
such a prediction refinement step will be the topic of future work.

Training/Validation
Labels

Test IoU Test Precision Test Recall

Fully-Supervised U-Net ground truth 94.12% 97.26% 97.27%

Unsup. Domain Adaptation [16] synthetic data 70.40% not reported not reported
Distant Supervision [43] image labels 80.00% not reported not reported
Weak Labels [42] no training 79.00% 87.78% 89.24%
SegNet (repr. from [42]) weak labels 81.30% 89.36% 90.15%

U-Net (no augmentation)
Round 1 weak labels 81.85% 90.65% 89.76%
Round 2 output of round 1 81.79% 89.53% 90.80%
Round 3 output of round 2 81.86% 90.15% 90.27%
Round 4 output of round 3 81.82% 90.11% 90.25%

U-Net + MixUp
Round 1 weak labels 81.89% 91.14% 89.31%
Round 2 output of round 1 81.97% 90.89% 89.60%
Round 3 output of round 2 81.62% 90.13% 89.97%
Round 4 output of round 3 81.45% 89.91% 90.02%

U-Net + Color-Flip-Crop
Round 1 weak labels 81.99% 88.80% 91.23%
Round 2 output of round 1 82.12% 89.71% 90.64%
Round 3 output of round 2 82.34% 90.75% 90.69%
Round 4 output of round 3 81.91% 90.21% 90.27%

U-Net + CutMix
Round 1 weak labels 83.05% 91.19% 90.51%
Round 2 output of round 1 83.58% 91.20% 91.12%
Round 3 output of round 2 83.77% 91.23% 91.29%
Round 4 output of round 3 83.64% 91.75% 90.62%

Table 1: Results on the Cityscapes validation set, which we treat as our test set. The
best results for a given data augmentation strategy are underlined, and the best overall
results are reported in bold.

5.5 Qualitative Results

We compare the free space estimates from weak labels with the predictions of our best
model on test set samples on Figure 5.
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The ability of our learned model to generalize past some of the noise present in
the weak labels that were used during training is clearly visible in the first two rows of
Figure 5. Indeed, the cars and side walks that were wrongly considered free space in
the weak labels are correctly predicted by our trained model. In addition to its higher
Precision, our model also has higher IoU and Recall, as illustrated by the near-absence
of orange areas in its predictions.

The third row shows a more contrasted situation. Although our model is able to
cover more free space, it still shows some signs of overfitting to noise in the weak labels.
Shadows are especially problematic because they are likely to impact the superpixel
segmentation that the weak labels are based on, resulting in missed free space areas such
as the one present in front of the cyclist. Since this effect happens fairly consistently
over the training set, our model is incapable of completely addressing it.

Finally, the fourth row illustrates another partial failure of our model in a partic-
ularly crowded scene. Compared to the corresponding weak labels, the trained model
correctly rejects pedestrians, but is unable to produce a clean segmentation around them
and considers the pavement as occupied space. Although the prediction still contains er-
rors, we note that red areas in our prediction are much more acceptable from a semantics
point-of-view than the ones from the corresponding weak labels.

Weak Labels Predictions

Fig. 5: Qualitative results from the test set obtained from a U-Net trained with CutMix
for 4 rounds. Predictions are color-coded using the ground truth: green and red respec-
tively corresponds to correct and incorrect predictions, orange represents missing free
space, and areas that are ignored at evaluation time are denoted in blue (see Section 4.1).
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6 Conclusion

In this work, we investigate different weakly-supervised training strategies for teaching
a neural network to predict free space from images taken with a single road-facing cam-
era. Our models are trained using weak labels that are generated without human inter-
vention, and we investigate the impact of recursive training with several data augmen-
tation schemes. We show that the CutMix augmentation is particularly efficient for free
space estimation, especially when combined with recursive training. We benchmark our
results on the Cityscapes dataset and improve over unsupervised and weakly-supervised
baselines, reaching 83.64% IoU (+2.3%), 91.75% Precision (+2.4%) and 91.29% Re-
call (+0.4%). Our best model obtains 88.8% of the IoU, 94.3% of the Precision and
93.1% of the Recall of the fully-supervised competitor that trains from expensive pixel-
wise labels. Finally, we show that simple recursive training is limited in its ability to
increase performances, and suggest directions to improve the approach. Future work
will also investigate improvements to weak label generation and applications to more
general segmentation scenarios.
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18. Janai, J., Güney, F., Behl, A., Geiger, A.: Computer vision for autonomous vehicles: Prob-
lems, datasets and state-of-the-art. ArXiv abs/1704.05519 (2020)

19. Jégou, S., Drozdzal, M., Vázquez, D., Romero, A., Bengio, Y.: The one hundred layers
tiramisu: Fully convolutional densenets for semantic segmentation. 2017 IEEE Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW) pp. 1175–1183 (2017)

20. Kervadec, H., Dolz, J., Wang, S., Granger, E., ben Ayed, I.: Bounding boxes for weakly su-
pervised segmentation: Global constraints get close to full supervision. In: Medical Imaging
with Deep Learning (2020), https://openreview.net/forum?id=VOQMC3rZtL

21. Khoreva, A., Benenson, R., Hosang, J., Hein, M., Schiele, B.: Simple does it:
Weakly supervised instance and semantic segmentation. In: 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). pp. 1665–1674 (2017).
https://doi.org/10.1109/CVPR.2017.181

22. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR abs/1412.6980
(2015)

23. Labayrade, R., Aubert, D., Tarel, J.P.: Real time obstacle detection in stereovision on non
flat road geometry through” v-disparity” representation. In: Intelligent Vehicle Symposium,
2002. IEEE. vol. 2, pp. 646–651. IEEE (2002)

24. Laddha, A., Kocamaz, M.K., Navarro-Serment, L.E., Hebert, M.: Map-supervised road
detection. In: 2016 IEEE Intelligent Vehicles Symposium (IV). pp. 118–123 (2016).
https://doi.org/10.1109/IVS.2016.7535374

25. Li, M., Soltanolkotabi, M., Oymak, S.: Gradient descent with early stopping is provably
robust to label noise for overparameterized neural networks. In: International Conference on
Artificial Intelligence and Statistics. pp. 4313–4324. PMLR (2020)

26. Lin, D., Dai, J., Jia, J., He, K., Sun, J.: Scribblesup: Scribble-supervised convolutional net-
works for semantic segmentation. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 3159–3167 (2016). https://doi.org/10.1109/CVPR.2016.344

27. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick,
C.L.: Microsoft coco: Common objects in context. In: European conference on computer
vision. pp. 740–755. Springer (2014)

28. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp.
3431–3440 (2015)

29. Lu, Z., Fu, Z., Xiang, T., Han, P., Wang, L., Gao, X.: Learning from weak and noisy labels
for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence
39, 486–500 (03 2017). https://doi.org/10.1109/TPAMI.2016.2552172

30. Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. Trans. Img.
Proc. 17(1), 53–69 (Jan 2008). https://doi.org/10.1109/TIP.2007.911828, https://doi.org/10.
1109/TIP.2007.911828

31. Mayr, J., Unger, C., Tombari, F.: Self-supervised learning of the drivable area for autonomous
vehicles. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). pp. 362–369. IEEE (2018)

http://arxiv.org/abs/1612.02649
http://arxiv.org/abs/1809.10486
http://arxiv.org/abs/1809.10486
https://openreview.net/forum?id=VOQMC3rZtL
https://doi.org/10.1109/CVPR.2017.181
https://doi.org/10.1109/IVS.2016.7535374
https://doi.org/10.1109/CVPR.2016.344
https://doi.org/10.1109/TPAMI.2016.2552172
https://doi.org/10.1109/TIP.2007.911828
https://doi.org/10.1109/TIP.2007.911828
https://doi.org/10.1109/TIP.2007.911828


Refining Weakly-Supervised Free Space Estimation 17

32. Milletari, F., Navab, N., Ahmadi, S.: V-net: Fully convolutional neural networks for volu-
metric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision
(3DV). pp. 565–571 (2016). https://doi.org/10.1109/3DV.2016.79

33. Newcombe, R., Lovegrove, S., Davison, A.: Dtam: Dense tracking and mapping in real-time.
pp. 2320–2327 (11 2011). https://doi.org/10.1109/ICCV.2011.6126513

34. Oktay, O., Schlemper, J., Folgoc, L., Lee, M., Heinrich, M., Misawa, K., Mori, K., McDon-
agh, S., Hammerla, N., Kainz, B., Glocker, B., Rueckert, D.: Attention u-net: Learning where
to look for the pancreas (04 2018)

35. Oliveira, G.L., Burgard, W., Brox, T.: Efficient deep models for monocular road segmenta-
tion. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
pp. 4885–4891 (2016). https://doi.org/10.1109/IROS.2016.7759717

36. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Te-
jani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative
style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer,
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