Skip to main content

Asymmetric Asynchronous Byzantine Consensus

  • Conference paper
  • First Online:
Data Privacy Management, Cryptocurrencies and Blockchain Technology (DPM 2021, CBT 2021)

Abstract

An important element of every blockchain network is its protocol for reaching consensus. In traditional, permissioned consensus protocols, all involved processes adhere to a global, symmetric failure model, typically only defined by bounds on the number of faulty processes. More flexible trust assumptions have recently been considered, especially in connection with blockchains. With asymmetric trust, in particular, a process is free to choose which other processes it trusts and which ones might collude against it.

Cachin and Tackmann (OPODIS 2019) introduced asymmetric quorum systems as a generalization of Byzantine quorum systems, which are the key abstraction for realizing consensus in a system with symmetric trust. This paper shows how to realize randomized signature-free asynchronous Byzantine consensus with asymmetric quorums. This results in an optimal consensus protocol with subjective, asymmetric trust and constant expected running time, which is suitable for applications in blockchain networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Compared to their work, we adjusted some conditions to standard terminology and chose to call the primitive “binary validated broadcast” to better emphasize its aspect of validating that a delivered value was broadcast by a correct process.

References

  1. Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_3

    Chapter  Google Scholar 

  2. Bracha, G.: Asynchronous byzantine agreement protocols. Inf. Comput. 75(2), 130–143 (1987)

    Article  MathSciNet  Google Scholar 

  3. Cachin, C., Guerraoui, R., Rodrigues, L.E.T.: Introduction to Reliable and Secure Distributed Programming, 2 edn. Springer, Heidelberg (2011)

    Google Scholar 

  4. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantinople: practical asynchronous byzantine agreement using cryptography. J. Cryptol. 18(3), 219–246 (2005)

    Article  MathSciNet  Google Scholar 

  5. Cachin, C., Tackmann, B.: Asymmetric distributed trust. In: Proceedings of the OPODIS. LIPIcs, vol. 153, pp. 7:1–7:16 (2019)

    Google Scholar 

  6. Cachin, C., Zanolini, L.: From symmetric to asymmetric asynchronous byzantine consensus. e-print, arXiv:2005.08795 [cs.DC] (2020)

  7. Canetti, R., Rabin, T.: Fast asynchronous byzantine agreement with optimal resilience. In: Proceedings of the STOC, pp. 42–51 (1993)

    Google Scholar 

  8. Crain, T., Gramoli, V., Larrea, M., Raynal, M.: DBFT: efficient leaderless byzantine consensus and its application to blockchains. In: Proceedings of the NCA, pp. 1–8 (2018)

    Google Scholar 

  9. Damgård, I., Desmedt, Y., Fitzi, M., Nielsen, J.B.: Secure protocols with asymmetric trust. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 357–375. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_22

    Chapter  Google Scholar 

  10. García-Pérez, Á., Gotsman, A.: Federated byzantine quorum systems. In: Proceedings of the OPODIS. LIPIcs, vol. 125, pp. 17:1–17:16 (2018)

    Google Scholar 

  11. Hadzilacos, V., Toueg, S.: Fault-tolerant broadcasts and related problems. In: Mullender, S.J. (ed.) Distributed Systems (2nd ed.), pp. 97–145. ACM Press (1993)

    Google Scholar 

  12. Hirt, M., Maurer, U.M.: Player simulation and general adversary structures in perfect multiparty computation. J. Cryptol. 13(1), 31–60 (2000)

    Article  MathSciNet  Google Scholar 

  13. Junqueira, F.P., Marzullo, K.: Synchronous consensus for dependent process failure. In: Proceedings of the ICDCS, pp. 274–283 (2003)

    Google Scholar 

  14. Lokhava, M., et al.: Fast and secure global payments with stellar. In: Proceedings of the SOSP, pp. 80–96 (2019)

    Google Scholar 

  15. Losa, G., Gafni, E., Mazières, D.: Stellar consensus by instantiation. In: Proceedings of the DISC. LIPIcs, vol. 146, pp. 27:1–27:15 (2019)

    Google Scholar 

  16. Malkhi, D., Nayak, K., Ren, L.: Flexible byzantine fault tolerance. In: Proceedings of the ACM CCS, pp. 1041–1053 (2019)

    Google Scholar 

  17. Malkhi, D., Reiter, M.K.: Byzantine quorum systems. Distrib. Comput. 11(4), 203–213 (1998)

    Article  Google Scholar 

  18. Mazières, D.: The Stellar consensus protocol: a federated model for Internet-level consensus. Stellar, available online (2016). https://www.stellar.org/papers/stellar-consensus-protocol.pdf

  19. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of BFT protocols. In: Proceedings of the ACM CCS, pp. 31–42 (2016)

    Google Scholar 

  20. Mostéfaoui, A., Hamouma, M., Raynal, M.: Signature-free asynchronous byzantine consensus with t 2\(<\)n/3 and o(n\({}^{\text{2}}\)) messages. In: Proceedings of the PODC, pp. 2–9 (2014)

    Google Scholar 

  21. Mostéfaoui, A., Moumen, H., Raynal, M.: Signature-free asynchronous binary byzantine consensus with t \(<\) n/3, o(n2) messages, and O(1) expected time. J. ACM 62(4), 31:1–31:21 (2015)

    Google Scholar 

  22. Patra, A., Choudhury, A., Rangan, C.P.: Asynchronous byzantine agreement with optimal resilience. Distrib. Comput. 27(2), 111–146 (2014)

    Article  MathSciNet  Google Scholar 

  23. Rabin, M.O.: Randomized byzantine generals. In: Proceedings of the FOCS, pp. 403–409 (1983)

    Google Scholar 

Download references

Acknowledgments

The authors thank Orestis Alpos, Vincent Gramoli, Giorgia Azzurra Marson, Achour Mostéfaoui, and anonymous reviewers for interesting discussions and helpful feedback.

This work has been funded by the Swiss National Science Foundation (SNSF) under grant agreement Nr. 200021_188443 (Advanced Consensus Protocols).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian Cachin or Luca Zanolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cachin, C., Zanolini, L. (2022). Asymmetric Asynchronous Byzantine Consensus. In: Garcia-Alfaro, J., Muñoz-Tapia, J.L., Navarro-Arribas, G., Soriano, M. (eds) Data Privacy Management, Cryptocurrencies and Blockchain Technology. DPM CBT 2021 2021. Lecture Notes in Computer Science(), vol 13140. Springer, Cham. https://doi.org/10.1007/978-3-030-93944-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93944-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93943-4

  • Online ISBN: 978-3-030-93944-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics