Skip to main content

Anonymous Sidechains

  • Conference paper
  • First Online:
Data Privacy Management, Cryptocurrencies and Blockchain Technology (DPM 2021, CBT 2021)

Abstract

Sidechains allow two or more blockchains to communicate with each other by transferring coins (or other ledger assets) from one to the other. Their functionalities set sidechains as one of the most prominent solutions towards blockchain scalability and interoperability.

A number of sidechain constructions have already been proposed on the literature presenting ways to securely move assets between blockchains for different types of underlying consensus mechanisms (PoW and PoS). In this work we study the problem of sidechains in the anonymous setting by demonstrating how multiple anonymous blockchains can interact with each other. We present the first formal definition for an anonymous sidechain and provide a first construction for privacy-preserving Zerocash [5] cross-ledger transactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To simplify notation we consider params an implicit input and we omit it.

  2. 2.

    Our definition is stated for the case of cross-chain transactions between two ledgers, but it can be generalized to multiple ledgers by employing pair-wise peggings.

  3. 3.

    This is a new algorithm introduced to allow cross-ledger transactions.

  4. 4.

    \(\rho \) denotes serial number randomness and r, s commitment randomness.

References

  1. Commonwealth crypto. https://www.commonwealthcrypto.com

  2. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating user privacy in bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 34–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_4

    Chapter  Google Scholar 

  3. Back, S.A., et al.: Enabling blockchain innovations with pegged (2014)

    Google Scholar 

  4. Baldimtsi, F., Ian Miers, X.Z.: Anonymous sidechains. In: Garcia-Alfaro, J., et al. (eds.) DPM 2021/CBT 2021. LNCS, vol. 13140, pp. 262–277. Springer, Cham (2022)

    Google Scholar 

  5. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE Computer Society Press, May 2014. https://doi.org/10.1109/SP.2014.36

  6. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero knowledge for a von Neumann architecture. In: Fu, K., Jung, J. (eds.) USENIX Security 2014, pp. 781–796. USENIX Association, August 2014

    Google Scholar 

  7. Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in Bitcoin P2P network. CoRR abs/1405.7418 (2014)

    Google Scholar 

  8. Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mixcoin: anonymity for bitcoin with accountable mixes. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 486–504. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_31

    Chapter  Google Scholar 

  9. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: ZEXE: enabling decentralized private computation. In: 2020 IEEE Symposium on Security and Privacy, pp. 947–964. IEEE Computer Society Press, May 2020. https://doi.org/10.1109/SP40000.2020.00050

  10. Chu, S., Xia, Q., Zhang, Z.: Manta: privacy preserving decentralized exchange. Cryptology ePrint Archive, report 2020/1607 (2020)

    Google Scholar 

  11. Deshpande, A., Herlihy, M.: Privacy-preserving cross-chain atomic swaps. In: Bernhard, M., et al. (eds.) FC 2020. LNCS, vol. 12063, pp. 540–549. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54455-3_38

    Chapter  Google Scholar 

  12. Gazi, P., Kiayias, A., Zindros, D.: Proof-of-stake sidechains. In: 2019 IEEE Symposium on Security and Privacy, pp. 139–156. IEEE Computer Society Press, May 2019. https://doi.org/10.1109/SP.2019.00040

  13. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_19

    Chapter  Google Scholar 

  14. Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: TumbleBit: an untrusted bitcoin-compatible anonymous payment hub. In: NDSS 2017. The Internet Society, February/March 2017

    Google Scholar 

  15. Heilman, E., Lipmann, S., Goldberg, S.: The arwen trading protocols. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 156–173. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4_10

    Chapter  Google Scholar 

  16. Herlihy, M.: Atomic cross-chain swaps. In: PODC (2018)

    Google Scholar 

  17. Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 505–522. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4_27

    Chapter  Google Scholar 

  18. Kiayias, A., Zindros, D.: Proof-of-work sidechains. In: Bracciali, A., Clark, J., Pintore, F., Rønne, P.B., Sala, M. (eds.) FC 2019. LNCS, vol. 11599, pp. 21–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43725-1_3

    Chapter  Google Scholar 

  19. Maxwell, G.: CoinJoin: bitcoin privacy for the real world (2013). https://bitcointalk.org/index.php?topic=279249.0

  20. Maxwell, G.: CoinSwap: transaction graph disjoint trustless trading (2013). https://bitcointalk.org/index.php?topic=321228.0

  21. Merkle, R.C.: A digital signature based on a conventional encryption function. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2_32

    Chapter  Google Scholar 

  22. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed E-cash from bitcoin. In: 2013 IEEE Symposium on Security and Privacy, pp. 397–411. IEEE Computer Society Press, May 2013. https://doi.org/10.1109/SP.2013.34

  23. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). http://www.bitcoin.org/bitcoin.pdf

  24. Naor, M.: Bit commitment using pseudo-randomness. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 128–136. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_13

    Chapter  Google Scholar 

  25. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

    Chapter  Google Scholar 

  26. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing, pp. 1318–1326 (2011). https://doi.org/10.1109/PASSAT/SocialCom.2011.79

  27. Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: practical decentralized coin mixing for bitcoin. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 345–364. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1_20

    Chapter  Google Scholar 

  28. van Saberhagen, N.: Cryptonote v 2.0 (2013). https://bytecoin.org/old/whitepaper.pdf

Download references

Acknowledgments

We thank the anonymous reviewers for all their useful constructive comments and editorial suggestions. Foteini Baldimtsi is supported by NSF Grant CNS-01717067, by NSA Grant 204761 (under a CMU Subcontract No. 1990713-40018), by an IBM faculty award and by a Facebook faculty award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foteini Baldimtsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baldimtsi, F., Miers, I., Zhang, X. (2022). Anonymous Sidechains. In: Garcia-Alfaro, J., Muñoz-Tapia, J.L., Navarro-Arribas, G., Soriano, M. (eds) Data Privacy Management, Cryptocurrencies and Blockchain Technology. DPM CBT 2021 2021. Lecture Notes in Computer Science(), vol 13140. Springer, Cham. https://doi.org/10.1007/978-3-030-93944-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93944-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93943-4

  • Online ISBN: 978-3-030-93944-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics