Skip to main content

Develop Sustainable Software with a Lean ISO 14001 Setup Facilitated by the efiS® Framework

  • Conference paper
  • First Online:
Lean and Agile Software Development (LASD 2022)

Abstract

This article suggests the design and application of a systematic approach to establish the ISO 14001 in the context of software systems. It covers the different phases of the software life-cycle with focus on sustainability. For each phase, it proposes principles and methods for specific software product instantiations of the ISO 14001. The presented approach is embeddedable into the efiS® framework - the agile framework for lean enterprises - as Level of Done (LoD) layer building block to scale the approach. The possibility of rigorous refinement of the enterprise sustainability goals to the specific software for products and services helps to find adequate trade-offs during development and delivery. Additionally, the approach can be used to establish a sustainability governance for IT and software based products and services. Furthermore, an instantiation as an example of the proposed approach on a hybrid-cloud service of the Volkswagen Group IT is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sustainability Goals of the United Nations. https://sdgs.un.org/goals

  2. Volkswagen AG environmental compliance. https://www.volkswagenag.com/en/sustainability/environment/environmental-compliance.html

  3. Volkswagen AG sustainability strategy. https://www.volkswagenag.com/en/sustainability/environment.html

  4. Volkswagen AG sustainability mission. https://www.volkswagenag.com/presence/nachhaltigkeit/documents/Mission_Statement_Environment_2019-06-20_en_final_hoch.pdf

  5. ISO 14001:2015. https://www.iso.org/iso-14001-environmental-management.html

  6. Kelly, C., Mangina, E., Ruzelli, A.: Putting a CO 2 figure on a piece of computation. In: 11th International Conference on Electrical Power Quality and Utilisation, pp. 1–7. IEEE, 17 October 2011

    Google Scholar 

  7. García-Mireles, G.A., Moraga, M.Á., García, F., Calero, C., Piattini, M.: Interactions between environmental sustainability goals and software product quality: a mapping study. Inf. Softw. Technol. 95, 108–129 (2018)

    Article  Google Scholar 

  8. Naumann, S., Dick, M., Kern, E., Johann, T.: The greensoft model: a reference model for green and sustainable software and its engineering. Sustain. Comput. Inform. Syst. 1(4), 294–304 (2011)

    Google Scholar 

  9. Johann, T., Dick, M., Kern, E., Naumann, S.: Sustainable development, sustainable software, and sustainable software engineering: an integrated approach. In: 2011 International Symposium on Humanities, Science and Engineering Research, pp. 34–39. IEEE, June 2011

    Google Scholar 

  10. Albertao, F., Xiao, J., Tian, C., Lu, Y., Zhang, K.Q., Liu, C.: Measuring the sustainability performance of software projects. In: 2010 IEEE 7th International Conference on E-Business Engineering, pp. 369–373. IEEE, November 2010

    Google Scholar 

  11. Mahmoud, S.S., Ahmad, I.: Green performance indicators for energy aware it systems: survey and assessment. J. Green Eng. 3(1), 33–69 (2012)

    Google Scholar 

  12. Kipp, A., Jiang, T., Fugini, M., Salomie, I.: Layered green performance indicators. Futur. Gener. Comput. Syst. 28(2), 478–489 (2012)

    Article  Google Scholar 

  13. Sahin, C., Cayci, F., Clause, J., Kiamilev, F., Pollock, L., Winbladh, K.: Towards power reduction through improved software design. In: 2012 IEEE Energytech, pp. 1–6. IEEE, May 2012

    Google Scholar 

  14. Sierszecki, K., Mikkonen, T., Steffens, M., Fogdal, T., Savolainen, J.: Green software: greening what and how much? IEEE Softw. 31(3), 64–68 (2014)

    Article  Google Scholar 

  15. Calero, C., Moraga, M.A., Bertoa, M.F., Duboc, L.: Quality in use and software greenability. In: Proceedings of CEUR Workshop, pp. 28–36 (2014)

    Google Scholar 

  16. ISO/IEC 25010:2011. https://www.iso.org/standard/35733.html

  17. Lago, P., Koçak, S.A., Crnkovic, I., Penzenstadler, B.: Framing sustainability as a property of software quality. Commun. ACM 58(10), 70–78 (2015)

    Article  Google Scholar 

  18. Penzenstadler, B., Femmer, H.: A generic model for sustainability with process-and product-specific instances. In: International Workshop on Green in Software Engineering and Green by Software Engineering at AOSD (2013)

    Google Scholar 

  19. Thiry, M., Frez, L., Zoucas, A.: GreenRM: reference model for sustainable software development. In: SEKE, pp. 39–42 (2014)

    Google Scholar 

  20. Agarwal, S., Nath, A., Chowdhury, D.: Sustainable approaches and good practices in green software engineering. Int. J. Res. Rev. Comput. Sci. 3(1), 1425 (2012)

    Google Scholar 

  21. Lago, P.: Architecture design decision maps for software sustainability. In: 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS), pp. 61–64. IEEE (2019)

    Google Scholar 

  22. Gupta, S., Lago, P., Donker, R.: A framework of software architecture principles for sustainability-driven design and measurement. In: 2021 IEEE 18th International Conference on Software Architecture Companion, pp. 31–37. IEEE (2021)

    Google Scholar 

  23. Venters, C., et al.: The blind men and the elephant: towards an empirical evaluation framework for software sustainability. J. Open Res. Softw. 2(1), e8, 1–6 (2014). http://dx.doi.org/10.5334/jors.ao 

  24. Venters, C.C., et al.: Software sustainability: the modern tower of babel. In: CEUR Workshop Proceedings, vol. 1216, pp. 7–12 (2014)

    Google Scholar 

  25. Barroso, L.A., Hölzle, U.: The case for energy-proportional computing. Computer 40(12), 33–37 (2007)

    Article  Google Scholar 

  26. Barroso, L.A., Clidaras, J., Hölzle, U.: The datacenter as a computer: an introduction to the design of warehouse-scale machines. Synth. Lect. Comput. Archit. 8(3), 1–154 (2013)

    Google Scholar 

  27. Microsoft Sustainability Engineering. https://docs.microsoft.com/en-us/learn/modules/sustainable-software-engineering-overview/

  28. VMware sustainability approach. https://www.heise.de/hintergrund/Sustainability-im-Software-Engineering-Teil-1-ein-Aufruf-6011723.html?seite=all

  29. SAP sustainability approach. https://www.heise.de/developer/artikel/Sustainable-Programming-Softwarecode-ohne-Stromfresser-4197828.html?seite=all

  30. Sustainability approach. https://principles.green/

  31. Calero, C., Piattini, M.: Puzzling out software sustainability. Sustain. Comput. Inform. Syst. 16, 117–124 (2017)

    Google Scholar 

  32. Betz, S., et al.: Sustainability debt: a metaphor to support sustainability design decisions (2015)

    Google Scholar 

  33. SWEBOK. https://ieeecs-media.computer.org/media/education/swebok/swebok-v3.pdf

  34. Hevner, A.R.: A three cycle view of design science research. Scand. J. Inf. Syst. 19(2), 4 (2007)

    Google Scholar 

  35. Avison, D.E., Lau, F., Myers, M.D., Nielsen, P.A.: Action research. Commun. ACM 42(1), 94–97 (1999)

    Article  Google Scholar 

  36. Przybyłek, A., Albecka, M., Springer, O., Kowalski, W.: Game-based Sprint retrospectives: multiple action research. Empir. Softw. Eng. 27(1), 1–56 (2021). https://doi.org/10.1007/s10664-021-10043-z

    Article  Google Scholar 

  37. Poth, A., Kottke, M., Riel, A.: Orchestrating agile IT quality management for complex solution development through topic-specific partnerships in large enterprises – an example on the EFIS framework. In: Yilmaz, M., Clarke, P., Messnarz, R., Reiner, M. (eds.) EuroSPI 2021. CCIS, vol. 1442, pp. 88–104. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85521-5_7

    Chapter  Google Scholar 

  38. Poth, A., Kottke, M., Middelhauve, K., Mahr, T., Riel, A.: Lean integration of IT security and data privacy governance aspects into product development in agile organizations. J. Univ. Comput. Sci. 27(8), 868–893 (2021)

    Google Scholar 

  39. Data Center Efficiency. https://e3p.jrc.ec.europa.eu/publications/2021-best-practice-guidelines-eu-code-conduct-data-centre-energy-efficiency

  40. Kruchten, P., Nord, R.L., Ozkaya, I.: Technical debt: from metaphor to theory and practice. IEEE Softw. 29(6), 18–21 (2012)

    Article  Google Scholar 

  41. AMD. https://www.amd.com/system/files/documents/The-Energy-Efficient-AMD-EPYC-Design.pdf

  42. Analysis. https://www.servethehome.com/amd-epyc-7002-series-rome-delivers-a-knockout/amd-epyc-7002-power-consumption/

  43. Benchmarking. https://www.phoronix.com/scan.php?page=article&item=linux55-xeon-epyc&num=9

  44. Intel Xeon 36. https://www.intel.de/content/www/de/de/products/sku/215276/intel-xeon-gold-6342-processor-36m-cache-2-80-ghz/specifications.html

  45. Intel Xeon 18. https://www.intel.de/content/www/de/de/products/sku/215273/intel-xeon-gold-6334-processor-18m-cache-3-60-ghz/specifications.html

  46. https://www.servethehome.com/ddr4-dimms-system-power-consumption-tested/

  47. Poth, A., Urban, H., Riel, A.: Make product and service requirements shippable - from the cloud service vision to a continuous value stream which satisfies current and future user needs. Springer (2022, in print)

    Google Scholar 

  48. Volkswagen AG report. https://www.volkswagenag.com/presence/nachhaltigkeit/documents/sustainability-report/2020/Nonfinancial_Report_2020_e.pdf

  49. Poth, A., Riel, A.: Quality requirements elicitation by ideation of product quality risks with design thinking. In: 2020 IEEE 28th International Requirements Engineering Conference (RE), pp. 238–249. IEEE, August 2020

    Google Scholar 

  50. Poth, A., Kottke, M., Riel, A.: Evaluation of agile team work quality. In: Paasivaara, M., Kruchten, P. (eds.) XP 2020. LNBIP, vol. 396, pp. 101–110. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58858-8_11

    Chapter  Google Scholar 

  51. Volkswagen AG rating. https://www.vwgroupsupply.com/one-kbp-pub/en/kbp_public/information/nachhaltigkeit_neu_pub_2019/sustainability_rating__s_rating_2/sustainability_rating__s_rating_3.html

  52. EU Taxonomy. https://ec.europa.eu/info/business-economy-euro/banking-and-finance/sustainable-finance/eu-taxonomy-sustainable-activities_en

  53. Ryan, R.M., Deci, E.L.: Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psychol. 55(1), 68 (2000)

    Article  Google Scholar 

  54. Harackiewicz, J.M., Sansone, C.: Goals and intrinsic motivation: you can get there from here. Adv. Motiv. Achiev. 7, 21–49 (1991)

    Google Scholar 

  55. Poth, A., Kottke, M., Riel, A.: Scaling agile on large enterprise level with self-service kits to support autonomous teams. In: 2020 15th Conference on Computer Science and Information Systems (FedCSIS), pp. 731–737. IEEE, September 2020

    Google Scholar 

  56. page 362 “the software gap.” https://ec.europa.eu/info/sites/default/files/business_economy_euro/banking_and_finance/documents/200309-sustainable-finance-teg-final-report-taxonomy-annexes_en.pdf#page356

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Poth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Poth, A., Nunweiler, E. (2022). Develop Sustainable Software with a Lean ISO 14001 Setup Facilitated by the efiS® Framework. In: Przybyłek, A., Jarzębowicz, A., Luković, I., Ng, Y.Y. (eds) Lean and Agile Software Development. LASD 2022. Lecture Notes in Business Information Processing, vol 438. Springer, Cham. https://doi.org/10.1007/978-3-030-94238-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94238-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94237-3

  • Online ISBN: 978-3-030-94238-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics