Skip to main content

Data-Driven Framework for Electrode Wear Prediction in Resistance Spot Welding

  • Conference paper
  • First Online:

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 639))

Abstract

Smart Manufacturing (SM) can be defined as the extensive application of computer-integrated manufacturing and advanced intelligence systems to enable rapid manufacturing of new products, dynamic response to product demand, and real-time optimization of manufacturing production and supply-chain networks. For this reason, SM is now attracting a huge interest in both academic and industrial communities and will probably drive the manufacturing evolution in the next decade. In SM, data play a key role. They can support decisional systems and human operators by helping them to improve production and process control, to monitor continuous production flows, to prevent or detect equipment failures at an early stage, to minimize inefficiencies through the overall supply chain, and so on. In fact, data can be exploited by combining a wide variety of advanced technologies to give machines the ability to learn, adapt, make decisions, and display new behaviours. In this regard, the aim of the study concerns the proposal of a data-driven framework to predict the electrode wear in Resistance Spot Welding process. Electrode wear is the most important factor that introduce high variability and uncertainty in the quality of spot welds. Using an equipped medium-frequency welding machine, various data such as thermal maps of the spot surfaces by passive thermography, electrode surface diameters, electrodes-workpiece contact conditions, process variables, and electrode displacement curves can be collected. These data can be provided as input to a Machine Learning algorithm to predict electrode wear over time, thus ensuring a reliable spot weld process and joint quality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ren, S., Zhao, X.: A predictive maintenance method for products based on big data analysis. In: Meita, pp. 385–390 (2015). https://doi.org/10.2991/meita-15.2015.71

  2. Takata, S., et al.: Maintenance: changing role in life cycle management. CIRP Ann. - Manuf. Technol. 53(2), 643–655 (2004). https://doi.org/10.1016/S0007-8506(07)60033-X

    Article  MathSciNet  Google Scholar 

  3. Zonta, T., da Costa, C.A., da Rosa Righi R., de Lima, M.J., da Trindade, E.S., Li, G.P.: Predictive maintenance in the Industry 4.0: a systematic literature review. Comput. Ind. Eng. 150(2019), 106889 (2020). https://doi.org/10.1016/j.cie.2020.106889

  4. Christou, I.T., Kefalakis, N., Zalonis, A., Soldatos, J., Bröchler, R.: End-to-end industrial IoT platform for actionable predictive maintenance. IFAC-PapersOnLine 53(3), 173–178 (2020). https://doi.org/10.1016/j.ifacol.2020.11.028

    Article  Google Scholar 

  5. Errandonea, I., Beltrán, S., Arrizabalaga, S.: Digital Twin for maintenance: a literature review. Comput. Ind. 123, 103316 (2020). https://doi.org/10.1016/j.compind.2020.103316

    Article  Google Scholar 

  6. Fila, R., El Khaili, M., Mestari, M.: Cloud computing for industrial predictive maintenance based on prognostics and health management. Procedia Comput. Sci. 177, 631–638 (2020). https://doi.org/10.1016/j.procs.2020.10.090

    Article  Google Scholar 

  7. Wolfartsberger, J., Zenisek, J., Wild, N.: Data-driven maintenance: combining predictive maintenance and mixed reality-supported remote assistance. Procedia Manuf. 45, 307–312 (2020). https://doi.org/10.1016/j.promfg.2020.04.022

    Article  Google Scholar 

  8. Baicun Wang, S., Jack, H., Sun, L., Freiheit, T.: Intelligent welding system technologies: state-of-the-art review and perspectives. J. Manuf. Syst. 56(June), 373–391 (2020). https://doi.org/10.1016/j.jmsy.2020.06.020

    Article  Google Scholar 

  9. Wan, X., Wang, Y., Zhao, D.: Quality evaluation in small-scale resistance spot welding by electrode voltage recognition. Sci. Technol. Weld. Join. 21(5), 358–365 (2016). https://doi.org/10.1080/13621718.2015.1115161

    Article  Google Scholar 

  10. Wan, X., Wang, Y., Zhao, D., Huang, Y.A., Yin, Z.: Weld quality monitoring research in small scale resistance spot welding by dynamic resistance and neural network. Meas. J. Int. Meas. Confed. 99, 120–127 (2017). https://doi.org/10.1016/j.measurement.2016.12.010

    Article  Google Scholar 

  11. Zhao, D., Wang, Y., Liang, D., Ivanov, M.: Performances of regression model and artificial neural network in monitoring welding quality based on power signal. J. Mater. Res. Technol. 9(2), 1231–1240 (2020). https://doi.org/10.1016/j.jmrt.2019.11.050

    Article  Google Scholar 

  12. Xia, Y.J., et al.: Online measurement of weld penetration in robotic resistance spot welding using electrode displacement signals. Meas. J. Int. Meas. Confed. 168(August 2020), 108397 (2021). https://doi.org/10.1016/j.measurement.2020.108397

    Article  Google Scholar 

  13. Zhang, H., Wang, F., Xi, T., Zhao, J., Wang, L., Gao, W.: A novel quality evaluation method for resistance spot welding based on the electrode displacement signal and the Chernoff faces technique. Mech. Syst. Signal Process. 62, 431–443 (2015). https://doi.org/10.1016/j.ymssp.2015.03.007

    Article  Google Scholar 

  14. Alghannam, E., et al.: A novel method of using vision system and fuzzy logic for quality estimation of resistance spot welding. Symmetry (Basel) 11(8), 990 (2019). https://doi.org/10.3390/sym11080990

    Article  Google Scholar 

  15. Lee, S., Nam, J., Hwang, W., Kim, J., Lee, B.: A study on integrity assessment of the resistance spot weld by infrared thermography. Procedia Eng. 10, 1748–1753 (2011). https://doi.org/10.1016/j.proeng.2011.04.291

    Article  Google Scholar 

  16. Woo, W., et al.: Application of infrared imaging for quality inspection in resistance spot welds. In: Thermosense XXXI, vol. 7299, no. April 2009, p. 729912 (2009). https://doi.org/10.1117/12.818368

  17. Bodnar, J.L., et al.: Assessment of nugget diameter of resistance spot welding using pulse eddy current thermography, vol. 1066110, no. May 2018, p. 33 (2018). https://doi.org/10.1117/12.2305080

  18. Runnemalm, A., Ahlberg, J., Appelgren, A., Sjökvist, S.: Automatic inspection of spot welds by thermography. J. Nondestr. Eval. 33(3), 398–406 (2014). https://doi.org/10.1007/s10921-014-0233-0

    Article  Google Scholar 

  19. Kästner, L., et al.: Classification of spot-welded joints in laser thermography data using convolutional neural networks. http://arxiv.org/abs/2010.12976 (2020)

  20. Jonietz, F., Myrach, P., Suwala, H., Ziegler, M.: Examination of spot welded joints with active thermography. J. Nondestr. Eval. 35(1), 1–14 (2015). https://doi.org/10.1007/s10921-015-0318-4

    Article  Google Scholar 

  21. Chen, J., Feng, Z.: IR-based spot weld NDT in automotive applications. In: Thermosense Therm. Infrared Appl. XXXVII, vol. 9485, no. May 2015, p. 948513 (2015). https://doi.org/10.1117/12.2177124

  22. Jonietz, F., Myrach, P., Rethmeier, M., Suwala, H., Ziegler, M.: Laser based spot weld characterization. In: AIP Conference Proceedings, vol. 1706, no. September 2016 (2016). https://doi.org/10.1063/1.4940570

  23. Russo Spena, P., De Maddis, M., D’Antonio, G., Lombardi, F.: Weldability and monitoring of resistance spot welding of Q&P and TRIP steels. Metals (Basel) 6(11), 270 (2016). https://doi.org/10.3390/met6110270

    Article  Google Scholar 

  24. Zhou, L., et al.: Comparative study on resistance and displacement based adaptive output tracking control strategies for resistance spot welding. J. Manuf. Process. 63(December 2019), 98–108 (2020). https://doi.org/10.1016/j.jmapro.2020.03.061

    Article  Google Scholar 

  25. Zhou, L., et al.: Online monitoring of resistance spot welding electrode wear state based on dynamic resistance. J. Intell. Manuf. (2020). https://doi.org/10.1007/s10845-020-01650-6

  26. Zhang, X.Q., Chen, G.L., Zhang, Y.S.: Characteristics of electrode wear in resistance spot welding dual-phase steels. Mater. Des. 29(1), 279–283 (2008). https://doi.org/10.1016/j.matdes.2006.10.025

    Article  Google Scholar 

  27. American Welding Society: Test Methods for Evaluating the Resistance Spot Welding Behavior of Automotive Sheet Steel (AWS D8.9M:2012), p. 7. ANSI (2012)

    Google Scholar 

  28. Peng, J., Fukumoto, S., Brown, L., Zhou, N.: Image analysis of electrode degradation in resistance spot welding of aluminium. Sci. Technol. Weld. Join. 9(4), 331–336 (2004). https://doi.org/10.1179/136217104225012256

    Article  Google Scholar 

  29. Traini, E., Bruno, G., Lombardi, F.: Tool condition monitoring framework for predictive maintenance: a case study on milling process. Int. J. Prod. Res. 59(23), 7179–7193 (2020). https://doi.org/10.1080/00207543.2020.1836419

    Article  Google Scholar 

  30. Biggio, L., Kastanis, I.: Prognostics and health management of industrial assets: current progress and road ahead. Front. Artif. Intell. 3(November), 1–24 (2020). https://doi.org/10.3389/frai.2020.578613

    Article  Google Scholar 

  31. Nasiriany, S., Thomas, G., William, W.: A Comprehensive Guide to ML, vol. I (2019). http://www.eecs189.org/

Download references

Acknowledgments

This work has been funded by the Ministero dell’Istruzione, dell’Università e della Ricerca, Grant/Award Number: TESUN-83486178370409, finanziamento dipartimenti di eccellenza CAP. 1694 TIT. 232 ART. 6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Panza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panza, L., Bruno, G., De Maddis, M., Lombardi, F., Spena, P.R., Traini, E. (2022). Data-Driven Framework for Electrode Wear Prediction in Resistance Spot Welding. In: Canciglieri Junior, O., Noël, F., Rivest, L., Bouras, A. (eds) Product Lifecycle Management. Green and Blue Technologies to Support Smart and Sustainable Organizations. PLM 2021. IFIP Advances in Information and Communication Technology, vol 639. Springer, Cham. https://doi.org/10.1007/978-3-030-94335-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94335-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94334-9

  • Online ISBN: 978-3-030-94335-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics