Skip to main content

ProGAN: Toward a Framework for Process Monitoring and Flexibility by Change via Generative Adversarial Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 436))

Abstract

Monitoring the state of currently running processes and reacting to deviations during runtime is a key challenge in Business Process Management (BPM). The MAPE-K control loop describes four phases for approaching this challenge: Monitor, Analyze, Plan, Execute. In this paper, we present the ProGAN framework, an idea of an approach for implementing the monitor, analyze, and plan phases of MAPE-K. For this purpose, we leverage a deep learning architecture that builds upon Generative Adversarial Networks (GANs): The discriminator is used for monitoring the process in its environment by using sensor data and for detecting deviations w.r.t. the desired process state (monitor phase). The generator is used afterwards for analyzing the detected deviation and its symptoms as well as for adapting the current process to resolve the deviation and to restore the desired state. Both components are trained together by utilizing each other’s feedback in a self-supervised way. We demonstrate the application of our approach for an exemplary scenario in the manufacturing domain.

M. Hoffmann and L. Malburg—These authors contributed equally to the work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://iot.uni-trier.de.

References

  1. Bergmann, R. (ed.): Experience Management: Foundations, Development Methodology, and Internet-Based Applications. LNCS, vol. 2432. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45759-3

    Book  Google Scholar 

  2. Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic workflows. Inf. Syst. 40, 115–127 (2014)

    Article  Google Scholar 

  3. Dumas, M., et al.: Fundamentals of Business Process Management. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-56509-4

    Book  Google Scholar 

  4. Evermann, J., Rehse, J., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)

    Article  Google Scholar 

  5. Goodfellow, I.J., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680 (2014)

    Google Scholar 

  6. IBM: An architectural blueprint for autonomic computing: Autonomic Computing White Paper (2006)

    Google Scholar 

  7. Janiesch, C., et al.: The Internet of Things meets business process management: a manifesto. IEEE Syst. Man Cybern. Mag. 6(4), 34–44 (2020)

    Article  Google Scholar 

  8. Keane, M.T., Kenny, E.M.: How case-based reasoning explains neural networks: a theoretical analysis of XAI using Post-Hoc explanation-by-example from a survey of ANN-CBR twin-systems. In: Bach, K., Marling, C. (eds.) ICCBR 2019. LNCS (LNAI), vol. 11680, pp. 155–171. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29249-2_11

    Chapter  Google Scholar 

  9. Klein, P., Malburg, L., Bergmann, R.: FTOnto: a domain ontology for a Fischertechnik simulation production factory by reusing existing ontologies. In: Proceedings of the Conference on LWDA, vol. 2454, pp. 253–264. CEUR-WS.org (2019)

    Google Scholar 

  10. Kratsch, W., Manderscheid, J., Röglinger, M., Seyfried, J.: Machine learning in business process monitoring: a comparison of deep learning and classical approaches used for outcome prediction. Bus. Inf. Syst. Eng. 63(3), 261–276 (2020). https://doi.org/10.1007/s12599-020-00645-0

    Article  Google Scholar 

  11. Malburg, L., Seiger, R., Bergmann, R., Weber, B.: Using physical factory simulation models for business process management research. In: Del Río Ortega, A., Leopold, H., Santoro, F.M. (eds.) BPM 2020. LNBIP, vol. 397, pp. 95–107. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66498-5_8

    Chapter  Google Scholar 

  12. Malburg, L., et al.: Object detection for smart factory processes by machine learning. Procedia Comput. Sci. 184, 581–588 (2021)

    Article  Google Scholar 

  13. Malburg, L., Klein, P., Bergmann, R.: Semantic web services for AI-research with physical factory simulation models in Industry 4.0. In: Proceedings of the International Conference on Innovative Intelligent Industrial Production and Logistics (IN4PL), pp. 32–43. SCITEPRESS (2020)

    Google Scholar 

  14. Marrella, A., Mecella, M., Sardiña, S.: Intelligent process adaptation in the SmartPM system. ACM Trans. Intell. Syst. Technol. 8(2), 25:1–25:43 (2017)

    Google Scholar 

  15. Metzger, A., Kley, T., Palm, A.: Triggering proactive business process adaptations via online reinforcement learning. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 273–290. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9_16

    Chapter  Google Scholar 

  16. Mirza, M., Osindero, S.: Conditional Generative Adversarial Nets. CoRR abs/1411.1784 (2014)

    Google Scholar 

  17. Müller, G.: Workflow Modeling Assistance by Case-Based Reasoning. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-658-23559-8

    Book  Google Scholar 

  18. Poll, R., Polyvyanyy, A., Rosemann, M., Röglinger, M., Rupprecht, L.: Process forecasting: towards proactive business process management. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 496–512. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_29

    Chapter  Google Scholar 

  19. Rama-Maneiro, E., Vidal, J.C., Lama, M.: Deep Learning for Predictive Business Process Monitoring: Review and Benchmark. CoRR abs/2009.13251 (2020)

    Google Scholar 

  20. Rehse, J.-R., Mehdiyev, N., Fettke, P.: Towards explainable process predictions for Industry 4.0 in the DFKI-Smart-Lego-Factory. KI - Künstliche Intelligenz 33(2), 181–187 (2019). https://doi.org/10.1007/s13218-019-00586-1

    Article  Google Scholar 

  21. Schönig, S., Ackermann, L., Jablonski, S., Ermer, A.: IoT meets BPM: a bidirectional communication architecture for IoT-aware process execution. Softw. Syst. Model. 19(6), 1443–1459 (2020). https://doi.org/10.1007/s10270-020-00785-7

    Article  Google Scholar 

  22. Seiger, R., Aßmann, U.: Consistency and synchronization for workflows in cyber-physical systems. In: Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems, pp. 312–313. ACM (2019)

    Google Scholar 

  23. Seiger, R., Huber, S., Heisig, P., Aßmann, U.: Toward a framework for self-adaptive workflows in cyber-physical systems. Softw. Syst. Model. 18(2), 1117–1134 (2017). https://doi.org/10.1007/s10270-017-0639-0

    Article  Google Scholar 

  24. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30

    Chapter  Google Scholar 

  25. Taymouri, F., Rosa, M.L., Erfani, S., Bozorgi, Z.D., Verenich, I.: Predictive business process monitoring via generative adversarial nets: the case of next event prediction. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 237–256. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9_14

    Chapter  Google Scholar 

  26. van der Aalst, W.M.P.: Business process management: a comprehensive survey. ISRN Softw. Eng. 2013(1), 1–37 (2013)

    Article  Google Scholar 

  27. Weinzierl, S., Dunzer, S., Zilker, S., Matzner, M.: Prescriptive business process monitoring for recommending next best actions. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNBIP, vol. 392, pp. 193–209. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58638-6_12

    Chapter  Google Scholar 

  28. Wieland, M., et al.: Towards situation-aware adaptive workflows: SitOPT - a general purpose situation-aware workflow management system. In: International Conference on Pervasive Computing and Communication Workshops, pp. 32–37. IEEE (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoffmann, M., Malburg, L., Bergmann, R. (2022). ProGAN: Toward a Framework for Process Monitoring and Flexibility by Change via Generative Adversarial Networks. In: Marrella, A., Weber, B. (eds) Business Process Management Workshops. BPM 2021. Lecture Notes in Business Information Processing, vol 436. Springer, Cham. https://doi.org/10.1007/978-3-030-94343-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94343-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94342-4

  • Online ISBN: 978-3-030-94343-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics