Skip to main content

Identifying the Trend of Research on Mechatronic Projects

  • Conference paper
  • First Online:

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 640))

Abstract

Mechatronics is an interdisciplinary field of engineering sciences characterized by the integration and interconnection between mechanical engineering, electrical engineering, and computer science. Mechatronic products are mostly structurally complex, but they are an optimal solution for many fields of industry such as medicine, agriculture, agribusiness, among others. The main objective of this article is to identify research trends on NPD (New Product Development) mechatronics projects today. For this, a bibliographic review is made, citing important works in the area since 2001, addressing the main objective of each research, in order to group them into approaches and identify current research trends. In the end, it is concluded that the trend is to reduce the total cost of a mechatronic product, as well as to begin to adapt concepts of the new technologies of Industry 4.0 (I4.0) to the NPD mechatronic projects. The goal is to facilitate the collaboration, in a more formal way than social communication and, consequently, simplifies knowledge reuse.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hehenberger, P., Poltschak, F., Zeman, K., Amrhein, W.: Hierarchical design models in the mechatronic product development process of synchronous machines. Mechatronics 20(8), 864–875 (2010)

    Article  Google Scholar 

  2. Hehenberger, P.: Perspectives on hierarchical modeling in mechatronic design. Adv. Eng. Inf. 28(3), 188–197 (2014)

    Article  Google Scholar 

  3. Hofmann, D., Kopp, M., Bertsche, B.: Development in Mechatronics - enhancing reliability by means of a sustainable use of information. In: 2010 IEEE/ASME International Conference on Advance Intelligent Mechatronics, pp. 1263–1268 (2010)

    Google Scholar 

  4. Zheng, C., Duigou, J.L., Bricogne, M., Eynard, B.: Multidisciplinary interface model for design of mechatronic systems. Comput. Ind. 76(6), 24–37 (2015)

    Google Scholar 

  5. Moulianitis, V.C., Aspragathos, N.A., Dentsoras, A.J.: A model for concept evaluation in design - an application to mechatronics design of robot grippers. Mechatronics 14(6), 599–622 (2004)

    Article  Google Scholar 

  6. Park, K., Kremer, G.E.O.: Assessment of static complexity in design and manufacturing of a product family and its impact on manufacturing performance. Int. J. Prod. Econ. 169, 215–232 (2015)

    Article  Google Scholar 

  7. Bolaños, R.D.S., Barbalho, S.C.M.: Exploring product complexity and prototype lead-times to predict new product development cycle-times. Int. J. Prod. Econ. 235, 108077 (2021)

    Article  Google Scholar 

  8. Tamm, C., Perfetto, S., Tamm, C., Perfetto, S., Tamm, C., Perfetto, S.: Design and optimization of mechatronic systems using a holistic and parametric simulation approach. IFAC-PapersOnLine 52(15), 271–276 (2019)

    Article  Google Scholar 

  9. Lenz, J., Wuest, T., Westkämper, E.: Holistic approach to machine tool data analytics. J. Manuf. Syst. 48, 180–191 (2018)

    Article  Google Scholar 

  10. Gogineni, S.K., Riedelsheimer, T., Stark, R.: Systematic development methodology for customizable IoT devices. Procedia CIRP 84, 393–399 (2019)

    Article  Google Scholar 

  11. Stankovski, S., Ostoji, G., Zhang, X., Baranovski, X., Horvat, S.: Mechatronics, identification technology, industry 4.0 and education, pp. 20–22 (2019)

    Google Scholar 

  12. Matt, D.T., Rauch, E.: SME 4.0: the role of small- and medium-sized enterprises in the digital transformation. In: Matt, D.T., Modrák, V., Zsifkovits, H. (eds.) Industry 4.0 for SMEs, pp. 3–36. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-25425-4_1

    Chapter  Google Scholar 

  13. Hilgert, J., Bertram, T., Hiller, M.: Development of smart vehicles using a scaled mechatronic environment. IFAC-PapersOnLine 37(14), 85–90 (2004)

    Google Scholar 

  14. da Costa, D.D., Pereira, A.G.: Desenvolvimento e avaliação de uma tecnologia de baixo custo para programação CNC em pequenas empresas. Production 16(1), 48–63 (2006)

    Article  Google Scholar 

  15. Precup, R.E., Preitl, S.: Low cost fuzzy controlled servo systems in mechatronic systems. IFAC-PapersOnLine 39(16), 247–252 (2006)

    Google Scholar 

  16. Danilovic, M., Browning, T.R.: Managing complex product development projects with design structure matrices and domain mapping matrices. Int. J. Proj. Manag. 25(3), 300–314 (2007)

    Article  Google Scholar 

  17. Braun, S.C., Lindemann, U.: The influence of structural complexity on product costs. In: 2008 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2008, pp. 273–277 (2008)

    Google Scholar 

  18. Rodriguez, N.E.N., Carbone, G., Ceccarelli, M.: Simulation results for design and operation of CALUMA, a new low-cost humanoid robot. Robotica 26(5), 601–618 (2008)

    Article  Google Scholar 

  19. Botto, G., Carabelli, S., Suarez, L., Visconti, L., Truccone, P.: Open motion control: a model based development platform for rapid prototyping, pp. 1445–1450 (2009)

    Google Scholar 

  20. Nishioka, Y., Suzumori, K., Kanda, T., Wakimoto, S.: A new control method utilizing multiplex air vibration for multi-DOF pneumatic mechatronics systems. In: IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings, pp. 3037–3042 (2010)

    Google Scholar 

  21. Vasić, V.S., Lazarević, M.P.: Standard industrial guideline for mechatronic product design. FME Trans. 36, 103–108 (2008)

    Google Scholar 

  22. Ahmadinejad, A., Afshar, A.: Complexity management in mechatronic product development based on structural criteria. In: 2011 IEEE International Conference on Mechatronics, pp. 7–12 (2011). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5971266

  23. Gausemeier, J., Dumitrescu, R., Kahl, S., Nordsiek, D.: Integrative development of product and production system for mechatronic products. Robot. Comput. Integr. Manuf. 27(4), 772–778 (2011)

    Article  Google Scholar 

  24. Fasanghari, M., Iranmanesh, S.H., Karam, M.A.: Proposing an advanced computational method for completion time estimation of the New Product Development (NPD) projects. In: 2012 11th International Conference on Information Science, Signal Processing and their Applications, vol. 782, pp. 961–967 (2012)

    Google Scholar 

  25. Barbalho, S.C.M., Rozenfeld, H.: Mechatronic reference model (MRM) for new product development: validation and results [Modelo de referência para o processo de desenvolvimento de produtos mecatrônicos (MRM): validação e resultados de uso]. Gest. e Prod. 20(1), 162–179 (2013)

    Article  Google Scholar 

  26. Couturier, P., Lô, M., Imoussaten, A., Chapurlat, V., Montmain, J.: Tracking the consequences of design decisions in mechatronic Systems Engineering. Mechatronics 24(7), 763–774 (2014)

    Article  Google Scholar 

  27. Ahmadinejad, S.A., Afshar, A.: Management of change propagation in mechatronic product design based on minimum cost of changes, pp. 666–671 (2014)

    Google Scholar 

  28. Erik Heller, J., Löwer, M., Feldhusen, J.: Future product development cost prediction model for integrated lifecycle assessment. In: Fukuda, S., Bernard, A., Gurumoorthy, B., Bouras, A. (eds.) PLM 2014. IAICT, vol. 442, pp. 377–386. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45937-9_37

    Chapter  Google Scholar 

  29. Adoko, M.T., Mazzuchi, T.A., Sarkani, S.: Developing a cost overrun predictive model for complex systems development projects. Project Manage. J. 46(6), 111–125 (2015)

    Article  Google Scholar 

  30. Yusof, Y., Latif, K.: New interpretation module for open architecture control based CNC systems. Procedia CIRP 26, 729–734 (2015)

    Article  Google Scholar 

  31. Rad, C.R., Hancu, O.: An improved nonlinear modelling and identification methodology of a servo-pneumatic actuating system with complex internal design for high-accuracy motion control applications. Simul. Model. Pract. Theor. 75, 29–47 (2017)

    Article  Google Scholar 

  32. Saravanakumar, D., Mohan, B., Muthuramalingam, T.: A review on recent research trends in servo pneumatic positioning systems. Precis. Eng. 49, 481–492 (2017)

    Article  Google Scholar 

  33. Deng, C., Guo, R.-F., Xun, X., Zhong, R.Y., Yin, Z.: A new high performance open CNC system and its energy-aware scheduling algorithm. Int. J. Adv. Manuf. Technol. 93(5–8), 1513–1525 (2017)

    Article  Google Scholar 

  34. Wu, J., Li, D., Wang, S.: The design and experimental research of an open architecture soft-CNC system based on RTX and an IPC. Int. J. Adv. Manuf. Technol. 89(5–8), 1387–1399 (2016)

    Article  Google Scholar 

  35. Lara-Padilla, H., Sánchez, X.S., Paucar, T.A.: Design and evaluation of a low-cost mechatronic system to study upper and lower limbs biomechanics. In: IEEE Global Humanitarian Technology Conference, GHTC 2017, vol. 2017, pp. 1–5 (2017)

    Google Scholar 

  36. Anuar, A., Sahari, K.S.M., Yue, E.C.: Development of a low cost upper limb motion tracking system with real-time visual output. In: 2016 IEEE 4th International Symposium on Robotics and Intelligent Sensors: Empowering Robots with Smart Sensors, IRIS 2016, pp. 146–150 (2017)

    Google Scholar 

  37. Penas, O., Plateaux, R., Patalano, S., Hammadi, M.: Multi-scale approach from mechatronic to Cyber-Physical Systems for the design of manufacturing systems. Comput. Ind. 86, 52–69 (2017)

    Article  Google Scholar 

  38. Liu, X.F., Shahriar, M.R., Al Sunny, S.M.N., Leu, M.C., Hu, L.: Cyber-physical manufacturing cloud: architecture, virtualization, communication, and testbed. J. Manuf. Syst. 43, 352–364 (2017)

    Google Scholar 

  39. Quatrano, A., De Simone, M.C., Rivera, Z.B., Guida, D.: Development and implementation of a control system for a retrofitted CNC machine by using Arduino. FME Trans. 45(4), 565–571 (2017)

    Article  Google Scholar 

  40. Ruzanov, N.V., Bolotov, M.A., Pechenin, V.A., Pronichev, N.D., Stepanova, E.R.: The method of improving the accuracy of mechatronic systems for complex geometry measurements. Procedia Eng. 176, 529–539 (2017)

    Article  Google Scholar 

  41. Grigoriev, S.N., Martinov, G.M.: An approach to creation of terminal clients in CNC system. In: Proceedings of the 3rd Russian-Pacific Conference on Computer Technology and Applications, RPC 2018, pp. 1–4 (2018)

    Google Scholar 

  42. Moulianitis, V.C., Zachiotis, G.-A.D., Aspragathos, N.A.: A new index based on mechatronics abilities for the conceptual design evaluation. Mechatronics 49, 67–76 (2018)

    Article  Google Scholar 

  43. Ye, Y., Hu, T., Zhang, C., Luo, W.: Design and development of a CNC machining process knowledge base using cloud technology. Int. J. Adv. Manuf. Technol. 94(9–12), 3413–3425 (2016)

    Article  Google Scholar 

  44. Saravanakumar, D., Mohan, B., Muthuramalingam, T., Sakthivel, G.: Performance evaluation of interconnected pneumatic cylinders positioning system. Sens. Actuators A Phys. 274, 155–164 (2018)

    Article  Google Scholar 

  45. Mcharek, M., Azib, T., Hammadi, M., Choley, J.Y., Larouci, C.: Knowledge sharing for mechatronic systems design and optimization. IFAC-PapersOnLine 51(11), 1365–1370 (2018)

    Article  Google Scholar 

  46. Valencia, F., Ortiz, D., Ojeda, D.: Design and testing of low-cost knee prosthesis. In: 2017 IEEE 2nd Ecuador Technical Chapters Meeting, ETCM 2017, vol. 2017, pp. 1–6 (2018)

    Google Scholar 

  47. Bula, I., Hoxha, V., Hajrizi, E.: Robot from mechatronics scrap-beggar robot. IFAC-PapersOnLine 51(30), 216–219 (2018)

    Article  Google Scholar 

  48. Martinov, G.M., Khoury, A.A., Issa, A.: An approach of developing low cost ARM based CNC systems by controlling CAN drives. MATEC Web Conf. 224, 01020 (2018)

    Article  Google Scholar 

  49. Martinova, L.I., Fokin, N.N.: An approach to creation of a unified system of programming CNC machines in the dialog mode. MATEC Web Conf. 224, 01101 (2018)

    Article  Google Scholar 

  50. Mhenni, F., Hehenberger, P., Penas, O., Hammadi, M., Choley, J.-Y.: Systems engineering approach for the conjoint design of mechatronic products and their manufacturing systems. In: 2018 Annual IEEE International Systems Conference (SysCon). IEEE (2018). ISBN 978-1-5386-3664-0

    Google Scholar 

  51. Bobka, P., et al.: Development of an automated assembly process supported with an artificial neural network. J. Mach. Eng. 18(3), 28–41 (2018)

    Article  Google Scholar 

  52. Gheorghe, G.: Original concepts and achievements for designing of smart mechatronics and cyber-mixmechatronics systems used in laboratories and in the industry. IFAC-PapersOnLine 51(30), 598–603 (2018)

    Article  Google Scholar 

  53. Zheng, C., et al.: Interface model-based configuration design of mechatronic systems for industrial manufacturing applications. Robot. Comput. Integr. Manuf. 59, 373–384 (2019)

    Article  Google Scholar 

  54. Menezes, B.C., Kelly, J.D., Leal, A.G.: Identification and design of Industry 4.0 opportunities in manufacturing: examples from mature industries to laboratory level systems. IFAC-PapersOnLine 52(13), 2494–2500 (2019)

    Article  Google Scholar 

  55. Emilia, G.D., Gaspari, A., Natale, E.: Mechatronics applications of measurements for smart manufacturing in an Industry. IEEE Instrum. Meas. Mag. 22, 35–43 (2019)

    Article  Google Scholar 

  56. Vij, A., Vijendra, S., Jain, A., Bajaj, S., Bassi, A., Sharma, A.: IoT and machine learning approaches for automation of farm irrigation system. Procedia Comput. Sci. 167, 1250–1257 (2020)

    Article  Google Scholar 

  57. Barbalho, S.C.M., Monteiro de Carvalho, M., Tavares, P.M., Llanos, C.H., Leite, G.A.: Exploring the relation among product complexity, team seniority, and project performance as a path for planning new product development projects: a predictive model applying the system dynamics theory. IEEE Trans. Eng. Manag., 1–14 (2019)

    Google Scholar 

  58. Fati, S.M., Al-Nabhani, S., Muneer, A.: Automated library system using SMS based pick and place robot. Int. J. Comput. Digit. Syst. 8(6), 535–544 (2019)

    Article  Google Scholar 

  59. Chouinard, U., Achiche, S., Baron, L.: Integrating negative dependencies assessment during mechatronics conceptual design using fuzzy logic and quantitative graph theory. Mechatronics 59, 140–153 (2019)

    Article  Google Scholar 

  60. Qiu, L., Lin, X., Wang, Y., Yuan, S., Shi, W.: A mechatronic smart skin of flight vehicle structures for impact monitoring of light weight and low-power consumption. Mech. Syst. Sig. Process. 144, 106829 (2020)

    Article  Google Scholar 

  61. Chan, R.W.K., Lin, Y.-S., Tagawa, H.: A smart mechatronic base isolation system using earthquake early warning. Soil Dyn. Earthq. Eng. 119, 299–307 (2019)

    Article  Google Scholar 

  62. Mohebbi, A., Achiche, S., Baron, L.: Integrated and concurrent detailed design of a mechatronic quadrotor system using a fuzzy-based particle swarm optimization. Eng. Appl. Artif. Intell. 82, 192–206 (2019)

    Article  Google Scholar 

  63. Mcharek, M., Hammadi, M., Azib, T., Larouci, C., Choley, J.Y.: Collaborative design process and product knowledge methodology for mechatronic systems. Comput. Ind. 105, 213–228 (2019)

    Article  Google Scholar 

  64. Yao, Y., Liu, M., Jianjun, D., Zhou, L.: Design of a machine tool control system for function reconfiguration and reuse in network environment. Robot. Comput. Integr. Manuf. 56, 117–126 (2019)

    Article  Google Scholar 

  65. Wasif, M., Siddique, Q.M., Sakib, S., Rameez, T.M.: Design of Mini CNC using Arduino uno, pp. 3882–3884 (2019)

    Google Scholar 

  66. Gravalos, I., Ziakas, N., Loutridis, S., Gialamas, T.: A mechatronic system for automated topping and suckering of tobacco plants. Comput. Electron. Agric. 166, 104986 (2019)

    Article  Google Scholar 

  67. Li, Q., Zhang, H.H.: Model reduction of a real time multidisciplinary mechatronic system. In: Proceedings of the 2019 20th International Conference on Research and Education in Mechatronic, REM 2019, vol. 5, pp. 1–5 (2019)

    Google Scholar 

  68. Gao, W., Zhang, C., Tianliang, H., Ye, Y.: An intelligent CNC controller using cloud knowledge base. Int. J. Adv. Manuf. Technol. 102(1–4), 213–223 (2019)

    Article  Google Scholar 

  69. Martinov, G.M., Nikishechkin, P.A., Grigoriev, A.S., Chervonnova, N.Y.: Organizing interaction of basic components in the CNC system AxiOMA control for integrating new technologies and solutions. Autom. Remote. Control 80(3), 584–591 (2019). https://doi.org/10.1134/S0005117919030159

    Article  Google Scholar 

  70. Martinov, G.M., Ljubimov, A.B., Martinova, L.I.: From classic CNC systems to cloud-based technology and back. Robot. Comput. Integr. Manuf. 63, 101927 (2020)

    Article  Google Scholar 

  71. Hernández-Melgarejo, G., Flores-Hernández, D.A., Luviano-Juárez, A., Castañeda, L.A., Chairez, I., Di Gennaro, S.: Mechatronic design and implementation of a bicycle virtual reality system. ISA Trans. 97, 336–351 (2020)

    Article  Google Scholar 

  72. Rojas, R.A., Ruiz Garcia, M.A.: Implementation of industrial Internet of Things and cyber-physical systems in SMEs for distributed and service-oriented control. In: Matt, D.T., Modrák, V., Zsifkovits, H. (eds.) Industry 4.0 for SMEs, pp. 73–103. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-25425-4_3

    Chapter  Google Scholar 

  73. Gualtieri, L., Palomba, I., Wehrle, E.J., Vidoni, R.: The Opportunities and challenges of sme manufacturing automation: safety and ergonomics in human–robot collaboration. In: Matt, D.T., Modrák, V., Zsifkovits, H. (eds.) Industry 4.0 for SMEs, pp. 105–144. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-25425-4_4

    Chapter  Google Scholar 

  74. Gualtieri, L., Rojas, R.A., Ruiz Garcia, M.A., Rauch, E., Vidoni, R.: Implementation of a laboratory case study for intuitive collaboration between man and machine in SME assembly. In: Matt, D.T., Modrák, V., Zsifkovits, H. (eds.) Industry 4.0 for SMEs, pp. 335–382. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-25425-4_12

    Chapter  Google Scholar 

  75. Dallasega, P., Woschank, M., Zsifkovits, H., Tippayawong, K., Brown, C.A.: Requirement analysis for the design of smart logistics in SMEs. In: Matt, D.T., Modrák, V., Zsifkovits, H. (eds.) Industry 4.0 for SMEs, pp. 147–162. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-25425-4_5

    Chapter  Google Scholar 

  76. Zsifkovits, H., Kapeller, J., Reiter, H., Weichbold, C., Woschank, M.: Consistent identification and traceability of objects as an enabler for automation in the steel processing industry. In: Matt, D.T., Modrák, V., Zsifkovits, H. (eds.) Industry 4.0 for SMEs, pp. 163–192. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-25425-4_6

    Chapter  Google Scholar 

  77. Zsifkovits, H., Woschank, M., Ramingwong, S., Wisittipanich, W.: State-of-the-art analysis of the usage and potential of automation in logistics. In: Matt, D.T., Modrák, V., Zsifkovits, H. (eds.) Industry 4.0 for SMEs, pp. 193–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-25425-4_7

    Chapter  Google Scholar 

  78. Modrák, V., Šoltysová, Z.: Development of an organizational maturity model in terms of mass customization. In: Matt, D.T., Modrák, V., Zsifkovits, H. (eds.) Industry 4.0 for SMEs, pp. 215–250. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-25425-4_8

    Chapter  Google Scholar 

  79. Orzes, G., Poklemba, R., Towner, W.T.: Implementing Industry 4.0 in SMEs: a focus group study on organizational requirements. In: Matt, D.T., Modrák, V., Zsifkovits, H. (eds.) Industry 4.0 for SMEs, pp. 251–277. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-25425-4_9

    Chapter  Google Scholar 

  80. Ramesh, K., Prajwal, K.T., Roopini, C., Gowda, M.H.M., Gupta, V.V.S.N.S.: Design and development of an agri-bot for automatic seeding and watering applications. In: 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), ICIMIA 2020 - Conference Proceeding, pp. 686–691 (2020)

    Google Scholar 

  81. Sharman, D.M., Yassine, A.A.: Characterizing complex product architectures. Syst. Eng. 7(1), 35–60 (2004)

    Article  Google Scholar 

  82. Diagne, S., Coulibaly, A., De Beuvron, F.D.B.: Complex product modeling based on a Multi-solution eXtended Conceptual Design Semantic Matrix for behavioral performance assessment. Comput. Ind. 75, 101–115 (2016)

    Article  Google Scholar 

  83. Chen, C.-H., Ling, S.F., Chen, W.: Project scheduling for collaborative product development using DSM. Int. J. Proj. Manag. 21, 291–299 (2003)

    Article  Google Scholar 

  84. Tai, Y.Y., Lin, J.Y., Chen, M.S., Lin, M.C.: A grey decision and prediction model for investment in the core competitiveness of product development. Technol. Forecast. Soc. Change 78(7), 1254–1267 (2011)

    Article  Google Scholar 

  85. Židek, K., Modrák, V., Pitel, J., Šoltysová, Z.: The digitization of quality control operations with cloud platform computing technologies. In: Matt, D.T., Modrák, V., Zsifkovits, H. (eds.) Industry 4.0 for SMEs, pp. 305–334. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-25425-4_11

    Chapter  Google Scholar 

  86. Sopadang, A., Chonsawat, N., Ramingwong, S.: Smart SME 4.0 implementation toolkit. In: Matt, D.T., Modrák, V., Zsifkovits, H. (eds.) Industry 4.0 for SMEs, pp. 279–302. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-25425-4_10

    Chapter  Google Scholar 

  87. Rauch, E., Vickery, A.R., Brown, C.A., Matt, D.T.: SME requirements and guidelines for the design of smart and highly adaptable manufacturing systems. In: Matt, D.T., Modrák, V., Zsifkovits, H. (eds.) Industry 4.0 for SMEs, pp. 39–72. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-25425-4_2

    Chapter  Google Scholar 

  88. Brown, C.A.: Axiomatic design for products, processes, and systems. In: Matt, D.T., Modrák, V., Zsifkovits, H. (eds.) Industry 4.0 for SMEs, pp. 383–401. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-25425-4_13

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to SENA Colombia and UFSC (Federal University of Santa Catarina) for the support to this project (SIGPEX Numbers: 202002173 and 202002437) with scientific initiation, master and doctoral research. This research was partially supported by the CAPES (Coordination for the Improvement of Higher Education Personnel) and FAPESC (Research Foundation of the State of Santa Catarina).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bolaños, R.D.S., Valdiero, A.C., Rasia, L.A., Ferreira, J.C.E. (2022). Identifying the Trend of Research on Mechatronic Projects. In: Canciglieri Junior, O., Noël, F., Rivest, L., Bouras, A. (eds) Product Lifecycle Management. Green and Blue Technologies to Support Smart and Sustainable Organizations. PLM 2021. IFIP Advances in Information and Communication Technology, vol 640. Springer, Cham. https://doi.org/10.1007/978-3-030-94399-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94399-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94398-1

  • Online ISBN: 978-3-030-94399-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics