
Tell-Tale Tail Latencies:
Pitfalls and Perils in Database Benchmarking

Michael Fruth1[0000−0003−2933−5093], Stefanie Scherzinger1,
Wolfgang Mauerer2,3[0000−0002−9765−8313], and Ralf Ramsauer2

1 University of Passau, 94032 Passau, Germany
{michael.fruth,stefanie.scherzinger}@uni-passau.de

2 Technical University of Applied Sciences Regensburg, 93058 Regensburg, Germany
{wolfgang.mauerer,ralf.ramsauer}@othr.de

3 Siemens AG, Corporate Research, Otto-Hahn-Ring 6, 81739 Munich, Germany

Abstract. The performance of database systems is usually characterised
by their average-case (i.e., throughput) behaviour in standardised or de-
facto standard benchmarks like TPC-X or YCSB. While tails of the
latency (i.e., response time) distribution receive considerably less atten-
tion, they have been identified as a threat to the overall system perfor-
mance: In large-scale systems, even a fraction of requests delayed can
build up into delays perceivable by end users. To eradicate large tail la-
tencies from database systems, the ability to faithfully record them, and
likewise pinpoint them to the root causes, is imminently required. In this
paper, we address the challenge of measuring tail latencies using stan-
dard benchmarks, and identify subtle perils and pitfalls. In particular, we
demonstrate how Java-based benchmarking approaches can substantially
distort tail latency observations, and discuss how the discovery of such
problems is inhibited by the common focus on throughput performance.
We make a case for purposefully re-designing database benchmarking
harnesses based on these observations to arrive at faithful characterisa-
tions of database performance from multiple important angles.

Keywords: Database benchmarks · Tail latencies · Benchmark harness.

1 Introduction

Measuring performance is an essential ingredient of evaluating and optimising
database systems, and a large fraction of published research (e.g., [2,16,18,19,24,
25,29,33,45]) is driven by guidance from the collection of benchmarks provided
by the Transaction Processing Performance Council (TPC) [50], or commercial
de-facto standards like the Yahoo! Cloud Serving Benchmark (YCSB) [9].

These benchmarks usually focus on measuring throughput (i.e., number of
operations performed in a given time interval), or latency (i.e., time from sub-
mitting a request to receiving the result, usually characterised by the 95th or
99th percentile of the response time distribution). However, it is known that
high latency episodes rarer than events in the 99th percentile may severely

ar
X

iv
:2

10
7.

11
60

7v
1 

 [
cs

.D
B

] 
 2

4 
Ju

l 2
02

1



2 M. Fruth et al.

impact the whole-system performance [11], including important use-cases like
interactive web search [3]—even if they do not receive much attention in stan-
dard performance evaluations. In this article, we focus on properly characterising
tail latencies in database benchmarking, and unearth shortcomings in popular
benchmark setups.

We find that tail latencies observed in the ubiquitous TPC-C or YCSB bench-
marks for commonly used databases often fall into the (costly) millisecond (ms)
range, but are caused by the benchmarking process itself. Since Barroso et
al. [1] point out that systemic optimisation efforts require targeting microsec-
ond (µs) latencies, aptly termed “killer microseconds”, it seems evident that non-
productive perturbations that exceed such delays by three orders of magnitude
make it impossible to obtain a faithful characterisation of database performance.

We show that the popular OLTPBench harness [10,12], that is, the software
setting up and executing database benchmarks [34], records latencies that were
actually imposed by its own execution environment, in particular garbage col-
lection in the Java Virtual Machine (JVM). We show that significant noise is
caused by the benchmark harness itself, disturbing the measurements. However,
latencies must be pinpointed to their actual source before targeted improvements
can unfold their impact. If measured latencies are not identified as being caused
by the measurement setup, developers will inevitably fail to pin them down, and
consequently, to properly address them.

Contributions. In this article, we claim the following contributions, based on
measuring latencies in database query evaluation, using the popular Java-based
benchmark harness OLTPBench [10, 12] with two well-accepted benchmarks
(YCSB and TPC-C) on mature database management systems (MariaDB and
PostgreSQL), capturing throughput and tail latencies:

– We show that seemingly irrelevant technical details like the choice of Java
Virtual Machine (and even the particular garbage collection mechanism) for
the benchmark harness can severely distort tail latencies, increasing maxi-
mum latencies by up to several orders of magnitude, while the usually con-
sidered quantities median, 95th and 99th percentile of the observed latency
distribution remain largely unperturbed.

– We carefully separate systemic noise (such as caused by the system software
stack) from the noise intrinsic to the benchmarking harness and the database
system. We succeed in identifying and isolating the latencies introduced by
the garbage collector managing the memory for the benchmark harness.

– Based on custom-crafted dummy components, we carefully characterise up-
per and lower bounds for the influence of the measurement infrastructure on
the measurement itself, enabling researchers and developers to distinguish
between relevant measurement observations, and sources of non-productive
perturbations caused by the measurement itself.

– We consistently rely on time-resolved measurements which, unlike estab-
lished summary approaches, allow us to discover temporal relations between
events caused by different components of the measurement setup.



Tell-Tale Tail Latencies: Pitfalls and Perils in Database Benchmarking 3

Overall, we systematically build a case for adapting benchmarking harnesses
towards faithfully capturing tail latencies.

Structure. This paper is organised as follows. We review the preliminaries in
Section 2. We then present our experiments in Section 3, which we further discuss
in Section 4. We state possible threats to validity in Section 5, and review related
work in Section 6. We conclude with Section 7.

2 Preliminaries

2.1 Database Benchmarks

TPC-C [49], defined in 1992, is an industry-standard measure for OLTP work-
loads. The benchmark models order processing in warehouses.

The Yahoo! Cloud Serving Benchmark (YCSB) [9] is an established big data
benchmark. YCSB handles lightweight transactions, as most operations access
single records. This results in low-latency requests, compared to TPC-C.

The No Operation (NoOp) benchmark provides a simplistic baseline: To es-
tablish lower bounds on achievable latencies, it sends an empty statement (e.g.,
the semicolon command for PostgreSQL) that only has to be acknowledged
by the database system, not causing any productive internal processing. NoOp
benchmarks quantify the raw measurement overhead of the benchmark harness,
and can also be interpreted to represent the minimum client-server round-trip
time of a statement.

2.2 The OLTPBench Benchmark Harness

A benchmark harness is a toolsuite that provides the functionality to bench-
mark a software and/or hardware system. Typically, a benchmark harness con-
tains components that generate the payload data, execute the database work-
load, monitor, and collect monitoring data, and even visualise the measured
results [34].

For instance, the harness OLTPBench [10, 12] is a popular [23] academic
open source project [39] written in Java. At the time of writing, the harness
implements 19 benchmarks, including the three benchmarks introduced above.
At the time of writing, Google Scholar reports over 280 citations of the full
article [12] and the project is rated with over 330 stars on GitHub [39], with
almost 250 forks.

2.3 JVM and Garbage Collectors

The Java Platform is the specification of a programming language and libraries.
The open source OpenJDK [41] is a reference implementation since Java 7.

The Java Virtual Machine (JVM) is responsible for all aspects of executing
a Java application, including memory management and communication with the



4 M. Fruth et al.

operating system. The JVM is a specification as well [31], with different imple-
mentations; the two most common are the HotSpot JVM [41] by OpenJDK and
the OpenJ9 JVM [40], an implementation maintained by the Eclipse Foundation.

The JVM utilises the concept of safepoints. While implementations differ
between JVMs, in general, an executing thread is in a safepoint when its state
is well described, that is, all heap objects are consistent. Operations such as
executing Java Native Interface (JNI) code require a local safepoint, whereas
others, such as garbage collection, require a global safepoint. A global safepoint
is a Stop-The-World (STW) pause, as all threads have to reach a safepoint and
do not proceed until the JVM so decides. The latency of a STW pause is the
time once the first thread reaches its safepoint until the last thread reaches its
safepoint, plus the time for performing the actual operation that requires an
STW pause.

Java is a garbage-collected language. The garbage collector (GC) is a com-
ponent of the JVM that manages heap memory, in particular to remove unused
objects [31]. These housekeeping tasks can follow different strategies with dif-
ferent optimisation targets, such as optimising for throughput or low latency.
The GC is configured at JVM startup, and additional tuneables can be applied
to both, the JVM and the GC of choice. This allows for optimising a Java ap-
plication for peak performance based on its environmental conditions, such as
hardware aspects or the specific area of use. However, most GC implementa-
tions [6, 7, 14, 42, 47] require a global safepoint during their collection phases,
which introduces indeterministic latencies. Azul’s C4 GC [8, 48] overcomes the
issue of STW pauses by exploiting read barriers and virtual memory operations,
provided by specialised hardware or a Linux kernel module, for continuous and
pauseless garbage collection.

3 Experiments

In the following, we report on the results of our experiments with OLTPBench.
As a baseline, we execute a minimalist database workload (with the NoOp bench-
mark), while de-facto disabling the garbage collector (using the HotSpot JVM
configured with the Epsilon GC). This setup is designed to reveal latencies im-
posed by the benchmark harness itself on top of payload latencies. We further
configure the harness with special-purpose garbage collectors designed for dif-
ferent scenarios, e.g., which cause only low latencies, and contrast this with the
default garbage collectors.

Our experiments are fully reproducible and we refer to our reproduction
package4 for inspectation and reproduction. The package contains all our mea-
surement scripts, modifications and measured data.

Experimental Setup. All experiments are performed with OLTPBench, execut-
ing the built-in benchmarks NoOp, YCSB and TPC-C against PostgreSQL

4 Zenodo: https://doi.org/10.5281/zenodo.5112729
GitHub: https://github.com/sdbs-uni-p/tpctc2021

https://doi.org/10.5281/zenodo.5112729
https://github.com/sdbs-uni-p/tpctc2021


Tell-Tale Tail Latencies: Pitfalls and Perils in Database Benchmarking 5

and MariaDB. For Non-Uniform Memory Access (NUMA) awareness, database
server and benchmark processes are pinned to CPUs within the same NUMA
node.

Benchmark Configuration. Each benchmark is configured with a ten-second
warm up phase, to populate database caches, buffer pools, etc., followed by
a 60-second measurement phase. The isolation level is set to serialisable, and
requests are sent in a closed-loop fashion (a new request will not be sent until
the response of the previous request has been received and processed). Requests
are issued by ten worker threads in ten parallel connections.

TPC-C is configured with a scale factor of ten, resulting in ten independent
warehouses. Each transaction relates to a specific warehouse using the warehouse
ID (primary key). The warehouse IDs are distributed uniformly over all avail-
able worker threads, hence each worker thread executes transactions only on its
dedicated warehouse. This leads to a distribution of one worker per warehouse.
OLTPBench implements TPC-C in “good faith” and therefore deviates from the
TPC-C specification in some minor details [12]5.

For YCSB,6 we use a scale factor of 1,200, resulting in a table with 1.2 million
records. The workload distribution is as follows: 50% read, 5% insert, 15% scan,
10% update, 10% delete and 10% read-modify-write transactions, while all but
scan access a single record based on the primary key. The primary key selection
is based on a Zipfian distribution. All these settings are defaults in OLTPBench.

In the current implementation of OLTPBench, the NoOp benchmark is only
supported by PostgreSQL. In case of an empty query, PostgreSQL will acknowl-
edge the query and report successful execution. However, MariaDB reports an
empty query error, which results in a Java runtime exception on the side of the
benchmark, which, in turn, results in different code paths, compared to Post-
greSQL. To promote comparable behaviour, we enhanced both, MariaDB and
OLTPBench: In OLTPBench, we disabled explicit commits after transactions.7

Additionally, we enhanced MariaDB to interpret the empty statement “;” in-
ternally as comment (--), that is, as a NoOp. The modifications are part of our
reproduction package (see Footnote 4).

Java and GC Settings. To run OLTPBench, we use Java version 16.0.1 (Open-
JDK). We measure with both the HotSpot JVM and OpenJ9 JVM. For the
HotSpot JVM, we use the garbage collectors G1 (default) [42], Shenandoah [6],
ZGC [7], and Epsilon [47]. The latter is a pseudo garbage collector, it leaves all
objects in memory and performs no garbage collection at all. For OpenJ9, we
used gencon (default) [14] and metronome [14]. Table 1 provides an overview

5 For example, TPC-C defines ten terminals (workers) per warehouse and each cus-
tomer runs through a thinking time at one terminal, which is eliminated by OLTP-
Bench.

6 OLTPBench is built with the libraries jaxb-api and jaxb-impl in version 2.3.0, which
leads to a NullPointerException with Java versions ≥ 9. This issue is resolved in the
libraries with version 2.3.1, to which we updated.

7 A commit after an empty query does not have any effects on execution.



6 M. Fruth et al.

of the strategies of the GCs used. We chose the default GC for HotSpot JVM
and OpenJ9 JVM as they are probably the starting point for most measure-
ments done with a Java application. In addition, we choose all low latency GC
strategies with short STW pauses for precise latency measurements.

Table 1. Garbage collectors for the
HotSpot JVM and OpenJ9 JVM, and de-
sign goals.

JVM GC Design

H
ot

S
p

o
t

G1 Balance throughput
and latency.

Z Low latency.
Shenandoah Low latency.
Epsilon Experimental set-

ting: No GC tasks
are performed, ex-
cept for increasing
heap.

O
p

en
J
9 gencon Transactional appli-

cations with short-
lived objects.

metronome Low latency.

Experiment Execution. By default,
OLTPBench sets a maximum heap
size of 8 GiB (JVM option -Xmx8G),
which we also used for our experi-
ments, with the exception of Epsilon
GC. As the Epsilon GC does not per-
form garbage collection, we enlarge
the heap size accordingly: In total,
the Epsilon GC requires 180 GiB of
heap space of which 160 GiB were
pre-allocated upon startup. During
the 60-second measurement, 160 GiB
heap space were sufficient, so no la-
tencies were introduced due to an in-
crease of the heap. The remaining
20 GiB of heap space that were not
pre-allocated, but reserved, were re-
quired by OLTPBench for the YCSB
benchmark to create result files.

To capture latencies introduced by the JVM, and to confirm our hypoth-
esis, we consult a second dataset. We exploit the unified logging mechanism,
introduced in HotSpot JVM for Java 9 [28]. It allows for logging all safepoint
events, including those for garbage collection. OpenJ9 JVM also provides uni-
fied logging, but only records garbage collection events and thus no safepoint
events [13]. We mine the log for safepoint events, or in case of OpenJ9 JVM for
GC events, and interpret these latencies as overhead caued by the JVM.

Execution Platform. All measurements are performed on a Dell PowerEdge
R640, with two Intel Gold 6248R CPUs (24 cores per CPU, 3.0 GHz) and 384 GB
of main memory. To avoid distortions from CPU frequency transitions, we disable
Intel®™ Turbo Boost®™, and operate all cores in the performance P-State for a
permanent core frequency of 3.0 GHz. We disable simultaneous multithreading
(SMT) since it causes undesired side-effects on low-latency real-time systems [32]
due to resource contention.

To avoid cross-NUMA effects, OLTPBench as well as database server pro-
cesses execute on 22 cores of the same NUMA node: OLTPbench and the database
server (either MariaDB or PostgreSQL) each execute exclusively on eleven cores.
This ensures one worker of the benchmark, which is pinned to a dedicated CPU,
is connected to one worker of the database, which is pinned to a dedicated CPU
as well. The remaining two cores of the NUMA node are reserved for the re-
maining processes of the system.



Tell-Tale Tail Latencies: Pitfalls and Perils in Database Benchmarking 7

NoOp YCSB TPC−C

G1 Z

Shenandoah

Epsilo
n

genco
n

metro
nome G1 Z

Shenandoah

Epsilo
n

genco
n

metro
nome G1 Z

Shenandoah

Epsilo
n

genco
n

metro
nome

1

3

10

100

500

Garbage Collector

kR
eq

ue
st

s 
/ S

ec
on

d

Fig. 1. Database throughput for MariaDB, in thousand requests per second for bench-
marks NoOp, YCSB and TPC-C, and different JVM/GC configurations of OLTP-
Bench. Throughput is affected marginally by the choice of JVM, but not the GC.

The server runs Arch Linux with Kernel version 5.12.5. The benchmark as
well as the database server are compiled from source. For OLTPBench, we use the
version of git hash #6e8c04f, for PostgreSQL Version 13.3, git hash #272d82ec6f
and for MariaDB Version 10.6, git hash #609e8e38bb0.

3.1 Results

Our evaluation with MariaDB and PostgreSQL shows that the results are vir-
tually independent of the DBMS. Hence, we focus on presenting the results
for MariaDB. For PostgreSQL, we refer to our reproduction package (see Foot-
note 4).

We follow a top-down approach: We first measure latencies on the level of
single transactions, under variation of different JVM and GC configurations with
the NoOp, YCSB, and TPC-C benchmarks. We then characterise the latency
distributions, and systematically investigate the latency long tail.

Throughput. Figure 1 shows the throughput measured in thousand requests
per second, for different benchmarks, JVMs, and GCs. For TPC-C, throughput
is commonly reported as NewOrder transactions per minute (tpmC), but we
deviate for a better comparability between the different benchmarks.

For all three benchmarks, Figure 1 reports a difference in performance be-
tween the two JVMs: Compared to OpenJ9 JVM, HotSpot JVM has about 17%
– 28% more throughput for the NoOp benchmark, about 5% – 18% for YCSB,
and only about 5% more for the TPC-C benchmark (note the log-scaled vertical
axis).

Naturally, the choice of JVM for OLTPBench has a stronger influence for
benchmarks in which comparatively little time is spent on the database side. To
put this in context: By executing the NoOp benchmark with about 500k requests



8 M. Fruth et al.

per second, we spend much more time in the process of OLTPBench compared
to the TPC-C benchmark with only 3k requests per second.

50.713.4

13.84.4

30.2
9.18

50.5

53.132.8

32.6

32.8

49.3

62

56.3

63

63
65.9

64.6

N
oO

p
Y

C
S

B
T

P
C

−
C

0.01 0.1 1 10 100

Latency [ms]

B
en

ch
m

ar
k

Garbage Collector
G1

Z

Shenandoah

Epsilon

gencon

metronome

Percentile 0th 95th 99th 100th

Fig. 2. The latency distributions measured by OLTPBench for three benchmarks, vi-
sualised as box plots. Key percentiles are highlighted.

Latency distribution. The distribution of latencies reported by OLTPBench is
visualised by box-plots in Figure 2. The minimum (0th percentile) and maximum
(100th percentile) latencies, as well as the 95th and 99th latency percentiles, are
marked separately. The absolute value of the maximum latency is also labelled.

Overall, there is little variation in the median latencies within a benchmark.
Comparing the median latencies of the two JVMs for the NoOp benchmark,
we see a lower median latency for HotSpot JVM than for OpenJ9 JVM: All
GCs of HotSpot JVM have a median latency of 0.017 ms, while gencon has



Tell-Tale Tail Latencies: Pitfalls and Perils in Database Benchmarking 9

0.020 ms and metronome 0.021 ms, based on about 500k requests per second.
As the NoOp benchmark generates only a small load on the database side, the
maximum latencies reported are candidates for latencies introduced by the Java
environment of the benchmark harness. As expected, Epsilon GC has the lowest
maximum latency for the NoOp benchmark.

The YCSB benchmark shows strong variance in maximum latencies, depend-
ing on the garbage collector used. For GCs G1, Z and metronome, a maximum
latency of around 50 ms is recorded, whereas the other GCs display a maximum
latency of about 30 ms. We inspect these latencies more closely in the follow-
ing. Nevertheless, the distribution of the latencies is close to uniform for all six
garbage collectors, except the 99th percentile latency: Observations for OpenJ9
exceed those for HotSpot.

The different JVM/GC configurations result in near-identical latency distri-
butions for the TPC-C benchmark: Due to the larger share of time spent on the
database side (compared to the other benchmarks), the latencies introduced by
the benchmark harness do not weigh in as much in comparison.

Latency time series. Figures 3 through 5 show time series plots for the bench-
marks NoOp, YCSB, and TPC-C. Red, labelled triangles mark minimum and
maximum latencies, as observed by OLTPBench. In order to prevent overplot-
ting, we downsampled the latencies except for extreme values. Ochre dots repre-
sent sampled, normal observations. A latency is considered an extreme value and
displayed as grey dot if it is outside a pre-defined range. We define benchmark-
specific sampling rates and extreme value ranges, as detailed below. Latency
fluctuations smoothed by a sliding window covering 1,000 data points are shown
in red.

Superimposed black dots represent latencies extracted from the JVM logs.
Since randomised, mixed workloads do not allow us to associate given latencies
with specific queries, we visualise all JVM latencies.

The time series plots for the YCSB and TPC-C benchmark are provided
for selected queries only. We refer to our reproduction package (see Footnote 4)
for the full set of charts, which confirm our observations. Similarly, we do not
visualise the Shenandoah GC as it behaves similar to the Z GC and metronome
GC, with a similar latency pattern as gencon GC.

NoOp Benchmark. The latency time series for the NoOp benchmark is shown in
Figure 3. To arrive at meaningful visualisations, we apply a sampling strategy
that avoids overplotting for “standard” observables by only using 0.001% of the
recorded values in between the 0.025th and 99.975th percentile. However, we
show the full collection of observations outside this interval.

OLTPBench, executed with the Epsilon GC, shows that this setup has the
lowest latency possible, and the JVM is only active for a short time at the very
end. This measurement shows that regular outliers in the range of about 1 ms
occur regularly in the time series, and can be used as a reference for comparison
with other GCs. The measurement of the GC G1 shows that the GC causes the



10 M. Fruth et al.

maximum latency and the tail of the latencies. Almost each latency higher than
10 ms was introduced by the GC because the latencies reported by OLTPBench
and these reported by the JVM display the same pattern and match each other.

50.7

0.013

13.8

30.2

13.4

0.013 0.013 0.013 0.013

4.4

0.013 0.013 0.013

9.18

0.016 0.016

gencon metronome

Shenandoah Epsilon

G1 Z

0 15 30 45 60 0 15 30 45 60

0.01

0.10

1.00

10.00

0.01

0.10

1.00

10.00

0.01

0.10

1.00

10.00

Time [s]

La
te

nc
y 

[m
s]

Observation Standard Value Extreme Value GC Latency

Fig. 3. Latency time series of the NoOp benchmark. Minimum and maximum latencies
measured with OLTPBench are marked by red, labelled triangles. Grey dots represent
extreme values, ochre dots (down-sampled) standard observations. Latencies from the
JVM log file are superimposed in black. The red line shows the sliding mean window.

YCSB Benchmark. We show the time series latency of the YCSB benchmark in
Figure 4. We report the latencies measured by the G1, Z, Epsilon and gencon
GC and selected the two transaction types ReadRecord (read transaction) and
UpdateRecord (write transaction). We used a sampling rate of 0.05% (Read-
Record) and 0.1% (UpdateRecord) for standard values and the 99.975th and
0.025th latency percentile are the limits for a latency to be marked as an ex-
treme value.



Tell-Tale Tail Latencies: Pitfalls and Perils in Database Benchmarking 11

The Epsilon GC is again the reference and except for the maximum latency,
all tail latencies fall into the interval between 1 ms and 5 ms. By comparing the
ReadRecord latencies reported from OLTPBench and from the JVM, again the
G1 GC is responsible for the tail latencies occurring in this transaction. The
write transaction shows a similar behaviour, but here outliers on the database
side are responsible for the maximum latency, nevertheless again the G1 GC
latency defines the tail.

18.3

0.066

49.4

0.092

14

0.066

53.1

0.091

14

0.066

0.066

0.066

32.2

0.091

12.9

0.069

32.5

0.094

G1 Z Epsilon gencon

R
eadR

ecord
U

pdateR
ecord

0 15 30 45 60 0 15 30 45 60 0 15 30 45 60 0 15 30 45 60

0.1

1.0

10.0

0.1

1.0

10.0

Time [s]

La
te

nc
y 

[m
s]

Observation Standard Value Extreme Value GC Latency

Fig. 4. Latency time series of the YCSB benchmark for read (ReadRecord) and write
(UpdateRecord) transactions. Labels and colours as in Figure 3.

TPC-C Benchmark. The time series latency of TPC-C is shown in Figure 5.
The sampling rate of standard values of the NewOrder transaction is set to 0.5%
and for OrderStatus to 5%. Extreme values are marked as such if they exceed
the 99.75th percentile or subceed the 0.25th percentile.

For this particular benchmark, the influence of the JVM is negligible. The
transactions, especially write transactions, are so heavyweight that the process-
ing time inside the database substantially exceeds the benchmark overhead. Fur-
thermore, due to the low number of requests per second (about 3k), only a limited
amount of intermediate, temporary objects that require garbage collection are
created in the first place. The same applies to read transactions.



12 M. Fruth et al.

58.6

1.14

4.35

0.416

52.7

1.21

7.87

0.403

59.6

1.18

1.18

5.22

0.429

63.2

1.26

8.07

0.463

G1 Z Epsilon gencon
N

ew
O

rder
O

rderS
tatus

0 15 30 45 60 0 15 30 45 60 0 15 30 45 60 0 15 30 45 60

0.01

0.10

1.00

10.00

0.01

0.10

1.00

10.00

Time [s]

La
te

nc
y 

[m
s]

Observation Standard Value Extreme Value GC Latency

Fig. 5. Latency time series of the TPC-C benchmark for read (OrderStatus) and write
(NewOrder) transactions. Labels and colours as in Figure 3.

4 Discussion

Our experiments show that for the popular benchmark harness OLTPBench, the
choice of the execution environment (JVM and its GC strategy) substantially
impacts (tail) latency measurements. By super-imposing the latencies extracted
from JVM log files on the latency time series reported by OLTPBench, we make
this connection visually apparent, and show that different GC strategies trans-
late to different temporal patterns. By setting up a baseline experiment, with
garbage collection de-facto disabled, and a minimalist database workload, we can
successfully establish a lower bound on non-productive latency contributions.

Naturally, for lightweight database workloads (in our experiments, YCSB),
this non-productive overhead is more noticeable in relation to the actual query
execution time.

Interestingly, while researchers and practitioners optimise latencies in the
realm of microseconds [1], the latencies imposed by the benchmark harness reach
the ballpark of milliseconds. Evidently, this factor of one thousand proves these
effects are non-negligible, and deserve careful consideration in any evaluation,
albeit most published research neglects this issue so far.



Tell-Tale Tail Latencies: Pitfalls and Perils in Database Benchmarking 13

Our observations are replicable for PostgreSQL. We provide the data and full
set of plots, along with a reproduction package (see Footnote 4).

5 Threats to Validity

We applied great care and diligence in analysing the garbage collector logs.
Yet as the logging mechanisms differ between JVMs, we must deal with some
level of uncertainty: The HotSpot JVM logs all safepoints (including, but not
restricted to garbage collection events), whereas the OpenJ9 JVM logs only
the garbage collection events. As the GC events dominate the logged safepoint
events, we treat the reported latencies in both logs uniformly. In addition, we do
not distinguish between local and global safepoints, as local safepoints can also
block a thread.

Further, the latencies reported by OLTPBench and the latencies logged by
the JVM are two distinct sources of data. As usual, data integration brings
uncertainties, so the latencies displayed from OLTPBench and JVM might be
minimally shifted in time in the time series plots. In summary, we consider the
above threats to the validity of our results as minor.

One further threat to validity is that we only focus on the Java environment
of the benchmark harness, but no other possible sources of systemic noise (such
as caused by the hardware). We have diligently configured the execution platform
to eradicate sources of noise (e.g., by disabling SMT). Moreover systemic noise
is typically in the range of micro seconds [1]. Since the harness-induced latencies
are in the millisecond range (exceeding them by a factor of one thousand, and
clearly traceable back to the harness), we may dismiss this threat.

6 Related Work

Databases, as core components of data-intensive systems, are important contrib-
utors to system-wide tail latency effects. Likewise, they have started to enjoy
increasing popularity in real-time scenarios like sensor networks or IoT [16, 43],
where the most crucial service indicator is determinism and maximum latency,
instead of average-case performance. Care in controlling excessive latencies must
be exercised in all cases.

As modifiable open source components are increasingly used in building sys-
tems [23, 44], several measures addressing software layers above, inside and be-
low the DBMS have been suggested to this end. For instance, optimising end-
to-end communications [18, 35, 46] tries to alleviate the issue from above. Spe-
cially crafted real-time databases [27], novel scheduling algorithms in schedul-
ing/routing queries [24, 25, 45], transactional concepts [5], or query evaluation
strategies [19,51], work from inside the database. Careful tailoring of the whole
software stack from OS kernel to DB engine [30,33], or crafting dedicated oper-
ating systems [4,20–22,36,37] to leverage the advantages of modern hardware in
database system engineering (e.g., [15, 29]), contribute to solutions from below
the database.



14 M. Fruth et al.

In our experiments, we execute the well-established YCSB and TPC-C bench-
marks, which are supported by the OLTPBench harness out-of-the-box. How-
ever, further special-purpose benchmarks have been proposed specifically for
measuring tail latencies, as they arise in embedded databases on mobile de-
vices [38]. This contribution is related to our work insofar as the authors also
unveil sources of measurement error, however, errors that arise when measuring
the performance of embedded databases at low throughput.

There are further benchmark harnesses from the systems research community
that specifically target tail latencies. These capture latencies across the entire
systems stack, while in the database research community, we benchmark the
database layer in isolation. Harnesses such as TailBench [26] or TreadMill [52]
define such complex application scenarios (some involving a database layer).

In its full generality, the challenge of benchmarking Java applications, includ-
ing jitter introduced by garbage collection, is discussed in [17]. We follow the
best practices recommended in this article, as we classify outliers as either sys-
tematic or probabilistic. We present the latency distributions clearly, and have
carried out sufficiently many test runs. Different from the authors of [17], we do
not apply hypothesis tests, since we are mostly interested in latencies maxima,
rather than confidence in averaged values.

It has been reported that database-internal garbage collection [2, 29] can
also cause latency spikes, which might however be seen as part of productive
operation. Our work considers the effects of garbage collection inside the test
harness, rather than the database engine.

7 Conclusion and Outlook

Tail latencies in database query processing can manifest as acute pain points.
To address their possible causes, we must be able to faithfully measure them.
Our work shows that Java-based benchmark harnesses serve well for measuring
database throughput, or 95th or 99th percentile latencies. However, these bench-
marks can significantly impact the capturing of extreme tail latencies: The choice
of JVM and garbage collector in the harness is a non-negligible source of inde-
terministic noise. For database workloads composed of low-latency queries (e.g.,
as in the YCSB benchmark), we risk distorted measurements which can lead
us to chase ghosts in database systems engineering, and prevent an accurate
and faithful characterisation of important extreme events. We find that future
efforts in evaluating database performance for real-time and large-scale comput-
ing scenarios should put more effort into understanding and controlling such
effects.

References

1. Barroso, L.A., Marty, M., Patterson, D.A., Ranganathan, P.: Attack of the Killer
Microseconds. Commun. ACM 60(4), 48–54 (2017)



Tell-Tale Tail Latencies: Pitfalls and Perils in Database Benchmarking 15

2. Böttcher, J., Leis, V., Neumann, T., Kemper, A.: Scalable Garbage Collection for
In-Memory MVCC Systems. Proc. VLDB Endow. 13(2), 128–141 (2019)

3. Brutlag, J.: Speed Matters for Google Web Search. Available at: https://
venturebeat.com/wp-content/uploads/2009/11/delayexp.pdf (2009)

4. Cafarella, M.J., DeWitt, D.J., Gadepally, V., Kepner, J., Kozyrakis, C., Kraska,
T., Stonebraker, M., Zaharia, M.: DBOS: A Proposal for a Data-Centric Operating
System. CoRR abs/2007.11112 (2020)

5. Chen, X., Song, H., Jiang, J., Ruan, C., Li, C., Wang, S., Zhang, G., Cheng, R.,
Cui, H.: Achieving low tail-latency and high scalability for serializable transactions
in edge computing. In: Proc. EuroSys. pp. 210–227 (2021)

6. Clark, I.: Shenandoah GC. Available at: https://wiki.openjdk.java.net/display/
shenandoah (2021)

7. Clark, I.: ZGC. Available at: https://wiki.openjdk.java.net/display/zgc (2021)
8. Click, C., Tene, G., Wolf, M.: The pauseless GC algorithm. In: Proc. VEE. pp.

46–56 (2005)
9. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking

cloud serving systems with YCSB. In: Proc. SoCC. pp. 143–154 (2010)
10. Curino, C., Difallah, D.E., Pavlo, A., Cudré-Mauroux, P.: Benchmarking

OLTP/web databases in the cloud: the OLTP-bench framework. In: Proc.
CloudDB. pp. 17–20 (2012)

11. Dean, J., Barroso, L.A.: The Tail at Scale. Commun. ACM 56(2), 74–80 (2013)
12. Difallah, D.E., Pavlo, A., Curino, C., Cudré-Mauroux, P.: OLTP-Bench: An Exten-

sible Testbed for Benchmarking Relational Databases. Proc. VLDB Endow. 7(4),
277–288 (2013)

13. Eclipse Foundation: -Xlog. Available at: https://www.eclipse.org/openj9/docs/
xlog/

14. Eclipse Foundation: Garbage collection policies. Available at: https://
www.eclipse.org/openj9/docs/gc/

15. Fent, P., van Renen, A., Kipf, A., Leis, V., Neumann, T., Kemper, A.: Low-
Latency Communication for Fast DBMS Using RDMA and Shared Memory. In:
Proc. ICDE. pp. 1477–1488 (2020)

16. Garcia-Arellano, C., Storm, A.J., Kalmuk, D., Roumani, H., Barber, R., Tian, Y.,
Sidle, R., Özcan, F., Spilchen, M., Tiefenbach, J., Zilio, D.C., Pham, L., Rakopou-
los, K., Cheung, A., Pepper, D., Sayyid, I., Gershinsky, G., Lushi, G., Pirahesh,
H.: Db2 Event Store: A Purpose-Built IoT Database Engine. Proc. VLDB Endow.
13(12), 3299–3312 (2020)

17. Georges, A., Buytaert, D., Eeckhout, L.: Statistically Rigorous Java Performance
Evaluation. In: Proc. OOPSLA. pp. 57–76 (2007)

18. Gessert, F.: Low Latency for Cloud Data Management. Ph.D. thesis, University of
Hamburg, Germany (2019)

19. Giannikis, G., Alonso, G., Kossmann, D.: SharedDB: Killing One Thousand
Queries With One Stone. Proc. VLDB Endow. 5(6), 526–537 (2012)

20. Giceva, J.: Operating System Support for Data Management on Modern Hardware.
IEEE Data Eng. Bull. 42(1), 36–48 (2019)

21. Giceva, J., Salomie, T., Schüpbach, A., Alonso, G., Roscoe, T.: COD: Database /
Operating System Co-Design. In: Proc. CIDR (2013)

22. Giceva, J., Zellweger, G., Alonso, G., Roscoe, T.: Customized OS support for data-
processing. In: Proc. DaMoN. pp. 2:1–2:6 (2016)

23. Hofmann, G., Riehle, D., Kolassa, C., Mauerer, W.: A Dual Model of Open Source
License Growth. In: Proc. OSS. vol. 404, pp. 245–256 (2013)

https://venturebeat.com/wp-content/uploads/2009/11/delayexp.pdf
https://venturebeat.com/wp-content/uploads/2009/11/delayexp.pdf
https://wiki.openjdk.java.net/display/shenandoah
https://wiki.openjdk.java.net/display/shenandoah
https://wiki.openjdk.java.net/display/zgc
https://www.eclipse.org/openj9/docs/xlog/
https://www.eclipse.org/openj9/docs/xlog/
https://www.eclipse.org/openj9/docs/gc/
https://www.eclipse.org/openj9/docs/gc/


16 M. Fruth et al.

24. Jaiman, V., Mokhtar, S.B., Quéma, V., Chen, L.Y., Riviere, E.: Héron: Taming Tail
Latencies in Key-Value Stores Under Heterogeneous Workloads. In: Proc. SRDS.
pp. 191–200 (2018)

25. Jaiman, V., Mokhtar, S.B., Rivière, E.: TailX: Scheduling Heterogeneous Multiget
Queries to Improve Tail Latencies in Key-Value Stores. In: Proc. DAIS. vol. 12135,
pp. 73–92 (2020)

26. Kasture, H., Sánchez, D.: Tailbench: a benchmark suite and evaluation methodol-
ogy for latency-critical applications. In: Proc. IISWC. pp. 3–12 (2016)

27. Lam, K., Kuo, T. (eds.): Real-Time Database Systems: Architecture and Tech-
niques (2001)

28. Larsen, S., Arvidsson, F., Larsson, M.: JEP 158: Unified JVM Logging. Available
at: https://openjdk.java.net/jeps/158 (2019)

29. Lersch, L., Schreter, I., Oukid, I., Lehner, W.: Enabling Low Tail Latency on
Multicore Key-Value Stores. Proc. VLDB Endow. 13(7), 1091–1104 (2020)

30. Li, J., Sharma, N.K., Ports, D.R.K., Gribble, S.D.: Tales of the Tail: Hardware,
OS, and Application-level Sources of Tail Latency. In: Proc. SoCC. pp. 1–14 (2014)

31. Lindholm, T., Yellin, F., Bracha, G., Buckley, A., Smith, D.: The Java Virtual
Machine Specification - Java SE 16 Edition. Available at: https://docs.oracle.com/
javase/specs/jvms/se16/jvms16.pdf (2021)

32. Mauerer, W.: Professional Linux Kernel Architecture. John Wiley & Sons (2010)
33. Mauerer, W., Ramsauer, R., Filho, E.R.L., Lohmann, D., Scherzinger, S.: Silen-

tium! Run-Analyse-Eradicate the Noise out of the DB/OS Stack. In: Proc. BTW.
vol. P-311, pp. 397–421 (2021)

34. Michael, N.: Benchmark Harness. In: Encyclopedia of Big Data Technologies, pp.
137–141. Springer (2019)

35. Moehler, G., Scherzinger, S., Steinbach, T.: Perfor-
mance Monitoring of a Computer Resource (2014),
US Patent US8863084B2, International Business Machines Corp.

36. Mühlig, J., Müller, M., Spinczyk, O., Teubner, J.: mxkernel: A Novel System Soft-
ware Stack for Data Processing on Modern Hardware. Datenbank-Spektrum 20(3),
223–230 (2020)

37. Müller, M., Spinczyk, O.: MxKernel: Rethinking Operating System Architecture
for Many-core Hardware. In: Proc. SFMA (2019)

38. Nuessle, C., Kennedy, O., Ziarek, L.: Benchmarking Pocket-Scale Databases. In:
Proc. TPCTC. vol. 12257, pp. 99–115 (2019)

39. OLTPBenchmark.com: OLTPBench. Available at: https://github.com/
oltpbenchmark/oltpbench

40. eclipse openj9: OpenJ9. Available at: https://github.com/eclipse-openj9/openj9
41. OpenJDK: JDK. Available at: https://github.com/openjdk/jdk
42. Oracle: Java Platform, Standard Edition HotSpot Virtual Machine Garbage Col-

lection Tuning Guide - 9 Garbage-First Garbage Collector. Available at: https:
//docs.oracle.com/javase/9/gctuning/garbage-first-garbage-collector.htm (2017)

43. Paparrizos, J., Liu, C., Barbarioli, B., Hwang, J., Edian, I., Elmore, A.J., Franklin,
M.J., Krishnan, S.: VergeDB: A Database for IoT Analytics on Edge Devices. In:
Proc. CIDR (2021)

44. Ramsauer, R., Lohmann, D., Mauerer, W.: Observing Custom Software Modifi-
cations: A Quantitative Approach of Tracking the Evolution of Patch Stacks. In:
Proc. OpenSym. pp. 1–4 (2016)

45. Reda, W., Canini, M., Suresh, P.L., Kostic, D., Braithwaite, S.: Rein: Taming
Tail Latency in Key-Value Stores via Multiget Scheduling. In: Proc. EuroSys. pp.
95–110 (2017)

https://openjdk.java.net/jeps/158
https://docs.oracle.com/javase/specs/jvms/se16/jvms16.pdf
https://docs.oracle.com/javase/specs/jvms/se16/jvms16.pdf
https://github.com/oltpbenchmark/oltpbench
https://github.com/oltpbenchmark/oltpbench
https://github.com/eclipse-openj9/openj9
https://github.com/openjdk/jdk
https://docs.oracle.com/javase/9/gctuning/garbage-first-garbage-collector.htm
https://docs.oracle.com/javase/9/gctuning/garbage-first-garbage-collector.htm


Tell-Tale Tail Latencies: Pitfalls and Perils in Database Benchmarking 17

46. Scherzinger, S., Karn, H., Steinbach, T.: End-to-End Performance Monitoring of
Databases in Distributed Environments. In: Proc. BTW. LNI, vol. P-144, pp. 612–
615 (2009)

47. Shipilev, A.: JEP 318: Epsilon: A No-Op Garbage Collector (Experimental). Avail-
able at: https://openjdk.java.net/jeps/318 (2018)

48. Tene, G., Iyengar, B., Wolf, M.: C4: the continuously concurrent compacting col-
lector. In: Proc. ISMM. pp. 79–88 (2011)

49. Transaction Processing Council: TPC-C Benchmark (Revision 5.11). Available at:
http://tpc.org/tpc documents current versions/pdf/tpc-c v5.11.0.pdf (2010)

50. Transaction Processing Performance Council: TPC-Homepage. Available at: http:
//tpc.org/

51. Unterbrunner, P., Giannikis, G., Alonso, G., Fauser, D., Kossmann, D.: Predictable
Performance for Unpredictable Workloads. Proc. VLDB Endow. 2(1), 706–717
(2009)

52. Zhang, Y., Meisner, D., Mars, J., Tang, L.: Treadmill: Attributing the Source of
Tail Latency through Precise Load Testing and Statistical Inference. In: Proc.
ISCA. pp. 456–468 (2016)

https://openjdk.java.net/jeps/318
http://tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://tpc.org/
http://tpc.org/

	Tell-Tale Tail Latencies: Pitfalls and Perils in Database Benchmarking

