
Green Application Placement
in the Cloud-IoT Continuum

Stefano Forti[0000−0002−4159−8761] and Antonio Brogi[0000−0003−2048−2468]

Department of Computer Science, University of Pisa, Italy
{stefano.forti, antonio.brogi}@di.unipi.it

Abstract. Green software engineering aims at reducing the environ-
mental impact due to developing, deploying, and managing software sys-
tems. Meanwhile, Cloud-IoT paradigms can contribute to improving en-
ergy and carbon efficiency of application deployments by (i) reducing the
amount of data and the distance they must travel across the network,
(ii) by exploiting idle edge devices to support application deployment. In
this article, we propose a declarative methodology and its Prolog proto-
type for determining placements of application services onto Cloud-IoT
infrastructures so to optimise energy and carbon efficiency, also consid-
ering different infrastructure power sources and operational costs. The
proposal is assessed over a motivating example.

1 Introduction

ICT energy demand could possibly reach 14% of the total worldwide footprint
by 2040 [3]. As climate scientists agree on the urgency of reducing the human
impact on the environment, green software engineering is getting increasing at-
tention as a possible way to contain ICT energy usage and carbon emissions,
through achieving a more sustainable software life-cycle [8]. While much work
has focussed on embedding sustainability principles in software design phases,
less work has proposed methodologies and tools to improve and assess software
lifecycle sustainability [20], i.e. from application testing to deployment and run-
time management. Meanwhile, Cloud-IoT computing paradigms – e.g. Fog, Edge
computing [7] – have been proposed to improve on the Quality of Service (QoS)
of emerging latency-sensitive and bandwidth-hungry applications. As highlighted
by some authors [22,17], those paradigms can also represent greener alternatives
to the Cloud paradigm as they can exploit pervasive and possibly idle compu-
tational devices closer to the IoT, thus improving on energy efficiency of those
idle resources and reducing unnecessary data transfer from/to the Cloud.

To achieve the above sustainability goals, it is crucial to place application
services so to meet all their requirements and by determining the best trade-off
between the operation costs of their deployment and the expected energy con-
sumption and carbon emissions, which very much depend on the characteristics
of the target deployment nodes (i.e. energy profile, power sources, power usage
effectiveness). While the problem of placing application services onto Cloud-IoT
infrastructure to meet their software, hardware, IoT and network requirements
has been extensively studied [18,5], the problem of determining energy- and
carbon-aware placements was only marginally addressed until very recently [1].

ar
X

iv
:2

11
0.

13
03

9v
1 

 [
cs

.O
H

] 
 1

8 
O

ct
 2

02
1



2 S. Forti and A. Brogi

In this article, based on our previous work [10], we illustrate a declarative
programming solution to the problem of determining energy- and carbon-aware
application placements in Cloud-IoT settings, also capable of estimating op-
erational deployment costs. Our methodology permits determining application
placements that meet software, hardware, IoT, latency and bandwidth require-
ments, and to estimate deployment costs, energy consumption and carbon emis-
sions, relying on data disclosed on the available Cloud-IoT nodes. Being declar-
ative, our approach is easy to understand and to extend, e.g. by employing al-
ternative formulas to estimate all of the above. A Prolog open-source prototype,
GFogBrain, is assessed over a motivating example based on lifelike data.

The rest of this article is organised as follows. Section 2 describes the model
and methodology of GFogBrain, while showcasing its functioning over a lifelike
motivating example. Section 3 briefly discusses some closely related work, and
Section 4 concludes by pointing to some directions for future work.

2 GFogBrain in Action

In this section, we illustrate GFogBrain’s prototype and methodology by means of
a lifelike motivating example from smart environments [4]. GFogBrain extends our
previous work in the field of context- and QoS-aware placements of Cloud-IoT
applications, to also determine energy- and carbon-aware placements. Particu-
larly, we extend the model prototype of [10] to consider all necessary ingredients
to estimate energy consumption and carbon emissions of running applications,
and operational costs (i.e. due to leasing computational resources to keep appli-
cation services up and running).

Our goal is to support application operators, enabling them to informedly
identify placements that can reduce energy consumption and carbon emissions,
while assessing the impact that being greener could have on the operational costs
of their deployments. In the next paragraphs, we detail our declarative appli-
cation and infrastructure model and the declarative programming methodology
implemented by GFogBrain to achieve such a goal.

Applications Requirements – As in [10], application A made of services S1

. . . Sk is declared as

application(A, [S1, ..., Sk]).

The software, hardware1 and IoT requirements of service S are declared as

service(S, SoftwareReqs, HardwareReqs, IoTReqs).

Finally, interactions between services S1 and S2 with associated maximum end-
to-end latency and minimum bandwidth requirements are declared as

s2s(S1, S2, MaxLatency, MinBandwidth).

1 For the sake of simplicity, we represent hardware units as integers as in [10].



Green Application Placement in the Cloud-IoT Continuum 3

Example 1. The application of Fig. 1 consists of two interacting services – Lights
Driver and ML Optimiser – for optimising ambient lighting in a museum based on
processing real-time video footage. The Lights Driver requires 2GB and Ubuntu
to run, and to reach out a video-camera and a lights hub. Similarly, ML Optimiser
requires 16GB of RAM and the availability of Ubuntu, MySQL and Python on
the deployment node, which must also be equipped with a GPU for processing
streamed data. Finally, the interaction from the Lights Driver to the ML Optimiser
require at least 16Mbps of available bandwidth and tolerates at most 20 ms
latency. On the other hand, the the interaction from the ML Optimiser to the
Lights Driver needs only 0.5 Mbps, with a latency lower than 50 ms. Such an
application can be simply declared as in Fig. 2. ut

Fig. 1. Example application.

application(lightsApp, [mlOptimiser, lightsDriver]).
service(mlOptimiser, [mySQL, python, ubuntu], 16, [gpu]).
service(lightsDriver, [ubuntu], 2, [videocamera, lightshub]).
s2s(mlOptimiser, lightsDriver, 50, 0.5).
s2s(lightsDriver, mlOptimiser, 20, 16).

Fig. 2. Example application declaration.

Infrastructure capabilities – Complementarily to application service require-
ments, Cloud-IoT nodes can be declared along with their software, free hardware
and IoT capabilities, and with the unit hourly cost for leasing hardware resources:

node(NodeId, SoftwareCapabilities, FreeHW, IoTCapabilities).
cost(NodeId, UnitHWCostPerHour).

Similarly, end-to-end links between nodes N1 and N2 are declared, along with
their FeaturedLatency and FeaturedBandwidth, as in

link(N1, N2, FeaturedLatency, FeaturedBandwidth).

The power usage effectiveness (PUE) associated to a node is the ratio between
the overall energy needed for keeping the node working and the energy that the
node uses for actual computation. For instance, a PUE of 1.5 indicates that for
every 1kWh spent in computation, another 0.5kWh is needed for non-IT tasks
(e.g. cooling, lighting, network) that keep the server working. Typical values of



4 S. Forti and A. Brogi

the PUE range between 1.2 and 1.9. Extending the model of [10], we assume
that node operators can disclose information about the total hardware (free and
in use) at each node and the associated PUE as in

totHW(N,TotalHardware). pue(N,PUE).

Node operators can then specify the energy consumption profile of each node
via predicates like

energyProfile(N,Load,EnergyConsumption) :- ...

where EnergyConsumption is obtained in kWh as a, possibly non-linear, function of
the current percentage Load at node N. Existing processors show a baseline energy
consumption even when they are idle, which increases as the node workload
increases [19].

Last, the percentages of the energy mix of each node can be specified as in

energySourceMix(N,[(P1,Source1), ..., (PK,SourceK)]).

where PJ is the percentage of electricity that node N receives from SourceJ.
We finally assume that average CO2 emissions for each source are declared

in a public knowledge base of facts like emissions(Source, Mu), where Mu are the
emissions in kgCO2/kWh for Source, e.g. as those reported in Table 1.

Note that, when energy-related information is not disclosed, GFogBrain easily
allows to employ default data or data taken from public audits such as [13].

Table 1. CO2 emissions per power source [16].

Power Source Emissions [kgCO2/kWh]

gas 0.610

coal 1.100

on shore wind 0.0097

off shore wind 0.0165

solar 0.05

Example 2. Consider the Cloud-IoT infrastructure of Fig. 3 to deploy the ap-
plication of Example 1. Fig. 4 epitomises the declaration of the capabilities and
energy information of all three nodes. We only show the declaration of the link
between Private Cloud and Access Point.

Note that, for instance, node Private Cloud currently features 128 free hard-
ware units (out of the 150 totally available), each offered for 0.0016 cents per
hour, and that its energy consumption in kWh is given by a function φ(L) of the
current workload L such that φ(w) = 0.1kWh + 0.01 · log(L) with L ∈ [0, 100].
Besides, Private Cloud is powered by an energy mix coming for 30% from a solar
plant and for 70% from a coal plant, as declared by energySourceMix/2. Last, the
PUE of Private Cloud is 1.9. ut



Green Application Placement in the Cloud-IoT Continuum 5

Fig. 3. Example Cloud-IoT infrastructure.

node(privateCloud,[ubuntu, mySQL, python], 128, [gpu]).
cost(privateCloud,0.0016). totHW(privateCloud,150).
energyProfile(privateCloud,L,E) :- E is 0.1 + 0.01*log(L).
pue(privateCloud,1.9).
energySourceMix(privateCloud,[(0.3,solar), (0.7,coal)]).

node(accesspoint,[ubuntu, mySQL, python], 4, [lightshub, videocamera]).
cost(accesspoint,0.003). totHW(accesspoint,6).
energyProfile(accesspoint,L,E) :- E is 0.05 + 0.03*log(L).
pue(accesspoint,1.5).
energySourceMix(accesspoint,[(0.1,gas),(0.8,coal),(0.1,onshorewind)]).

node(edgenode,[ubuntu, python], 8, [gpu, lightshub, videocamera]).
cost(edgenode,0.005). totHW(edgenode,12).
energyProfile(edgenode,L,E) :- L =< 50 -> E is 0.08; E is 0.1.
pue(edgenode,1.2).
energySourceMix(edgenode,[(0.5,coal), (0.5,solar)]).

link(privateCloud, accesspoint, 5, 1000).

Fig. 4. Example infrastructure declaration.

Energy-, Carbon- and Cost-aware Placements – Fig. 6 shows2 how the
GFogBrain prototype determines energy- and carbon-aware application place-
ments in Cloud-IoT settings. Predicate placements/2 (lines 1–3) determines all
Placements that satisfy software, hardware, IoT and network QoS requirements
of the application by means of gFogBrain/4, along with the associated hourly
deployment Cost, energy consumption E and carbon emissions C (line 2). The
obtained placements are sorted by increasing estimated carbon footprint, cost,
and energy consumption, considered in this order of priority3 (line 3).

2 Due to space limitations, we only show the main predicates of GFogBrain. Full code is
open-sourced at https://github.com/di-unipi-socc/fogbrainx/tree/main/green.

3 By suitably rearranging output tuples, it is possible to prioritise differently among
the estimated metrics. For instance, the order (Cost,E,C,P) at line 2 would give
priority to cost over energy consumption and carbon emissions.

https://github.com/di-unipi-socc/fogbrainx/tree/main/green


6 S. Forti and A. Brogi

Predicate gFogBrain/4 (lines 4–6) exploits the placement/2 (line 5) and the
allocatedResources/2 (line 6) predicates of [10] (see Appendix A) to determine
a placement that satisfies software, hardware, IoT and network QoS require-
ments of a given application, and the associated hardware and bandwidth in
use, respectively. Then, Energy consumption and Carbon emissions associated to
the placement are computed via the footprint/4 predicate (lines 6, 7–11).

Based on the deployment nodes used by P (line 8), the predicate footprint/4

computes hardware- (line 9) and network-related (line 10) energy consumption
and carbon emissions and sums them, respectively (line 11). GFogBrain employs
an extended version of the model from Kelly et al. [16] to associate an estimate
of energy consumption to a piece of computation running on a given node. The
energy consumption Es of a service s running on a node n is computed as

Es = En · PUEn [kWh] (1)

where En is the energy consumption caused by s at n (in kWh) and PUEn is
the PUE of n. As aforementioned, En is a (non-linear) function of the current
node load. For each node N involved in placement P, hardwareFootprint/4 (line
9, 12–17) exploits hardwareEnergy/4 (line 14, 18–23) to first retrieve the node
load OldL before placing the services in placement P, and the associated energy
consumption OldE (line 20). Then, it retrieves the node load NewL after placing
the services as per P (line 21), and computes the associated energy consumption
NewE (line 22). The difference between NewE and OldE, multiplied by the PUE of
N, estimates the Energy consumption of P on node N as per Eq. (1) (line 23).

Based on this, GFogBrain also estimates the associated carbon emissions. To
this end, extending [16], we consider the case in which multiple energy sources
are combined at node n – each with an associated mix percentage p1, . . . , pk
such that

∑
i pi = 1 – producing µ1, . . . , µk emissions, respectively. Predicate

hardwareEmissions/3 (line 15, 24–27) recursively scans the energy mix declared
for node N and computes carbon emissions as

Is = Es ·
∑
i

piµi [kgCO2] (2)

Finally, following the approach of [19], networkFootprint/3 (lines 10, 28–31)
estimates the carbon emissions to transmit traffic flows allocated by P. Transmit-
ting 1MB of data over the Internet requires around 0.00008 kWh (kWhPerMB/1)
[14] and the average global carbon intensity (averageGCI/1) of electricity is of
475 gCO2/kWh [15]. Then, the network energy consumption EN and carbon
emissions IN for transmitting M MB for one hour can be estimated as

EN = 450 · 0.00008 ·M [kWh] and IN = 0.475 · EN [kgCO2] (3)

also considering that 1 Mbit/s = 450 MB/h. Eq.s (3) are computed at lines 30
and 31 of the code of Fig. 6, respectively.

Example 3. By querying placements(lightsApp,Placements) over the inputs of Ex-
amples 1 and 2, we obtain the two eligible placements for application LightsApp
listed in Table 2, along with their estimated hourly carbon emissions, energy



Green Application Placement in the Cloud-IoT Continuum 7

1 placements(A,Placements) :-
2 findall((C,Cost,E,P), (gFogBrain(A,P,E,C), hourlyCost(P,Cost)), Ps),
3 sort(Ps,Placements).

4 gFogBrain(A,P,Energy,Carbon) :-
5 application(A,Services), placement(Services,P),
6 allocatedResources(P,Alloc), footprint(P,Alloc,Energy,Carbon).

7 footprint(P,(AllocHW,AllocBW),Energy,Carbon) :-
8 deploymentNodes(P,Nodes),
9 hardwareFootprint(Nodes,AllocHW,HWEnergy,HWCarbon),

10 networkFootprint(AllocBW,BWEnergy,BWCarbon),
11 Energy is HWEnergy + BWEnergy, Carbon is HWCarbon + BWCarbon.

12 hardwareFootprint([(N,HW)|Ns],AllocHW,Energy,Carbon) :-
13 hardwareFootprint(Ns,AllocHW,EnergyNs,CarbonNs),
14 hardwareEnergy(N,HW,AllocHW,EnergyN),
15 energySourceMix(N,Sources), hardwareEmissions(Sources,EnergyN,CarbonN),
16 Energy is EnergyN + EnergyNs, Carbon is CarbonN + CarbonNs.
17 hardwareFootprint([],_,0,0).

18 hardwareEnergy(N,HW,AllocHW,Energy):-
19 totHW(N,TotHW), pue(N,PUE),
20 OldL is 100 * (TotHW - HW) / TotHW, energyProfile(N,OldL,OldE),
21 findall(H,member((N,H),AllocHW),HWs), sum_list(HWs,PHW),
22 NewL is 100 * (TotHW - HW + PHW) / TotHW, energyProfile(N,NewL,NewE),
23 Energy is (NewE - OldE) * PUE.

24 hardwareEmissions([(P,S)|Srcs],Energy,Carbon) :-
25 hardwareEmissions(Srcs,Energy,CarbSrcs),
26 emissions(S,MU), CarbS is P * MU * Energy, Carbon is CarbS + CarbSrcs.
27 hardwareEmissions([],_,0).

28 networkFootprint(AllocBW,BWEnergy,BWCarbon) :-
29 findall(BW, member((_,_,BW),AllocBW), Flows), sum_list(Flows,TotBW),
30 kWhPerMB(K), BWEnergy is 450 * K * TotBW,
31 averageGCI(A), BWCarbon is A * BWEnergy.

Fig. 5. Main predicates of GFogBrain.

consumption, and cost. Based on those and on business considerations, appli-
cation operators can then informedly decide whether to enact P1 or P2. While
P1 saves more than 9% CO2 emissions compared to P2, and consumes 5% less
energy, it incurs in an 11% cost increase (i.e. +0.004 e/h ' +3 e/month). It
is also possible to exploit GFogBrain to perform what-if analyses and to possibly
evaluate greener infrastructure operators, thus improving on target metrics. ut



8 S. Forti and A. Brogi

Table 2. Example placement results.

Id Placement Emissions Cost Energy Cons.

P1
on(lightsDriver, edgenode),

on(mlOptimiser, privateCloud)
0.29 kgCO2 0.0356 e/h 0.60 kWh

P2
on(lightsDriver, accesspoint),
on(mlOptimiser, privateCloud)

0.32 kgCO2 0.0316 e/h 0.63 kWh

3 Related Work
Much work targeted the problem of placing multi-service applications in Cloud-
IoT computing scenarios, e.g. as surveyed in [5,18]. Only some works featured
some aspects of energy-awareness but did not consider carbon footprint or re-
lied on simple linear models for energy consumption (e.g. [2,17,23,25]). To the
best of our knowledge, [1] is the first work including carbon emissions in the
trade-off analyses to determine optimal Cloud-IoT application placements, via
mixed integer linear programming. A limitation of [1] resides in the fact that it
only considers linear energy consumption for infrastructure nodes. On the con-
trary, energy consumption is usually a non-linear function of a computational
node load [19,24]. Last, [1] does not consider the possibility to estimate energy
consumption based on combined sources, do not account for operational costs
estimates, and require full knowledge of the physical network topology and em-
ployed routing algorithms, which is not always available in real scenarios.

Focussing on declarative approaches, Casadei et al. [9,21] devised a declara-
tive approach to service coordination based on aggregate computing, managing
opportunistic resources via a hybrid centralised/decentralised solution by rely-
ing on a self-organising peer-to-peer architecture to handle churn and mobility.
We have exploited logic programming to assess the security and trust levels of
application placements [12], and to determine them [10] also in Osmotic com-
puting settings [11]. Finally, we very recently proposed a fully decentralised
solution to write and enforce QoS-aware application management policies writ-
ten in Prolog [6]. None of those declarative solutions, however, considers energy
consumption nor carbon emissions, as GFogBrain does.

4 Concluding Remarks

In this article, we have presented a declarative methodology and its prototype,
GFogBrain, to determine eligible multiservice application placements and to es-
timate their carbon emissions, energy consumption and operational costs. The
prototype allows application operators to determine application placements that
satisfy all software, hardware, IoT, and network QoS constraints, and to in-
formedly decide on the best trade-off placement considering its estimated im-
pact on the environment and its deployment operational costs, which oftentimes
represent contrasting objectives to optimise at once.

Future work includes improving GFogBrain with continuous reasoning (as
in [10]) and assessing it via simulation or over Cloud-IoT testbeds, also em-
ploying different formulas to estimate energy consumption and carbon emissions
(including an amortised estimate of the deployment hardware embedded carbon).



Green Application Placement in the Cloud-IoT Continuum 9

References

1. Aldossary, M., Alharbi, H.A.: Towards a green approach for minimizing carbon
emissions in fog-cloud architecture. IEEE Access (2021)

2. Barcelo, M., Correa, A., Llorca, J., Tulino, A.M., Vicario, J.L., Morell, A.: Iot-
cloud service optimization in next generation smart environments. IEEE Journal
on Selected Areas in Communications 34(12), 4077–4090 (2016)

3. Belkhir, L., Elmeligi, A.: Assessing ict global emissions footprint: Trends to 2040
& recommendations. Journal of cleaner production 177, 448–463 (2018)

4. Bisicchia, G., Forti, S., Brogi, A.: Declarative goal mediation
in smart environments. In: 2021 IEEE International Confer-
ence on Smart Computing (SMARTCOMP). pp. 389–391 (2021).
https://doi.org/10.1109/SMARTCOMP52413.2021.00079

5. Brogi, A., Forti, S., Guerrero, C., Lera, I.: How to Place Your Apps in the Fog -
State of the Art and Open Challenges. Softw. Pract. Exp. 50(5), 719–740 (2020).
https://doi.org/10.1002/spe.2766

6. Brogi, A., Forti, S., Guerrero, C., Lera, I.: Towards declarative decentralised ap-
plication management in the fog. In: ISSRE Workshops. pp. 223–230 (2020).
https://doi.org/10.1109/ISSREW51248.2020.00077

7. Brogi, A., Forti, S., Ibrahim, A., Rinaldi, L.: Bonsai in the fog: An active learning
lab with fog computing. In: 2018 Third International Conference on Fog and Mobile
Edge Computing (FMEC). pp. 79–86. IEEE (2018)

8. Calero, C., Piattini, M.: Green in software engineering, vol. 3. Springer (2015)

9. Casadei, R., Viroli, M.: Coordinating computation at the edge: a de-
centralized, self-organizing, spatial approach. In: FMEC 2019. pp. 60–67
(2019). https://doi.org/10.1109/FMEC.2019.8795355, https://doi.org/10.1109/
FMEC.2019.8795355

10. Forti, S., Brogi, A.: Continuous reasoning for managing next-gen distributed ap-
plications. In: Ricca, F., Russo, A., Greco, S., Leone, N., Artikis, A., Friedrich,
G., Fodor, P., Kimmig, A., Lisi, F.A., Maratea, M., Mileo, A., Riguzzi, F. (eds.)
Proceedings 36th International Conference on Logic Programming (Technical
Communications), ICLP Technical Communications 2020, (Technical Communi-
cations) UNICAL, Rende (CS), Italy, 18-24th September 2020. EPTCS, vol. 325,
pp. 164–177 (2020). https://doi.org/10.4204/EPTCS.325.22, https://doi.org/10.
4204/EPTCS.325.22

11. Forti, S., Brogi, A.: Declarative osmotic application placement. In: Polyvyanyy,
A., Rinderle-Ma, S. (eds.) Advanced Information Systems Engineering Workshops -
CAiSE 2021 International Workshops, Melbourne, VIC, Australia, June 28 - July 2,
2021, Proceedings. Lecture Notes in Business Information Processing, vol. 423, pp.
177–190. Springer (2021). https://doi.org/10.1007/978-3-030-79022-6 15, https:
//doi.org/10.1007/978-3-030-79022-6 15

12. Forti, S., Ferrari, G.L., Brogi, A.: Secure Cloud-Edge Deployments,
with Trust. Future Gener. Comput. Syst. 102, 775–788 (2020).
https://doi.org/10.1016/j.future.2019.08.020

13. Greenpeace: Clicking green. who is winning the race to build a green internet?
(2017)

14. IEA: The carbon footprint of streaming video: fact-
checking the headlines. https://www.iea.org/commentaries/
the-carbon-footprint-of-streaming-video-fact-checking-the-headlines

https://doi.org/10.1109/SMARTCOMP52413.2021.00079
https://doi.org/10.1002/spe.2766
https://doi.org/10.1109/ISSREW51248.2020.00077
https://doi.org/10.1109/FMEC.2019.8795355
https://doi.org/10.1109/FMEC.2019.8795355
https://doi.org/10.1109/FMEC.2019.8795355
https://doi.org/10.4204/EPTCS.325.22
https://doi.org/10.4204/EPTCS.325.22
https://doi.org/10.4204/EPTCS.325.22
https://doi.org/10.1007/978-3-030-79022-6_15
https://doi.org/10.1007/978-3-030-79022-6_15
https://doi.org/10.1007/978-3-030-79022-6_15
https://doi.org/10.1016/j.future.2019.08.020
https://www.iea.org/commentaries/the-carbon-footprint-of-streaming-video-fact-checking-the-headlines
https://www.iea.org/commentaries/the-carbon-footprint-of-streaming-video-fact-checking-the-headlines


10 S. Forti and A. Brogi

15. IEA: Global energy & co2 status report 2019. https://www.iea.org/reports/
global-energy-co2-status-report-2019/

16. Kelly, C., Mangina, E., Ruzelli, A.: Putting a co2 figure on a piece of computation.
In: 11th International Conference on Electrical Power Quality and Utilisation.
pp. 1–7 (2011). https://doi.org/10.1109/EPQU.2011.6128960

17. Kopras, B., Idzikowski, F., Chen, W.C., Wang, T.J., Chou, C.T., Bogucka, H.:
Latency-aware virtual network embedding using clusters for green fog computing.
In: 2020 IEEE Globecom Workshops (GC Wkshps. pp. 1–7. IEEE (2020)

18. Mahmud, R., Ramamohanarao, K., Buyya, R.: Application Management in Fog
Computing Environments: A Taxonomy, Review and Future Directions. ACM
Comput. Surv. 53(4) (2020)

19. Microsoft: The principles of sustainable software engi-
neering. https://docs.microsoft.com/en-us/learn/modules/
sustainable-software-engineering-overview/

20. Mourão, B.C., Karita, L., do Carmo Machado, I.: Green and sustainable software
engineering - a systematic mapping study. ACM (2018)

21. Pianini, D., Casadei, R., Viroli, M., Natali, A.: Partitioned integration and coordi-
nation via the self-organising coordination regions pattern. Future Gener. Comput.
Syst. 114, 44–68 (2021). https://doi.org/10.1016/j.future.2020.07.032

22. Sarkar, S., Misra, S.: Theoretical modelling of fog computing: a green computing
paradigm to support iot applications. Iet Networks 5(2), 23–29 (2016)

23. Souza, V.B., Masip-Bruin, X., Maŕın-Tordera, E., Ramı́rez, W., Sánchez, S.: To-
wards distributed service allocation in fog-to-cloud (f2c) scenarios. In: 2016 IEEE
global communications conference (GLOBECOM). pp. 1–6. IEEE (2016)

24. Xiao, Y., Zhang, Y., Kaku, I., Kang, R., Pan, X.: Electric vehicle routing prob-
lem: A systematic review and a new comprehensive model with nonlinear energy
recharging and consumption. Renewable and Sustainable Energy Reviews 151,
111567 (2021)

25. Yu, Y., Bu, X., Yang, K., Wu, Z., Han, Z.: Green large-scale fog computing resource
allocation using joint benders decomposition, dinkelbach algorithm, admm, and
branch-and-bound. IEEE Internet of Things Journal 6(3), 4106–4117 (2018)

https://www.iea.org/reports/global-energy-co2-status-report-2019/
https://www.iea.org/reports/global-energy-co2-status-report-2019/
https://doi.org/10.1109/EPQU.2011.6128960
https://docs.microsoft.com/en-us/learn/modules/sustainable-software-engineering-overview/
https://docs.microsoft.com/en-us/learn/modules/sustainable-software-engineering-overview/
https://doi.org/10.1016/j.future.2020.07.032


Green Application Placement in the Cloud-IoT Continuum 11

Appendix A – Code of placement/2

For the sake of the Reviewers only, we report hereinafter the code of placement/4

from [10], exploited by predicate gFogBrain/4 (Fig. 6).

1 placement(Services,P) :- placement(Services, [], ([],[]), P).

2 placement([S|Ss],P,(AllocHW,AllocBW),Placement) :-
3 nodeOk(S,N,P,AllocHW), linksOk(S,N,P,AllocBW),
4 placement(Ss,[on(S,N)|P],(AllocHW,AllocBW),Placement).
5 placement([],P,_,P).

6 nodeOk(S,N,P,AllocHW) :-
7 service(S,SWReqs,HWReqs,IoTReqs),
8 node(N,SWCaps,HWCaps,IoTCaps),
9 swReqsOk(SWReqs,SWCaps),

10 thingReqsOk(IoTReqs,IoTCaps),
11 hwOk(N,HWCaps,HWReqs,P,AllocHW).

12 swReqsOk(SWReqs, SWCaps) :- subset(SWReqs, SWCaps).

13 thingReqsOk(TReqs, TCaps) :- subset(TReqs, TCaps).

14 hwOk(N,HWCaps,HWReqs,P,AllocHW) :-
15 findall(HW,member((N,HW),AllocHW),HWs),
16 sum_list(HWs, CurrAllocHW),
17 findall(HW, (member(on(S1,N),P), service(S1,_,HW,_)), OkHWs),
18 sum_list(OkHWs, NewAllocHW),
19 hwTh(T), HWCaps >= HWReqs + T - CurrAllocHW + NewAllocHW.

20 linksOk(S,N,P,AllocBW) :-
21 findall((N1N2,ReqLat), distinct(relevant(S,N,P,N1N2,ReqLat)), N2Ns),
22 latencyOk(N2Ns),
23 findall(N1N2, distinct(member((N1N2,ReqLat),N2Ns)), N1N2s),
24 bwOk(N1N2s, AllocBW, [on(S,N)|P]).

25 latencyOk([((N1,N2),ReqLat)|N2Ns]) :-
26 link(N1,N2,FeatLat,_), FeatLat =< ReqLat, latencyOk(N2Ns).
27 latencyOk([]).

28 bwOk([(N1,N2)|N2Ns],AllocBW,P) :-
29 link(N1,N2,_,FeatBW),
30 findall(BW, member((N1,N2,BW),AllocBW), BWs),
31 sum_list(BWs, CurrAllocBW),
32 findall(BW, s2sOnN1N2((N1,N2), P, BW), OkBWs),
33 sum_list(OkBWs, OkAllocBw),
34 bwTh(T), FeatBW >= OkAllocBw - CurrAllocBW + T,
35 bwOk(N2Ns,AllocBW,P).
36 bwOk([],_,_).

37 relevant(S,N,P,(N,N2),L) :- s2s(S,S2,L,_), member(on(S2,N2),P), dif(N,N2).
38 relevant(S,N,P,(N1,N),L) :- s2s(S1,S,L,_), member(on(S1,N1),P), dif(N1,N).

39 s2sOnN1N2((N1,N2),P,B) :-
40 s2s(S3,S4,_,B), member(on(S3,N1),P), member(on(S4,N2),P).

41 allocatedResources(P,(AllocHW,AllocBW)) :-
42 findall((N,HW), (member(on(S,N),P), service(S,_,HW,_)), AllocHW),
43 findall((N1,N2,BW), n2n(P,N1,N2,BW), AllocBW).
44 n2n(P,N1,N2,ReqBW) :-
45 s2s(S1,S2,_,ReqBW), member(on(S1,N1),P), member(on(S2,N2),P), dif(N1,N2).

Fig. 6. Declarative placement strategy of [10].


	Green Application Placement in the Cloud-IoT Continuum

