
NP Satisfiability for Arrays as Powers

Rodrigo Raya[0000−0002−0866−9257] and Viktor Kunčak[0000−0001−7044−9522]

School of Computer and Communication Science
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

{rodrigo.raya,viktor.kuncak}@epfl.ch

Abstract. We show that the satisfiability problem for the quantifier-
free theory of product structures with the equicardinality relation is in
NP. As an application, we extend the combinatory array logic fragment
to handle cardinality constraints. The resulting fragment is independent
of the base element and index set theories.

1 Introduction

Arrays are a fundamental data structure in computer science. Decision proce-
dures for arrays are therefore of paramount importance for deductive program
verification. A number of results have examined fragments that strike interesting
trade-offs between expressive power and complexity [4, 5, 10,12,17,21].

A particularly important fragment for formal verification is combinatory ar-
ray logic (CAL) fragment [19], which is implemented in the widely used Z3
theorem prover [20]. A key to expressive power of the generalized array frag-
ment is that it extends the extensional quantifier-free theory of arrays [21] with
point-wise functions and relations.

In this paper, we start by observing that the generalized array fragment sig-
nature corresponds to the signature of a product structure [13]. The decidability
of product structures has been studied in the literature on model theory [7,18].
Moreover, these results also cover formulas that constrain sets of indices using,
for example, equicardinality relation [7], which provides additional expressive
power. Unfortunately, the results from model theory typically consider quanti-
fied first-order theory, resulting in high complexity [8] even when instantiated to
the case of no quantifier alternations. The basic source of this inefficiency is that
the underlying procedure explicitly constructs exponentially many formulas.

On the other hand, the result (theorem 17 of [19]) implies that the satisfiabil-
ity problem of the quantifier-free theory of a power structure is in NP whenever
the theory of the components is.

In this paper, we present a direct proof of the NP membership for satisfiability
of formulas in power structures. The proof is independent of the theories of the
indices and the theory of array elements. As a consequence, we obtain that the
satisfiability problem of the quantifier-free fragment of Skolem arithmetic is in
NP [11], which, interestingly, was shown using results in number theory.

As a main contribution, we generalize our construction to prove that the
satisfiability problem of the quantifier-free fragment of BAPA [14] is in NP when

ar
X

iv
:2

10
9.

05
36

3v
1

 [
cs

.L
O

]
 1

1
Se

p
20

21

2 Rodrigo Raya and Viktor Kunčak

set variables are interpreted with index sets defined by formulas of the language
of the component theory. Whereas the quantifier-free fragment of BAPA (termed
QFBAPA) was shown to be in NP [16], it was not clear that such construction
carries over to the situation where index sets are interpreted to be positions in
the arrays.

In this paper we show that interpreting QFBAPA sets as sets of array indices
that satisfy certain formula results in a logic whose satisfiability is still in NP. We
call this new quantifier-free theory QFBAPAI. We show how to use it to encode
constraints that mimic those of combinatory array logic [19]. The result is a logic
that can express cardinality constraints that hold componentwise. Unlike [5],
the logic is independent of the component or the index theory. Our formalism
shows that QFBAPA sets can be interpreted, overcoming a limitation pointed
out in [1].

2 NP Complexity for Power Structures

Throughout the paper, we fix a first-order language L, a non-empty set I and a
structureM with carrier M for the components of the arrays. We model arrays
as a particular kind of product structure:

Definition 1. The power structure Π has the function space M I as domain and
interprets the symbols of the language L as follows:

– For each constant c and i ∈ I, cΠ(i) = cM.
– For each function symbol f , i ∈ I, n ∈ N and (a1, . . . , an) ∈ (M I)n:

fΠ(a1, . . . , an)(i) = fM(a1(i), . . . , an(i))

– For each relation symbol R, n ∈ N and (a1, . . . , an) ∈ (M I)n:

(a1, . . . , an) ∈ RΠ if and only if for every i ∈ I, (a1(i), . . . , an(i)) ∈ RM

We will write tuples (a1, . . . , an) ∈ (M I)n as a and (a1(i), . . . , an(i)) as a(i).

Definition 2. The quantifier-free theory of a model N , Th∃∗(N), is the set of
existentially quantified formulas ϕ of L such that N |= ϕ. A solution of the
formula is a satisfying assignment to the existential variables.

Lemma 1. Let ψ be a first-order formula in prenex form and C a disjunct of
the DNF form of its matrix. Then |C| = O(|ψ|).

Proof. The DNF conversion only affects the propositional structure of the for-
mula. Thus, in C one may at most have the relations occurring in ψ and their
negations. In the worst case, one gets at most 2|ψ| symbols accounting for the re-
lations and at most 4|ψ| symbols accounting for the conjunctions and negations.
Therefore, |C| ≤ 6 · |ψ|.

NP Satisfiability for Arrays as Powers 3

The following result shows the spirit of our complexity analysis: we take a
classical construction (power structure) but analyze its complexity for quantifier-
free fragment that is relevant for program verification.

Theorem 1. Th∃∗(M) ∈ NP if and only if Th∃∗(Π) ∈ NP.

Proof. Assume that VC is a polynomial time verifier for Th∃∗(M). Figure 1 gives
a polynomial time verifier V for Th∃∗(Π). We show that the machine is a verifier
for Th∃∗(Π):

On input 〈x,w〉:

1. Take w and interpret it as:

– Some disjunct of the DNF form for x:

ϕ ≡ ∃x1, . . . , xn.
l
∧
i=1

Ri(t
i
1, . . . , t

i
ai) ∧

k
∧

j=l+1
¬Rj(tj1, . . . , t

j
aj)

– A partition P = {p1, . . . , pt} of {l + 1, . . . , k}.

– Certificates C0, . . . , Ct for VC on inputs:

ϕ0 ≡ ∃x1, . . . , xn.
l
∧
i=1

Ri(t
i
1, . . . , t

i
ai)

ϕd ≡ ∃x1, . . . , xn.
l
∧
i=1

Ri(t
i
1, . . . , t

i
ai) ∧ ∧e∈pd

¬Re(te1, . . . , teae)

for each pd ∈ P .

2. If t ≤ |I| then reject.

3. Otherwise, run VC with 〈ϕd, Cd〉 for d = 0, . . . , t.

4. Accept iff all runs accept.

Fig. 1. Verifier for Th∃∗(M
I)

– w has polynomial size in |x|:

By lemma 1, |ϕ| = O(|x|).
Thus, k = O(|x|).
P = O(|x|2) since P can be written with k log(k) + k bits.

Since |Cd| = O(|ϕd|cd) and |ϕd| ≤ |ϕ| = O(|x|), |Cd| = O(|x|cd).

Thus, |w| = |ϕ|+ |P |+
∑

d=0,...,t

|Cd| = O
(
|x|max{2,max

d
cd}
)

.

4 Rodrigo Raya and Viktor Kunčak

– V runs in polynomial time in |x|:

Building the list of ϕd is O(|x|2).

As above, |ϕd| ≤ |ϕ| = O(|x|).

So each call to VC runs in O(|x|f) (VC is polynomial time).

Like before, k = O(|x|).

Therefore, V runs in O
(
|x|max{2,f+1}

)
.

– V is a verifier for Th∃∗(Π):

⇒) If x ∈ Th∃∗(Π) then writing x in prenex DNF form, there is at least
one disjunct ϕ (as in figure 1) true in the product. Thus, there is s ∈ M I

satisfying:

. .

(ti1
Π

[x 7→ s], . . . , tiai
Π

[x 7→ s]) ∈ RΠi
. .

(tj1
Π

[x 7→ s], . . . , tjaj
Π

[x 7→ s]) /∈ RΠj
. .

Using the semantics of products this means:

. .

∀r ∈ I.(ti1
M

[x 7→ s(r)], . . . , tiai
M

[x 7→ s(r)]) ∈ RMi
. .

∃r ∈ I.(tj1
M

[x 7→ s(r)], . . . , tjaj
M

[x 7→ s(r)]) /∈ RMj
. .

So there is a map r : {l + 1, . . . , k} → I that assigns to each formula, one
index where it holds. r induces a partition P = r−1(I) of {l+ 1, . . . , k} with
t = |P | ≤ min(|I|, k − l). Each part pd = {e1, . . . , em} and each associated
index rd = r(ei), satisfy the following system:

. .

(ti1
M

[x 7→ s(rp)], . . . , t
i
ai

M
[x 7→ s(rp)]) ∈ RMi

. .

(te11
M[x 7→ s(rp)], . . . , t

e1
ae1

M[x 7→ s(rp)]) /∈ RMe1
. .

(tem1
M[x 7→ s(rp)], . . . , t

em
aem
M[x 7→ s(rp)]) /∈ RMem

Equivalently, for each d ∈ {1, . . . , t},M |= ϕd[x 7→ s(rd)]. For d = 0, we set:

r0 =

{
any index i ∈ I if t = 0

some rd ∈ {r1, . . . , rt} if t > 0

NP Satisfiability for Arrays as Powers 5

ThenM |= ϕ0[x 7→ s(r0)]. By definition of VC , there are polynomially-sized
certificates C0, . . . , Ct such that VC accepts 〈ϕd, Cd〉 for each d. Thus V
accepts 〈x, 〈ϕ, P,C0, . . . , Ct〉〉.

⇐) Let w = 〈ϕ, P, {Cd}d∈{0,...,t}〉 be a certificate such that V accepts 〈x,w〉.
Then, by step 2, t = |P | ≤ |I| and for each d ∈ {0, . . . , t}, VC accepts
〈ϕd, Cd〉, i.e. M |= ϕd. So there are solutions x·i = (x1i, . . . , xni)

t to the
formulas:

ϕ0 ≡ ∃x10, . . . ,∃xn0.
l
∧
i=1

Ri(t
i
1, . . . , t

i
ai)

ϕd ≡ ∃x1d, . . . ,∃xnd.
l
∧
i=1

Ri(t
i
1, . . . , t

i
si) ∧ ∧e∈pd

¬Re(te1, . . . , teae)

Fix distinct i1, . . . , it ∈ I. Consider the n× |I| matrix with entries:

sji =

{
xji if i ∈ {i1, . . . , it}
xj0 otherwise

The rows of this matrix s = {s1, . . . , sn} are solutions of ϕ in the product
structure:

. .

(ti1
Π

[x 7→ s], . . . , tiai
Π

[x 7→ s]) ∈ RΠi
. .

(tj1
Π

[x 7→ s], . . . , tjaj
Π

[x 7→ s]) /∈ RΠj
. .

Using the definition of product, it is sufficient to show:

. .

∀r ∈ I.(ti1
M

[x 7→ s(r)], . . . , tiai
M

[x 7→ s(r)]) ∈ RMi
. .

∃r ∈ I.(tj1
M

[x 7→ s(r)], . . . , tjaj
M

[x 7→ s(r)]) /∈ RMj
. .

For i ∈ {1, . . . , l} and each r ∈ I, the following formula needs to hold:

(ti1
M

[x 7→ s(r)], . . . , tisi
M

[x 7→ s(r)]) ∈ RMi

If r ∈ {i1, . . . , it} then s(r) = x·r (i.e. all x1r, . . . , xnr) and the equation
holds sinceM |= ϕr[x·r]. Otherwise, s(r) = x·0 and the equation holds since
M |= ϕ0[x·0].

For j ∈ {l + 1, . . . , k} and some r ∈ I, the following formula needs to hold:

(tj1
M

[x 7→ s(r)], . . . , tjsj
M

[x 7→ s(r)]) /∈ RMj

We take r = id such that j ∈ pd. Then s(r) = x·r and the equation holds
since M |= ϕr[x·r].

6 Rodrigo Raya and Viktor Kunčak

This proves the left to right implication. For completeness, we sketch a justi-
fication of the intuitively clear right to left implication. The idea is that one can
extend the signature of L with relations R whose interpretation is that of any
quantifier-free formula ϕ while retaining NP complexity. Indeed, let N be any
structure for the language L and let ϕ(x1, . . . , xn) be any formula of L. Define
R(x1, . . . , xn) := ϕ(x1, . . . , xn) and N ext the model N extended with the rela-

tion symbol R in such a way that RN
ext

(v1, . . . , vn) = ϕN (v1, . . . , vn) for values
vi of the carrier of N . We show that:

Th∃∗(N) ∈ NP ⇐⇒ Th∃∗(N ext) ∈ NP

First observe that |ϕ(x1, . . . , xn)| is an affine function in |xi|: there is a constant
term accounting for the logical symbols, plus terms ai|xi| accounting for the oc-
currences of the xi. Now, if ψ ∈ Th∃∗(N) then when we contract the occurrences
of ϕ into R we still get a linear size in |ψ|. Therefore, the verifier for Th∃∗(N ext)
gives the result. If on the other hand, ψ ∈ Th∃∗(N ext) then expanding the oc-
currences of R each |xi| is bounded in |ψ|, so the expanded expression augments
its size by a quadratic factor O(|ψ|2). The verifier for Th∃∗(N) gives the result.
Finally, let’s see that:

Th∃∗(Π
ext) ∈ NP =⇒ Th∃∗(M) ∈ NP

Given ϕ ∈ Th∃∗(Πext), we define a relation R := ϕ and consider the correspond-
ing extended language Th∃∗(Π

ext(ϕ)) which by assumption is in NP. Thus, it is
decidable in NP that R holds in the product structure. But, RΠ ≡ ∀i ∈ I.ϕM.
Given that I is non-empty, we have that the verifier for Th∃∗(Π

ext(ϕ)) can de-
termine if ϕ ∈ Th∃∗(M).

2.1 Corollary: Quantifier-Free Skolem Arithmetic is in NP

Although not needed for our final result, the technique of theorem 1 is of in-
dependent interest. An example is showing that the satisfiability problem for
the quantifier-free fragment of Skolem arithmetic is in NP. This result was first
proved by Grädel [11] using results by Sieveking and von zur Gathen [9] with a
proof that appears, on the surface, to be specific to the arithmetic theories.

Skolem arithmetic is the first-order theory of the structure 〈N \ {0}, ·,=, |〉.
This structure is isomorphic to the weak direct power [7, 8] of the structure
〈N,+,≤〉. Thus, their existential theories coincide. A variation of the verifier in
figure 1, ensuring that if |I| is infinite then 0n is a solution of ϕ0 in M, yields
the NP complexity bound for the satisfiability of (existential and) quantifier-free
formulas.

3 Explicit Sets of Indices and a Polynomial Verifier for
QFBAPA

To prepare for generalization of the result from the previous section, we now
review the QFBAPA complexity [16] using the notation of the present paper.

NP Satisfiability for Arrays as Powers 7

The intuition for our approach is that the verifier of figure 1 is solving constraints
on the array indices which can be schematically presented as in figure 2. The
figure presents a Venn region of sets defined by formulas of L. All indices must
remain within the boundaries of the main region A. This region corresponds

to the positive literals of ϕ in figure 1:
l
∧
i=1

Ri(t
i
1, . . . , t

i
ai). The negative literals

k
∧

j=l+1
¬Rj(tj1, . . . , tjaj) generate existential constraints. These can be interpreted

as requiring a cardinality greater or equal than one in certain subregions of A.

Fig. 2. An example Venn region with product constraints.

To generalize our result we use the logic BAPA [14], whose language allows
to express boolean algebra and cardinality constraints on sets. The satisfiability
problem for the quantifier-free fragment of BAPA, often written as QFBAPA,
is in NP (see section 3 of [16]). Figure 3 shows the syntax of the fragment.
F presents the boolean structure of the formula, A stands for the top-level
constraints, B gives the boolean restrictions and T the Presburger arithmetic
terms. U represents the universal set and MAXC gives the cardinality of U . We
will assume this cardinality to be finite for simplicity of the presentation, but
it is straightforward to generalize the NP membership result to the case where
the universe is infinite and the language contains additional predicate expressing
finiteness of a set [15, Section 3].

8 Rodrigo Raya and Viktor Kunčak

F ::= A |F1 ∧ F2 |F1 ∨ F2 | ¬F
A ::= B1 = B2 |B1 ⊆ B2 |T1 = T2 |T1 ≤ T2 |K dvd T

B ::= x | ∅ | U |B1 ∪B2 |B1 ∩B2 |Bc

T ::= k |K |MAXC |T1 + T2 |K · T | |B|
K ::= . . . | − 2 | − 1 | 0 | 1 | 2 | . . .

Fig. 3. QFBAPA’s syntax

The basic argument to establish NP complexity of QFBAPA is based on a
theorem by Eisenbrand and Shmonin [6], which in our context says that any
element of an integer cone can be expressed in terms of a polynomial number of
generators. Figure 4 gives a verifier for this basic version of the algorithm.

The key step is showing equisatisfiability between 2.(b) and 2.(c). If x1, . . . , xk

are the variables occurring in b0, . . . , bp then we write pβ =
k⋂
i=1

xeii for β =

(e1, . . . , ek), lβ = |pβ | and JbiKβj
the evaluation of bi as a propositional formula

with the assignment given in β. Now, |bi| =
2e−1∑
j=0

JbiKβj lβj , so the restriction

k∧
i=0

|bi| = ki becomes
p∧
i=0

2e−1∑
j=0

JbiKβj
lβj

= ki which can be seen as a linear combi-

nation in {(Jb0Kβj
, . . . , JbpKβj

).j ∈ {0, . . . , 2e− 1}}. Eisenbrand-Shmonin’s result
allows then to derive 2.(c) for N polynomial in |x|. In the other direction, it is
sufficient to set lβj = 0 for j ∈ {0, . . . , 2e − 1} \ {i1, . . . , iN}. Thus, we have:

Theorem 2 ([16]). QFBAPA is in NP.

4 NP Complexity for QFBAPAI

We are now ready to present our main result, which extends NP membership
of product structures and of QFBAPA to the situation where we interpret QF-
BAPA sets as sets of indices (subsets of the set I) in which quantifier-free for-
mulas hold.

Definition 3. We consider the satisfiability problem for QFBAPA formulas F
whose set variables are index sets defined by quantifier-free formulas ϕi of L
applied to either component theory constants or to components of the array vari-
ables:

∃c1, . . . , cm.∃x1, . . . , xn.

F (S1, . . . , Sk) ∧
k∧
i=1

Si = {r ∈ I | ϕi(x1(r), . . . , xn(r), c1, . . . , cm)}

NP Satisfiability for Arrays as Powers 9

On input 〈x,w〉:

1. Interpret w as:

(a) a list of indices i1, . . . , iN ∈ {0, . . . , 2e − 1} where e is the number of set
variables in x.

(b) a certificate C for VPA on input x′ defined below.

2. Transform x into x′ by:

(a) rewriting:

b1 = b2 7→ b1 ⊆ b2 ∧ b2 ⊆ b1
b1 ⊆ b2 7→ |b1 ∩ bc2| = 0

(b) introducing variables for cardinality expressions:

G ∧
p∧
i=0

|bi| = ki

where G is a quantifier free Presburger arithmetic formula.

(c) rewriting into:

G ∧
∧

j=i1,...,iN

lβj ≥ 0 ∧
p∧
i=0

∑
j=i1,...,iN

JbiKβj · lβj = ki

3. Run VPA on 〈x′, C〉.

4. Accept iff VPA accepts.

Fig. 4. Verifier for QFBAPA

We call this problem QFBAPAI, standing for interpreted QFBAPA.

Theorem 3. QFBAPAI is in NP.

Proof. Let VQFBAPA be a polynomial time verifier for QFBAPA and let VC be
a polynomial time verifier for the component theory. Figure 5 gives a verifier V
for QFBAPAI. We abbreviate (x1, . . . , xn) by x and (c1, . . . , cm) by c.

⇒) If x ∈ QFBAPAI then there exist c, s satisfying:

F (S1, . . . , Sk) ∧
k∧
i=1

Si = {r ∈ I|ϕi(s(r), c)}

10 Rodrigo Raya and Viktor Kunčak

On input 〈x,w〉:

1. Interpret w as:

(a) a list of indices i1, . . . , iN ∈ {0, . . . , 2e − 1} where e is the number of set
variables in y.

(b) a certificate C for VC on input y defined below.

(c) a certificate C′ for VPA on input y′ defined below.

(d) a bit b indicating if the solution sets cover the whole I.

2. Set y = ∃c, x1, . . . , xN .
∧

βj∈{i1,...,iN}

k∧
i=1

ϕi(xj , c)
βj(i) (∗).

3. Set y′ = ∃S′
1, . . . , S

′
k.F (S′

1, . . . , S
′
k) ∧

∧
βj∈{i1,...,iN}

k⋂
i=1

S
′βj(i)
i 6= ∅ (∗∗).

4. If b = 0 then set (∗) = ∧ ¬
∨

βj∈{i1,...,iN}

k∧
i=1

ϕi(x0, c)
βj(i) and add x0 as a

top-level existential quantifier.

If b = 1 then set (∗∗) = ∧
⋃

βj∈{i1,...,iN}

k⋂
i=1

S
′βj(i)
i = I.

5. Run VC on
〈
y, C

〉
.

6. Run VQFBAPA on
〈
y′, 〈{i1, . . . , iN}, C′〉

〉
.

7. Accept iff all runs accept.

Fig. 5. Verifier for QFBAPA interpreted over index-sets.

Define Si := {r ∈ I|ϕi(s(r), c)}. Then, the method of theorem 2 applied to

F (S1, . . . , Sk) yields a formula G ∧
∧p
i=0 |bi| = ki. Using |bi| =

∑
β|=bi

∣∣∣ k⋂
i=1

S
β(i)
i

∣∣∣
and setting pβ :=

k⋂
i=1

S
β(i)
i , lβ :=

∣∣∣pβ∣∣∣, yields G∧
p∧
i=0

2e−1∑
j=0

JbiKβj
· lβj

= ki. Remove

those β where lβ = 0. Since:

pβ =

k⋂
i=1

{r ∈ I|ϕi(s(r), c)}β(i) =

{
r ∈ I

∣∣∣∣∣
k∧
i=1

ϕi(s(r), c)
β(i)

}

NP Satisfiability for Arrays as Powers 11

this includes those β such that
k∧
i=1

ϕi(s(r), c)
β(i) is not satisfiable. We obtain

a reduced set of indices R ⊆ {0, . . . , 2e − 1} where G ∧
p∧
i=0

∑
β∈R

JbiKβ · lβ = ki.

Eisenbrand-Shmonin’s theorem yields a polynomial family of indices such that

G ∧
p∧
i=0

∑
β∈{i1,...,iN}⊆R

JbiKβ · l′β = ki for non-zero l′β .

For each β ∈ {i1, . . . , iN}, since lβ 6= 0, there exists rβ ∈ I such that
k∧
i=1

ϕi(s(rβ), c)β(i). So the formula y without (*) is satisfied.

The satisfiability of the cardinality restrictions on l′β implies the existence of
sets of indices S′i such that for each β ∈ {i1, . . . , iN}, |p′β | = l′β . Observe that
|I| =

∑
β∈R

lβ . Distinguish two cases:

– If |I| >
∑

β∈{i1,...,iN}
l′β then there is at least one index r0 such that s(r0)

satisfies
k∧
i=1

ϕi(s(r0), c)β(i) for β /∈ {i1, . . . , iN}. Therefore, the formula y

with (*) is satisfied. In this case, define:

s′(r) =

{
s(rβ) if r ∈ p′β and β ∈ {i1, . . . , iN}
s(r0) otherwise

and choose b = 0.
– If |I| =

∑
β∈{i1,...,iN}

l′β then define:

s′(r) =
{
s(rβ) if r ∈ p′β and β ∈ {i1, . . . , iN}

Here we choose b = 1.

In any case, the formula y that VC receives as input is satisfied. Since N
is polynomial in |x|, this gives a polynomially-sized certificate C such that VC
accepts 〈y, C〉 in polynomial time.

Let S′′i = {r ∈ I|ϕi(s′(r), c)}. Then S′′1 , . . . , S
′′
k satisfy y′ by construction:

– Observe that for each β ∈ {i1, . . . , iN}, p′′β = p′β .

– For each β ∈ {i1, . . . , iN}, p′′β 6= ∅, since l′β 6= 0.

– If b = 1 then
⋃

β∈{i1,...,iN}
p′′β = I since |I| =

∑
β∈{i1,...,iN}

l′β .

– The cardinality restrictions are satisfied by definition.

12 Rodrigo Raya and Viktor Kunčak

Again, since N is polynomial in |x|, |y′| is polynomial in |x| too. By the
above, it is also satisfiable. Thus, there exists a polynomially-sized certificate C ′

for VPA such that VQFBAPA accepts 〈{i1, . . . , iN}, C ′〉 in polynomial time. So V
accepts 〈x, 〈{i1, . . . , iN}, C, C ′, b〉〉 in polynomial time.

⇐) If V accepts 〈x,w〉 in polynomial time then:

–
〈
y, C

〉
is accepted by VC , so there is a tuple c and for each β ∈ {i1, . . . , iN},

there are tuples sβ , such that
k∧
i=1

ϕi(sβ(1), . . . , sβ(n), c)β(i).

– 〈y′, 〈{i1, . . . , iN}, C ′〉〉 is accepted by VQFBAPA, so there exist sets S′i such
that:

F (S′1, . . . , S
′
k) ∧

∧
β∈{i1,...,iN}

k⋂
i=1

S
′β(i)
i 6= ∅

Interpreting S′i as index sets, we define an array s distinguishing two cases:

– If b = 0 then VC accepts:

〈
∃c,∃x1, . . . , xN , x0. . . .¬

∨
β∈{i1,...,iN}

k∧
i=1

ϕi(x0, c)
β(i), C

〉
Let s0 be a satisfying tuple for x0. Define:

s(r) =

{
sβ if r ∈ p′β and β ∈ {i1, . . . , iN}
s0 otherwise

– If b = 1 then S′i satisfies
⋃

β∈{i1,...,iN}

k⋂
i=1

S
′β(i)
i = I. Define:

s(r) =
{
sβ if r ∈ p′β and β ∈ {i1, . . . , iN}

Then, by construction, c, s form a solution of:

∃c, x.F (S1, . . . , Sk) ∧
k∧
i=1

Si = {r ∈ I | ϕi(x(r), c)}

For each β ∈ {i1, . . . , iN}:

pβ =
{
r ∈ I

∣∣∣ k∧
i=1

ϕ(s(r), c)β(i)
}

= pβ′

so the cardinality conditions are met.

NP Satisfiability for Arrays as Powers 13

5 Combination with the Array Theory

In this section we show, through a syntactic translation, that the conventional
and generalized array operations can be expressed in QFBAPAI. The combina-
tory array logic fragment of de Moura and Bjørner [19] can be presented as a
multi-sorted structure:

A = 〈A, I, V, ·[·], store(·, ·, ·), {cvi }, {fvi }, {Rvi }, {cj}, {fj}, {Rj}〉

where V = 〈V, {cvi }, {fi}v, {Rvi }〉 is the structure modelling array elements and
I is a non-empty set which parametrizes the read (·[·]) and store (store(·, ·, ·))
operations. Finally, Π = VI = 〈A, {cj}, {fj}, {Rj}〉 is the power structure with
base V and index set I. Note that, according to the definition of a power struc-
ture, there is a one to one correspondence between the symbols of the component
language and those of the array language. We use the superscript v to distinguish
between value symbols and power structure symbols. The read and store opera-
tions use a mixture of sorts. The read operation corresponds to a parametrized
version of the canonical projection homomorphism of product structures [13]. It
is interpreted as:

·[·] :A× I−→V
(a, i) 7−→a(i)

On the other hand, the store operation lacks a canonical counterpart in model
theory. It is to be interpreted as the function:

store :A× I × V−→A
(a, i, v) 7−→store(a, i, v)

where:

store(a, i, v)(j) =

{
a(j) if j 6= i

v if j = i

The goal of this section is to give a satisfiability preserving translation from CAL
to QFBAPAI in such a way that the size of the transformed formula is bounded
by a polynomial in the size of the original input. Since CAL formulas cannot
express equicardinality constraints, |A| = |B|, this means that we have increased
the expresive power of the fragment while retaining the same complexity bound.
The translation is written in terms of a list of basic primitives explained below.
The complete translation is shown in figure 6.

Since we are dealing with quantifier-free formulas, we map the proposi-
tional structure to boolean operations and concentrate in the encoding of non-
propositional symbols. These symbols are atomic relations in either the compo-
nent theory or the array theory.

Relations in the component theory. An atomic formula of the compo-
nent theory has the following shape:

Rv(fi{a1[i1], . . . , an[in], c1, . . . , cm})

14 Rodrigo Raya and Viktor Kunčak

Here and in the rest of the section we use the notation R(fi{p1, . . . , pn}) for a
list of arity(R) function terms of the form fi{p1, . . . , pn} where fi is a function
symbol using a subset of the parameters in {p1, . . . , pn}. Both fi and the param-
eters pi must have the same sort as R. We use the letter a to denote either an
array variable x or a store term and the letter v to denote an element value in
contrast to a read term a[j].

We transform the above constraint using the following rules:

1. ABSTRACT READS (≤ 1): if there are more than two parameters that use
the read function ·[·] applied to a variable, we rewrite all occurrences xj [i]
but one into value constants xji. Note that a read from a constant array
need not create a new value variable. Instead, we rewrite c[i] as cv. In this
case, no further changes are required in later stages.

2. IMPOSE READS: for each abstracted read xj [i] add the condition:

{l ∈ I|xj(l) = xji} ⊇ {i}

3. ABSTRACT WRITES: rewrite the innermost store operations store(x, i, v)
into array variables xiv.

4. IMPOSE WRITES: for each abstracted store xiv, we impose the condition:

{l ∈ I|xiv(l) = v} ⊇ {i} ∧ {l ∈ I|xiv(l) = x(l)} ⊇ {i}c

This process is repeated until there is no change in the manipulated formula.
In this last case, we have obtained a relation:

Rv(fi{x[i], abs1, . . . , absk, c1, . . . , cm})

where absj are the newly introduced array or value variables. We then perform
one last step:

5. IMPOSE VALUE CONSTRAINT: add the constraint:

{l ∈ I|Rv(fi{x(l), abs1, . . . , absk, c1, . . . , cm})} ⊇ {i}

Relations in the power structure theory. An atomic formula of the
product theory has the shape:

R(fi{a1, . . . , an, c1, . . . , cm})

where c1, . . . , cm are to be interpreted as constants of the product. We repeat
a variation of the steps 1-4 where ABSTRACT READS (≤ 1) is changed into
ABSTRACT READS (= 0). The only difference between the two is that the
latter removes all reads. The result of this operation is a relation:

R(fi{x1, . . . , xs, abs1, . . . , absk, c1, . . . , cm})

where absj are the newly introduced array variables. We cannot have value
variables since in this case value expressions are not top-level.

In this case, we do the following as a last step:

NP Satisfiability for Arrays as Powers 15

Given a formula ψ of CAL in negation normal form:

1. Rewrite ∧ 7→ ∩,∨ 7→ ∪ and ¬ 7→ ·c.

2. Consider the following auxiliary procedure P receiving one bit b as parameter.

Repeat until no more constraints are added:

(a)
If b = 0 then ABSTRACT READS(= 0)

else ABSTRACT READS(<= 1).

(b) IMPOSE READS

(c) ABSTRACT WRITES

(d) IMPOSE WRITES

3. For each relation in the array theory call P with b = 0.

4. For each relation in the component theory call P with b = 1.

Fig. 6. Translation scheme from CAL to QFBAPAI.

5. IMPOSE ARRAY CONSTRAINT: add the constraint:

{l ∈ I|R(fi{x1(l), . . . , xs(l), abs1(l), . . . , absk(l), c1, . . . , cm})} = I

Satisfiability preservation and size of the transformed formula. It
is clear that each transformation step yields an equisatisfiable formula. In par-
ticular, this ensures that the order of introduction of new variables does not
matter. Even if the transformed formula may contain duplicates, the existence
of a solution is equivalent in both formulas.

Regarding the size of the transformed formula, we observe that during the
analysis of a relation we create as many variables as the size of such relation.
Thus, the number of variables created is at most linear in the size of the formula.
This means that the total number of variables and constants that are either
present in the original formula or created by the algorithm, C, is in O(|ψ|).

The creation of each variable implies the creation of at most three restrictions:
this happens in the IMPOSE WRITES case, where the third restriction specifies
that the size of {i} is one. Each restriction uses at most two variables, so we can
encode it using O(log2(|ψ|)) space. Thus, to encode all the added restrictions we
need O(|ψ| log2(|ψ|)) space.

Each relation generates an additional constraint, which may use all the set
of C variables. So we may need up to O(|ψ| · log2(|ψ|)) to encode the constraint.
Since there are O(|ψ|) relations, we need O(|ψ|2 log2(|ψ|)) space to encode them.

Overall, the size increase is in O(|ψ|2 log2(|ψ|), as desired to preserve NP
complexity.

16 Rodrigo Raya and Viktor Kunčak

6 Related Work

Our work is related to a long tradition of decision procedures for the theories of
arrays [4, 5, 10, 12, 17, 21]. Our direct inspiration is combinatory array logic [19].
We have extended this fragment with cardinality constraints.

In our study, we have given priority to those procedures that decide satis-
fiability within the NP complexity class. From these, [1] and [5] are the more
closely related since they also address counting properties. The main difference
with these works is that our index theory is arbitrary and that the element the-
ory is any one in NP. This gives access to a greater degree of compositionality.
For instance, we can profit of the properties of QFBAPA to handle infinite car-
dinalities in the index theory [15]. On the other hand, the work of [5] allows for
a great expressivity, achieving NP complexity on particular fragments, but it is
PSPACE-complete in the general case.

Other influential works in the theory of integer arrays include [4] and [12].
[4] treats a fragment capable of expressing ordering conditions and Presburger
restrictions on the indices. [12] complements the work above based on automata
considerations. In both cases, the complexity of the satisfiability problem for
the full fragment remains, to our knowledge, open. Parametric theories of arrays
include [19, 21] and [3]. However, the line of work in [3] as consolidated in the
doctoral thesis [2], only shows decidability and NEXPTIME completeness on
particular instances. None of [2–4,12,19,21] treat cardinality constraints.

7 Conclusion and Future Work

We have identified the model theoretic structure behind a state of the art frag-
ment of the theory of arrays. We have given self-contained proofs of complexity
which shed light on the underlying constraints that the fragment addresses.
This has allowed to generalize the fragment to encode arbitrary cardinality con-
straints. Our work also shows that the set variables of BAPA can be interpreted
to encode useful restrictions.

As future work, we plan to build on the efforts in [19], to provide an effi-
cient implementation of the fragment. We would also like to perform a cross-
fertilization with other fragments of the theory of arrays providing counting
capabilities, while exploring the interactions between their seemingly different
foundations.

References

1. Alberti, F., Ghilardi, S., Pagani, E.: Cardinality constraints for arrays
(decidability results and applications). Formal Methods in System Design 51(3),
545–574 (Dec 2017). https://doi.org/10.1007/s10703-017-0279-6

2. Alberti, F.: An SMT-based verification framework for software systems handling
arrays. Ph.D. thesis, Università della Svizzera Italiana (Apr 2015),
http://www.falberti.it/thesis/phd.pdf

https://doi.org/10.1007/s10703-017-0279-6
http://www.falberti.it/thesis/phd.pdf

NP Satisfiability for Arrays as Powers 17

3. Alberti, F., Ghilardi, S., Sharygina, N.: Decision Procedures for Flat Array
Properties. Journal of Automated Reasoning 54(4), 327–352 (Apr 2015).
https://doi.org/10.1007/s10817-015-9323-7

4. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s Decidable About Arrays? In:
Emerson, E.A., Namjoshi, K.S. (eds.) Verification, Model Checking, and Abstract
Interpretation. pp. 427–442. Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg (2006). https://doi.org/10.1007/11609773 28

5. Daca, P., Henzinger, T.A., Kupriyanov, A.: Array Folds Logic. In: Chaudhuri, S.,
Farzan, A. (eds.) Computer Aided Verification. pp. 230–248. Lecture Notes in
Computer Science, Springer International Publishing, Cham (2016).
https://doi.org/10.1007/978-3-319-41540-6 13

6. Eisenbrand, F., Shmonin, G.: Carathéodory bounds for integer cones. Operations
Research Letters 34(5), 564–568 (Sep 2006).
https://doi.org/10.1016/j.orl.2005.09.008

7. Feferman, S., Vaught, R.: The first order properties of products of algebraic
systems. Fundamenta Mathematicae 47(1), 57–103 (1959),
https://eudml.org/doc/213526

8. Ferrante, J., Rackoff, C.W.: The Computational Complexity of Logical Theories.
Lecture Notes in Mathematics, Springer-Verlag, Berlin Heidelberg (1979).
https://doi.org/10.1007/BFb0062837

9. Gathen, J.v.z., Sieveking, M.: A Bound on Solutions of Linear Integer Equalities
and Inequalities. Proceedings of the American Mathematical Society 72(1),
155–158 (1978). https://doi.org/10.2307/2042554, publisher: American
Mathematical Society

10. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Decision procedures for
extensions of the theory of arrays. Annals of Mathematics and Artificial
Intelligence 50(3), 231–254 (Aug 2007).
https://doi.org/10.1007/s10472-007-9078-x

11. Grädel, E.: Dominoes and the complexity of subclasses of logical theories. Annals
of Pure and Applied Logic 43(1), 1–30 (Jun 1989).
https://doi.org/10.1016/0168-0072(89)90023-7

12. Habermehl, P., Iosif, R., Vojnar, T.: What Else Is Decidable about Integer
Arrays? In: Amadio, R. (ed.) Foundations of Software Science and Computational
Structures. pp. 474–489. Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78499-9 33

13. Hodges, W.: Model Theory. Encyclopedia of Mathematics and its Applications,
Cambridge University Press, Cambridge (1993).
https://doi.org/10.1017/CBO9780511551574

14. Kuncak, V., Nguyen, H.H., Rinard, M.: Deciding Boolean Algebra with
Presburger Arithmetic. Journal of Automated Reasoning 36(3), 213–239 (Apr
2006). https://doi.org/10.1007/s10817-006-9042-1

15. Kuncak, V., Piskac, R., Suter, P.: Ordered Sets in the Calculus of Data
Structures. In: Dawar, A., Veith, H. (eds.) Computer Science Logic. pp. 34–48.
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15205-4 5

16. Kuncak, V., Rinard, M.: Towards Efficient Satisfiability Checking for Boolean
Algebra with Presburger Arithmetic. In: Pfenning, F. (ed.) Automated Deduction
– CADE-21. pp. 215–230. Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73595-3 15

https://doi.org/10.1007/s10817-015-9323-7
https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/978-3-319-41540-6_13
https://doi.org/10.1016/j.orl.2005.09.008
https://eudml.org/doc/213526
https://doi.org/10.1007/BFb0062837
https://doi.org/10.2307/2042554
https://doi.org/10.1007/s10472-007-9078-x
https://doi.org/10.1016/0168-0072(89)90023-7
https://doi.org/10.1007/978-3-540-78499-9_33
https://doi.org/10.1017/CBO9780511551574
https://doi.org/10.1007/s10817-006-9042-1
https://doi.org/10.1007/978-3-642-15205-4_5
https://doi.org/10.1007/978-3-540-73595-3_15

18 Rodrigo Raya and Viktor Kunčak

17. McCarthy, J.: Towards a Mathematical Science of Computation. In: Colburn,
T.R., Fetzer, J.H., Rankin, T.L. (eds.) Program Verification: Fundamental Issues
in Computer Science, pp. 35–56. Studies in Cognitive Systems, Springer
Netherlands, Dordrecht (1993). https://doi.org/10.1007/978-94-011-1793-7 2

18. Mostowski, A.: On direct products of theories. The Journal of Symbolic Logic
17(1), 1–31 (Mar 1952). https://doi.org/10.2307/2267454, publisher: Cambridge
University Press

19. de Moura, L., Bjorner, N.: Generalized, efficient array decision procedures. In:
2009 Formal Methods in Computer-Aided Design. pp. 45–52. IEEE, Austin, TX
(Nov 2009). https://doi.org/10.1109/FMCAD.2009.5351142

20. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). vol. 4963,
pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-3 24,
series Title: LNCS

21. Stump, A., Barrett, C., Dill, D., Levitt, J.: A decision procedure for an
extensional theory of arrays. In: Proceedings 16th Annual IEEE Symposium on
Logic in Computer Science. pp. 29–37. IEEE Comput. Soc, Boston, MA, USA
(2001). https://doi.org/10.1109/LICS.2001.932480

https://doi.org/10.1007/978-94-011-1793-7_2
https://doi.org/10.2307/2267454
https://doi.org/10.1109/FMCAD.2009.5351142
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/LICS.2001.932480

	NP Satisfiability for Arrays as Powers

