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Abstract. Event-driven architectures are broadly used for systems that
must respond to events in the real world. Event-driven applications are
prone to concurrency bugs that involve subtle errors in reasoning about
the ordering of events. Unfortunately, there are several challenges in us-
ing existing model-checking techniques on these systems. Event-driven
applications often loop indefinitely and thus pose a challenge for stateless
model checking techniques. On the other hand, deploying purely stateful
model checking can explore large sets of equivalent executions.

In this work, we explore a new technique that combines dynamic partial
order reduction with stateful model checking to support non-terminating
applications. Our work is (1) the first dynamic partial order reduction
algorithm for stateful model checking that is sound for non-terminating
applications and (2) the first dynamic partial reduction algorithm for
stateful model checking of event-driven applications. We experimented
with the IoTCheck dataset—a study of interactions in smart home app
pairs. This dataset consists of app pairs originated from 198 real-world
smart home apps. Overall, our DPOR algorithm successfully reduced
the search space for the app pairs, enabling 69 pairs of apps that did not
finish without DPOR to finish and providing a 7× average speedup.

1 Introduction

Event-driven architectures are broadly used to build systems that react to events
in the real world. They include smart home systems, GUIs, mobile applications,
and servers. For example, in the context of smart home systems, event-driven
systems include Samsung SmartThings [46], Android Things [16], Openhab [35],
and If This Then That (IFTTT) [21].

Event-driven architectures can have analogs of the concurrency bugs that
are known to be problematic in multithreaded programming. Subtle program-
ming errors involving the ordering of events can easily cause event-driven pro-
grams to fail. These failures can be challenging to find during testing as exposing
these failures may require a specific set of events to occur in a specific order.
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Model-checking tools can be helpful for finding subtle concurrency bugs or un-
derstanding complex interactions between different applications [49]. In recent
years, significant work has been expended on developing model checkers for mul-
tithreaded concurrency [2,19,22,25,63,61,56,59], but event-driven systems have
received much less attention [22,30].

Event-driven systems pose several challenges for existing stateless and state-
ful model-checking tools. Stateless model checking of concurrent applications
explores all execution schedules without checking whether these schedules visit
the same program states. Stateless model checking often uses dynamic partial
order reduction (DPOR) to eliminate equivalent schedules. While there has
been much work on DPOR for stateless model checking of multithreaded pro-
grams [12,2,25,63,19], stateless model checking requires that the program under
test terminates for fair schedules. Event-driven systems are often intended to
run continuously and may not terminate. To handle non-termination, stateless
model checkers require hacks such as bounding the length of executions to verify
event-driven systems.

Stateful model checking keeps track of an application’s states and avoids re-
visiting the same application states. It is less common for stateful model checkers
to use dynamic partial order reduction to eliminate equivalent executions. Re-
searchers have done much work on stateful model checking [55,18,32,17]. While
stateful model checking can handle non-terminating programs, they miss an
opportunity to efficiently reason about conflicting transitions to scale to large
programs. In particular, typical event-driven programs such as smart home ap-
plications have several event handlers that are completely independent of each
other. Stateful model checking enumerates different orderings of these event han-
dlers, overlooking the fact that these handlers are independent of each other and
hence the orderings are equivalent.

Stateful model checking and dynamic partial order reduction discover dif-
ferent types of redundancy, and therefore it is beneficial to combine them to
further improve model-checking scalability and efficiency. For example, we have
observed that some smart home systems have several independent event han-
dlers in our experiments, and stateful model checkers can waste an enormous
amount of time exploring different orderings of these independent transitions.
DPOR can substantially reduce the number of states and transitions that must
be explored. Although work has been done to combine DPOR algorithms with
stateful model checking [60,62] in the context of multithreaded programs, this
line of work requires that the application has an acyclic state space, i.e., it ter-
minates under all schedules. In particular, the approach of Yang et al. [60] is
designed explicitly for programs with acyclic state space and thus cannot check
programs that do not terminate. Yi et al. [62] presents a DPOR algorithm for
stateful model checking, which is, however, incorrect for cyclic state spaces. For
instance, their algorithm fails to produce the asserting execution in the exam-
ple we will discuss shortly in Figure 1. As a result, prior DPOR techniques all
fall short for checking event-driven programs such as smart home apps, that, in
general, do not terminate.
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Our Contributions. In this work, we present a stateful model checking tech-
nique for event-driven programs that may not terminate. Such programs have
cyclic state spaces, and existing algorithms can prematurely terminate an exe-
cution and thus fail to set the necessary backtracking points to fully explore a
program’s state space. Our first technical contribution is the formulation of a
sufficient condition to complete an execution of the application that ensures that
our algorithm fully explores the application’s state space.

In addition to the early termination issue, for programs with cyclic state
spaces, a model checker can discover multiple paths to a state s before it explores
the entire state space that is reachable from state s. In this case, the backtracking
algorithms used by traditional DPOR techniques including Yang et al. [60] can
fail to set the necessary backtracking points. Our second technical contribution
is a graph-traversal-based algorithm to appropriately set backtracking points on
all paths that can reach the current state.

Prior work on stateful DPOR only considers the multithreaded case and
assumes algorithms know the effects of the next transitions of all threads be-
fore setting backtracking points. For multithreaded programs, this assumption
is not a serious limitation as transitions model low-level memory operations (i.e.,
reads, writes, and RMW operations), and each transition involves a single mem-
ory operation. However, in the context of event-driven programs, events can
involve many memory operations that access multiple memory locations, and
knowing the effects of a transition requires actually executing the event. While
it is conceptually possible to execute events and then rollback to discover their
effects, this approach is likely to incur large overheads as model checkers need
to know the effects of enabled events at each program state. As our third con-
tribution, our algorithm avoids this extra rollback overhead by waiting until an
event is actually executed to set backtracking points and incorporates a modified
backtracking algorithm to appropriately handle events.

We have implemented the proposed algorithm in the Java Pathfinder model
checker [55] and evaluated it on hundreds of real-world smart home apps. We
have made our DPOR implementation publicly available [50].

Paper Structure. The remainder of this paper is structured as follows: Sec-
tion 2 presents the event-driven concurrency model that we use in this work.
Section 3 presents the definitions we use to describe our stateful DPOR algo-
rithm. Section 4 presents problems when using the classic DPOR algorithm to
model check event-driven programs and the basic ideas behind how our algo-
rithm solves these problems. Section 5 presents our stateful DPOR algorithm
for event-driven programs. Section 6 presents the evaluation of our algorithm
implementation on hundreds of smart home apps. Section 7 presents the related
work; we conclude in Section 8.

2 Event-Driven Concurrency Model

In this section, we first present the concurrency model of our event-driven system
and then discuss the key elements of this system formulated as an event-driven
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concurrency model. Our event-driven system is inspired by—and distilled from—
smart home IoT devices and applications deployed widely in the real world.
Modern smart home platforms support developers writing apps that implement
useful functionality on smart devices. Significant efforts have been made to create
integration platforms such as Android Things from Google [16], SmartThings
from Samsung [46], and the open-source openHAB platform [35]. All of these
platforms allow users to create smart home apps that integrate multiple devices
and perform complex routines, such as implementing a home security system.

The presence of multiple apps that can control the same device cre-
ates undesirable interactions [49]. For example, a homeowner may install the
FireCO2Alarm [38] app, which upon the detection of smoke, sounds alarms and
unlocks the door. The same homeowner may also install the Lock-It-When-I-
Leave [1] app to lock the door automatically when the homeowner leaves the
house. However, these apps can interact in surprising ways when installed to-
gether. For instance, if smoke is detected, FireCO2Alarm will unlock the door.
If someone leaves home, the Lock-It-When-I-Leave app will lock the door. This
defeats the intended purpose of the FireCO2Alarm app. Due to the increasing
popularity of IoT devices, understanding and finding such conflicting interac-
tions has become a hot research topic [27,28,54,53,57] in the past few years.
Among the many techniques developed, model checking is a popular one [58,49].
However, existing DPOR-based model checking algorithms do not support non-
terminating event-handling logic (detailed in Section 4), which strongly moti-
vates the need of developing new algorithms that are both sound and efficient
in handling real-world event-based (e.g., IoT) programs.

2.1 Event-Driven Concurrency Model

We next present our event-driven concurrency model (see an example of event-
driven systems in Appendix A). We assume that the event-driven system has
a finite set E of different event types. Each event type e ∈ E has a corresponding
event handler that is executed when an instance of the event occurs. We assume
that there is a potentially shared state and that event handlers have arbitrary
access to read and write from this shared state.

An event handler can be an arbitrarily long finite sequence of instructions and
can include an arbitrary number of accesses to shared state. We assume event-
handlers are executed atomically by the event-driven runtime system. Events can
be enabled by both external sources (e.g., events in the physical world) or event
handlers. Events can also be disabled by the execution of an event handler. We
assume that the runtime system maintains an unordered set of enabled events
to execute. It contains an event dispatch loop that selects an arbitrary enabled
event to execute next.

This work is inspired by smart-home systems that are widely deployed in the
real world. However, the proposed techniques are general enough to handle other
types of event-driven systems, such as web applications, as long as the systems
follow the concurrency model stated above.
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2.2 Background on Stateless DPOR

Partial order reduction is based on the observation that traces of concurrent sys-
tems are equivalent if they only reorder independent operations. These equiv-
alence classes are called Mazurkiewicz traces [31]. The classical DPOR algo-
rithm [12] dynamically computes persistent sets for multithreaded programs and
is guaranteed to explore at least one interleaving in each equivalence class.

The key idea behind the DPOR algorithm is to compute the next pending
memory operation for each thread, and at each point in the execution to compute
the most recent conflict for each thread’s next operation. These conflicts are used
to set backtracking points so that future executions will reverse the order of
conflicting operations and explore an execution in a different equivalence class.
Due to space constraints, we refer the interested readers to [12] for a detailed
description of the original DPOR algorithm.

3 Preliminaries

We next introduce the notations and definitions we use throughout this paper.

Transition System. We consider a transition system that consists of a finite
set E of events. Each event e ∈ E executes a sequence of instructions that change
the global state of the system.

States. Let States be the set of the states of the system, where s0 ∈ States is the
initial state. A state s captures the heap of a running program and the values
of global variables.

Transitions and Transition Sequences. Let T be the set of all transitions
for the system. Each transition t ∈ T is a partial function from States to States.
The notation ts,e = next (s, e) returns the transition ts,e from executing event e
on program state s. We assume that the transition system is deterministic, and
thus the destination state dst(ts,e) is unique for a given state s and event e. If

the execution of transition t from s produces state s′, then we write s
t−→ s′.

We formalize the behavior of the system as a transition system AG =
(States, ∆, s0), where ∆ ⊆ States× States is the transition relation defined by

(s, s′) ∈ ∆ iff ∃t ∈ T : s
t−→ s′

and s0 is the initial state of the system.
A transition sequence S of the transition system is a finite sequence of tran-

sitions t1, t2, ..., tn. These transitions advance the state of the system from the
initial state s0 to further states s1, ..., si such that

S = s0
t1−→ s1

t2−→ ... si−1
tn−→ si.

Enabling and Disabling Events. Events can be enabled and disabled. We
make the same assumption as Jensen et al. [22] regarding the mechanism for
enabling and disabling events. Each event has a special memory location asso-
ciated with it. When an event is enabled or disabled, that memory location is
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written to. Thus, the same conflict detection mechanism we used for memory
operations will detect enabled/disabled conflicts between events.

Notation. We use the following notations in our presentation:

– event(t) returns the event that performs the transition t.
– first(S, s) returns the first occurrence of state s in S, e.g., if s4 is first visited

at step 2 then first(S, s4) returns 2.
– last(S) returns the last state s in a transition sequence S.
– S.t produces a new transition sequence by extending the transition sequence
S with the transition t.

– states(S) returns the set of states traversed by the transition sequence S.
– enabled(s) denotes the set of enabled events at s.
– backtrack(s) denotes the backtrack set of state s.
– done(s) denotes the set of events that have already been executed at s.
– accesses(t) denotes the set of memory accesses performed by the transition
t. An access consists of a memory operation, i.e., a read or write, and a
memory location.

State Transition Graph. In our algorithm, we construct a state transition
graph R that is similar to the visible operation dependency graph presented
in [60]. The state transition graph records all of the states that our DPOR
algorithm has explored and all of the transitions it has taken. In more detail, a
state transition graph R = 〈V,E〉 for a transition system is a directed graph,
where every node n ∈ V is a visited state, and every edge e ∈ E is a transition
explored in some execution. We use →r to denote that a transition is reachable
from another transition in R, e.g., t1→r t2 indicates that t2 is reachable from
t1 in R.

Independence and Persistent Sets. We define the independence relation
over transitions as follows:

Definition 1 (Independence). Let T be the set of transitions. An indepen-
dence relation I ⊆ T × T is a irreflexive and symmetric relation, such that for
any transitions (t1, t2) ∈ I and any state s in the state space of a transition
system AG, the following conditions hold:

1. if t1 ∈ enabled(s) and s
t1−→ s′, then t2 ∈ enabled(s) iff t2 ∈ enabled(s′).

2. if t1 and t2 are enabled in s, then there is a unique state s′ such that s
t1t2−−−→

s′ and s
t2t1−−−→ s′.

If (t1, t2) ∈ I, then we say t1 and t2 are independent. We also say that two
memory accesses to a shared location conflict if at least one of them is a write.
Since executing the same event from different states can have different effects
on the states, i.e., resulting in different transitions, we also define the notion of
read-write independence between events on top of the definition of independence
relation over transitions.
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Definition 2 (Read-Write Independence). We say that two events x and
y are read-write independent, if for every transition sequences τ where events x
and y are executed, the transitions tx and ty corresponding to executing x and y
are independent, and tx and ty do not have conflicting memory accesses.

Definition 3 (Persistent Set). A set of events X ⊆ E enabled in a state s is
persistent in s if for every transition sequence from s

s
t1−→ s1

t2−→ ...
tn−1−−−→ sn−1

tn−→ sn

where event(ti) /∈ X for all 1 ≤ i ≤ n, then event(tn) is read-write independent
with all events in X.

In Appendix B, we prove that exploring a persistent set of events at
each state is sufficient to ensure the exploration of at least one execution per
Mazurkiewicz trace for a program with cyclic state spaces and finite reachable
states.

4 Technique Overview

This section overviews our ideas. These ideas are discussed in the context of
four problems that arise when existing DPOR algorithms are applied directly
to event-driven programs. For each problem, we first explain the cause of the
problem and then proceed to discuss our solution.

4.1 Problem 1: Premature Termination

The first problem is that the naive application of existing stateless DPOR al-
gorithms to stateful model checking will prematurely terminate the execution
of programs with cyclic state spaces, causing a model checker to miss exploring
portions of the state space. This problem is known in the general POR litera-
ture [13,51,37] and various provisos (conditions) have been proposed to solve the
problem. While the problem is known, all existing stateful DPOR algorithms
produce incorrect results for programs with cyclic state spaces. Prior work by
Yang et al. [60] only handles programs with acyclic state spaces. Work by Yi
et al. [62] claims to handle cyclic state spaces, but overlooks the need for a pro-
viso for when it is safe to stop an execution due to a state match and thus
can produce incorrect results when model checking programs with cyclic state
spaces.

Figure 1 presents a simple multithreaded program that illustrates the prob-
lem of using a naive stateful adaptation of the DPOR algorithm to check pro-
grams with cyclic state spaces. Let us suppose that a stateful DPOR algorithm
explores the state space from s0, and it selects thread T1 to take a step: the state
is advanced to state s1. However, when it selects T2 to take the next step, it will
revisit the same state and stop the current execution (see Figure 1-a). Since it
did not set any backtracking points, the algorithm prematurely finishes its explo-
ration at this point. It misses the execution where both threads T1 and T3 take
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/* Initial
condition: */

x = y = z = 0;

/* T1: */
r1 = x++;
assert(r1 == 0);

/* T2: */
while(true)

r2 = y;

/* T3: */
r3 = z;
r4 = x++;
assert(r4 == 0);

x = 0
y = 0
z = 0

s0

x = 1
y = 0
z = 0

s1

r1 = x++;
assert(r1 == 0);

T1

while(true)
r2 = y;

T2

x = 0
y = 0
z = 0

s0

x = 1
y = 0
z = 0

s1

r1 = x++;
assert(r1 == 0);

T1

r3 = z;
r4 = x++;
assert(r4 == 0);

T3

x = 2
y = 0
z = 0

s2

(a) (b)

Fig. 1. Problem with existing stateful DPOR algorithms on a non-terminating mul-
tithreaded program. Execution (a) terminates at a state match without setting any
backtracking points. Thus, stateful DPOR would miss exploring Execution (b) which
has an assertion failure.

steps, leading to an assertion failure. Figure 1-b shows this missing execution.
The underlying issue with halting an execution when it matches a state from the
current execution is that the execution may not have explored a sufficient set of
events to create the necessary backtracking points. In our context, event-driven
applications are non-terminating. Similar to our multithreaded example, execu-
tions in event-driven applications may cause the algorithm to revisit a state and
prematurely stop the exploration.
Our Idea. Since the applications we are interested in typically have cyclic state
spaces, we address this challenge by changing our termination criteria for an ex-
ecution to require that an execution either (1) matches a state from a previous
execution or (2) matches a previously explored state from the current execution
and has explored every enabled event in the cycle at least once since the first ex-
ploration of that state. The second criterion would prevent the DPOR algorithm
from terminating prematurely after the exploration in Figure 1-a.

4.2 Problem 2: State Matching for Previously Explored States

Typically stateful model checkers can simply terminate an execution when a
previously discovered state is reached. As mentioned in [60], this handling is
unsound in the presence of dynamic partial order reduction. Figure 2 illustrates
the issue: Figure 2-a and b show the behavior of a classical stateless DPOR
algorithm as well as the situation in a stateful DPOR algorithm, respectively. We
assume that S was the first transition sequence to reach si and S’ was the second
such transition sequence. The issue in Figure 2-b is that after the state match
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(b)

si

sk slsj
Explicitly 
set back-
tracking
points

(a)

si

sk slsj

same 
state si

sk slsj
Exploration 
sets back-
tracking
points

Fig. 2. (a) Stateless model checking explores si, sj , sk, and sl twice and thus sets
backtracking points for both S and S’. (b) Stateful model checking matches state si
and skips the second exploration and thus we must explicitly set backtracking points.

for si in S’, the algorithm may inappropriately skip setting backtracking points
for the transition sequence S’, preventing the model checker from completely
exploring the state space.
Our Idea. Similar to the approach of Yang et al. [60], we propose to use a graph
to store the set of previously explored transitions that may set backtracking
points in the current transition sequence, so that the algorithm can set those
backtracking points without reexploring the same state space.

4.3 Problem 3: State Matching Incompletely Explored States

Figure 3 illustrates another problem with cyclic state spaces—even if our new
termination condition and the algorithm for setting backtrack points for a state
match are applied to the stateful DPOR algorithm, it could still fail to explore
all executions.

With our new termination criteria, the stateful DPOR algorithm will first
explore the execution shown in Figure 3-a. It starts from s0 and executes the
events e1, e2, and e3. While executing the three events, it puts event e2 in the
backtrack set of s0 and event e3 in the backtrack set of s1 as it finds a conflict
between the events e1 and e2, and the events e2 and e3. Then, the algorithm
revisits s1. At this point it updates the backtrack sets using the transitions that
are reachable from state s1: it puts event e2 in the backtrack set of state s2
because of a conflict between e2 and e3.

However, with the new termination criteria, it does not stop its exploration. It
continues to execute event e4, finds a conflict between e1 and e4, and puts event
e4 into the backtrack set of s0. The algorithm now revisits state s0 and updates
the backtrack sets using the transitions reachable from state s0: it puts event e1
in the backtrack set of s1 because of the conflict between e1 and e4. Figures 3-b,
c, and d show the executions explored by the stateful DPOR algorithm from the
events e1 and e3 in the backtrack set of s1, and event e2 in the backtrack set of
s2, respectively.

Next, the algorithm explores the execution from event e2 in the backtrack
set of s0 shown in Figure 3-e. The algorithm finds a conflict between the events
e2 and e3, and it puts event e2 in the backtrack set of s3 and event e3 in the
backtrack set of s0 whose executions are shown in Figures 3-f and g, respectively.
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/* Initial
condition:

*/
x = y = z = 0;

// e1:
x = 1;
z = 0;

// e2:
r1 = z;
y = 1;

// e3:
y = 0;

// e4:
if (x==0) {

if (y==1)
assert(y==0);

} else {
x = 0;

}

x = 0
y = 0
z = 0

s0

x = 1
y = 0
z = 0

s1

x = 1;
z = 0;

e1

(a)

(e)

x = 1
y = 1
z = 0

s2
r1 = z;
y = 1;

e2 e3

x = 0
y = 0
z = 0

x = 0
y = 1
z = 0

s3

e2 e3

r1 = z;
y = 1;

s0

if(x==0) {
if(y==1)

assert(y==1);
} else {

x = 0;
}

y = 0;

x = 1
y = 0
z = 0

s1

(b)

e3

x = 0
y = 0
z = 0

s0

x = 0
y = 1
z = 0

s3

e2

r1 = z;
y = 1;

e4

y = 0;

y = 0;

if(x==0) {
if(y==1)

assert(y==1);
} else {

x = 0;
}

x = 1
y = 1
z = 0

s2

(d)

e2

r1 = z;
y = 1;

x = 0
y = 0
z = 0

s0

(h)

e4

if(x==0) {
if(y==1)

assert(y==1);
} else {

x = 0;
}

e4

x = 0
y = 0
z = 0

s0

(g)

e3

y = 0;

x = 0
y = 1
z = 0

s3

(f)

e2

r1 = z;
y = 1;

(i)

x = 1
y = 0
z = 0

s1

(c)

e1

x = 1;
z = 0;

Fig. 3. Example of a event-driven program that misses an execution. We assume that
e1, e2, e3, and e4 are all initially enabled.

Finally, the algorithm explores the execution from event e4 in the backtrack set of
s0 shown in Figure 3-h. Then the algorithm stops, failing to explore the asserting
execution shown in Figure 3-i.

The key issue in the above example is that the stateful DPOR algorithm
by Yang et al. [60] does not consider all possible transition sequences that can
reach the current state but merely considers the current transition sequence when
setting backtracking points. It thus does not add event e4 from the execution in
Figure 3-h to the backtrack set of state s3.

Our Idea. Figure 4 shows the core issue behind the problem. When the algo-
rithm sets backtracking points after executing the transition tk, the algorithm
must consider both the transition sequence that includes th and the transition
sequence that includes ti. The classical backtracking algorithm would only con-
sider the current transition sequence when setting backtracking points.

We propose a new algorithm that uses a backwards depth first search on
the state transition graph combined with summaries to set backtracking points
on previously discovered paths to the currently executing transition. Yi et al.
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sj

si

tk

ti

sk

tj

th

Set back- 
tracking 
point

Set back-
tracking 

point

Fig. 4. Stateful model checking needs to handle loops caused by cyclic state spaces.

[62] uses a different approach for updating summary information to address this
issue.

4.4 Problem 4: Events as Transitions

The fourth problem, also identified in Jensen et al. [22], is that existing stateful
DPOR algorithms and most DPOR algorithms assume that each transition only
executes a single memory operation, whereas an event in our context can consist
of many different memory operations. For example, the e4 handler in Figure 3
reads x and y.

A related issue is that many DPOR algorithms assume that they know, ahead
of time, the effects of the next step for each thread. In our setting, however, since
events contain many different memory operations, we must execute an event to
know its effects. Figure 5 illustrates this problem. In this example, we assume
that each event can only execute once.

/* Initial condition: */
x = y = 0;

/* e1: */
y = 1;

/* e2: */
x = 1;

/* e3: */
if (x==1)

assert(y == 1);

x = 0
y = 0

s0

x = 0
y = 1

s1

y = 1;

e1

e2

(a)

(b)

x = 1;

e3

if (x==1)
assert(y==1)

x = 1
y = 1

s2

x = 0
y = 1

s1

if (x==1)
assert(y==1)

x = 0
y = 0

s0

x = 1
y = 0

s3

e2

x = 1;

e3

(c)

if (x==1)
assert(y==1)

e3

Fig. 5. Example of an event-driven program for which a naive application of the stan-
dard DPOR algorithm fails to construct the correct persistent set at state s0. We
assume that e1, e2, and e3 are all initially enabled.
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Figure 5-a shows the first execution of these 3 events. The stateful DPOR
algorithm finds a conflict between the events e2 and e3, adds event e3 to the
backtrack set for state s1, and then schedules the second execution shown in Fig-
ure 5-b. At this point, the exploration stops prematurely, missing the assertion
violating execution shown in Figure 5-c.

The key issue is that the set {e1} is not a persistent set for state s0. Tradi-
tional DPOR algorithms fail to construct the correct persistent set at state s0
because the backtracking algorithm finds that the transition for event e3 con-
flicts with the transition for event e2 and stops setting backtracking points. This
occurs since these algorithms do not separately track conflicts from different
memory operations in an event when adding backtracking points—they simply
assume transitions are comprised of single memory operations. Separately track-
ing different operations would allow these algorithms to find a conflict relation
between the events e1 and e3 (as both access the variable y) in the first execu-
tion, put event e2 into the backtrack set of s0, and explore the missing execution
shown in Figure 5-c.
Our Idea. In the classical DPOR algorithm, transitions correspond to single
instructions whose effects can be determined ahead of time without executing
the instructions [12]. Thus, the DPOR algorithm assumes that the effects of each
thread’s next transition are known. Our events on the other hand include many
instructions, and thus, as Jensen et al. [22] observes, determining the effects of
an event requires executing the event. Our algorithm therefore determines the
effects of a transition when the transition is actually executed.

A second consequence of having events as transitions is that transitions can
access multiple different memory locations. Thus, as the example in Figure 5
shows, it does not suffice to simply set a backtracking point at the last con-
flicting transition. To address this issue, our idea is to compute conflicts on a
per-memory-location basis.

5 Stateful Dynamic Partial Order Reduction

This section presents our algorithm, which extends DPOR to support stateful
model checking of event-driven applications with cyclic state spaces. We first
present the states that our algorithm maintains:

1. The transition sequence S contains the new transitions that the current
execution explores. Our algorithm explores a given transition in at most one
execution.

2. The state history H is a set of program states that have been visited in
completed executions.

3. The state transition graph R records the states our algorithm has ex-
plored thus far. Nodes in this graph correspond to program states and edges
to transitions between program states.

Recall that for each reachable state s ∈ States, our algorithm maintains the
backtrack(s) set that contains the events to be explored at s, the done(s) set
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Algorithm 1: Top-level exploration algorithm.

1 ExploreAll()
2 H := ∅
3 R := ∅
4 S := ∅
5 Explore(s0)
6 while ∃s, backtrack(s) 6= done(s) do
7 Explore(s)
8 end

9 end

that contains the events that have already been explored at s, and the enabled(s)
set that contains all events that are enabled at s.

Algorithm 1 presents the top-level ExploreAll procedure. This proce-
dure first invokes the Explore procedure to start model checking from the
initial state. However, the presence of cycles in the state space means that
our backtracking-based search algorithm may occasionally set new backtrack-
ing points for states in completed executions. The ExploreAll procedure thus
loops over all states that have unexplored items in their backtrack sets and
invokes the Explore procedure to explore those transitions.

Algorithm 2 describes the logic of the Explore procedure. The if statement
in line 2 checks if the current state s’s backtrack set is the same as the current
state s’s done set. If so, the algorithm selects an event to execute in the next
transition. If some enabled events are not yet explored, it selects an unexplored
event to add to the current state’s backtrack set. Otherwise, if the enabled set is
not empty, it selects an enabled event to remove from the done set. Note that
this scenario occurs only if the execution is continuing past a state match to
satisfy the termination condition.

Then the while loop in line 17 selects an event b to execute on the current
state s and executes the event b to generate the transition t that leads to a
new state s′. At this point, the algorithm knows the memory accesses performed
by the transition t and thus can add the event b to the backtrack sets of the
previous states. This is done via the procedure UpdateBacktrackSet.

Traditional DPOR algorithms continue an execution until it terminates. Since
our programs may have cyclic state spaces, this would cause the model checker
to potentially not terminate. Our algorithm instead checks the conditions in
line 26 to decide whether to terminate the execution. These checks see whether
the new state s′ matches a state from a previous execution, or if the current exe-
cution revisits a state the current execution previously explored and meets other
criteria that are checked in the IsFullCycle procedure. If so, the algorithm
calls the UpdateBacktrackSetsFromGraph procedure to set backtracking
points, from transitions reachable from t, to states that can reach t. An execu-
tion will also terminate if it reaches a state in which no event is enabled (line 4).
It then adds the states from the current transition sequence to the set of previ-
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Algorithm 2: Stateful DPOR algorithm for event-driven applications.

1 Explore(s)
2 if backtrack(s) = done(s) then
3 if done(s) = enabled(s) then
4 if enabled(s) is not empty then
5 select e ∈ enabled(s)
6 remove e from done(s)

7 else
8 add states(S) toH
9 S := ∅

10 return

11 end

12 else
13 select e ∈ enabled(s) \ done(s)
14 add e to backtrack(s)

15 end

16 end
17 while ∃b ∈ backtrack(s) \ done(s) do
18 add b to s.done
19 t := next (s, b)
20 s′ := dst (t)
21 add transition t toR
22 foreach e ∈ enabled(s) \ enabled(s′) do
23 add e to backtrack(s)
24 end
25 UpdateBacktrackSet (t)
26 if s′ ∈ H ∨ IsFullCycle (t) then
27 UpdateBacktrackSetsFromGraph (t)
28 add states(S) toH
29 S := ∅
30 else
31 if s′ ∈ states(S) then
32 UpdateBacktrackSetsFromGraph (t)
33 end
34 S := S.t
35 Explore(s′)

36 end

37 end

38 end
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ously visited states H, resets the current execution transition sequence S, and
backtracks to start a new execution.

If the algorithm has reached a state s′ that was previously discovered in this
execution, it sets backtracking points by calling the UpdateBacktrackSets-
FromGraph procedure. Finally, it updates the transition sequence S and calls
Explore.

Algorithm 3: Procedure that updates the backtrack sets of states in
previous executions.

1 UpdateBacktrackSetsFromGraph(ts)
2 Rt := {t ∈ R | ts→r t}
3 foreach t ∈ Rt do
4 UpdateBacktrackSet (t)
5 end

6 end

Algorithm 3 shows the UpdateBacktrackSetsFromGraph procedure.
This procedure takes a transition t that connects the current execution to a
previously discovered state in the transition graph R. Since our algorithm does
not explore all of the transitions reachable from the previously discovered state,
we need to set the backtracking points that would have been set by these skipped
transitions. This procedure therefore computes the set of transitions reachable
from the destination state of t and invokes UpdateBacktrackSet on each of
those transitions to set backtracking points.

Algorithm 4: Procedure that checks the looping termination condition:
a cycle that contains every event enabled in the cycle.

1 IsFullCycle(t)
2 if ¬dst(t) ∈ states(S) then
3 return false
4 end

5 Sfc := {tj ∈ S | i = first(S, dst(t)), and i < j} ∪ {t}
6 Efc := {event(t′) | ∀t′ ∈ Sfc }
7 Eenabled := {enabled(dst(t′)) | ∀t′ ∈ Sfc }
8 return Efc = Eenabled
9 end

Algorithm 4 presents the IsFullCycle procedure. This procedure first
checks if there is a cycle that contains the transition t in the state space ex-
plored by the current execution. The example from Figure 1 shows that such
a state match is not sufficient to terminate the execution as the execution may
not have set the necessary backtracking points. Our algorithm stops the explo-
ration of an execution when there is a cycle that has explored every event that
is enabled in that cycle. This ensures that for every transition t in the execution,
there is a future transition te for each enabled event e in the cycle that can set
a backtracking point if t and te conflict.

Algorithm 5 presents the UpdateBacktrackSet procedure, which sets
backtracking points. There are two differences between our algorithm and tra-
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ditional DPOR algorithms. First, since our algorithm supports programs with
cyclic state spaces, it is possible that the algorithm has discovered multiple paths
from the start state s0 to the current transition t. Thus, the algorithm must po-
tentially set backtracking points on multiple different paths. We address this
issue using a backwards depth first search traversal of the R graph. Second,
since our transitions correspond to events, they may potentially access multi-
ple different memory locations and thus the backtracking algorithm potentially
needs to set separate backtracking points for each of these memory locations.

The UpdateBacktrackSetDFS procedure implements a backwards depth
first traversal to set backtracking points. The procedure takes the following pa-
rameters: tcurr is the current transition in the DFS, tconf is the transition that
we are currently setting a backtracking point for, A is the set of accesses that
the algorithm searches for conflicts for, and Texp is the set of transitions that
the algorithm has explored down this search path. Recall that accesses consist
of both an operation, i.e., a read or write, and a memory location. Conflicts are
defined in the usual way—writes to a memory location conflict with reads or
writes to the same location.

Algorithm 5: Procedure that updates the backtrack sets of states for
previously executed transitions that conflict with the current transition
in the search stack.

1 UpdateBacktrackSet(t)
2 UpdateBacktrackSetDFS (t, t, accesses(t), {t})
3 end
4 UpdateBacktrackSetDFS(tcurr, tconf,A, Texp)
5 foreach tb ∈ predR(tcurr) \ Texp do

6 Ab := accesses(tb)
7 tconf

′ := tconf
8 if ∃a ∈ A, ∃ab ∈ Ab, conflicts(a, ab) then
9 if event(tconf) ∈ enabled(src(tb)) then

10 add event(tconf) to backtrack(src(tb))
11 else
12 add enabled(src(tb)) to backtrack(src(tb))
13 end
14 tconf

′ := tb
15 end
16 Ar := {a ∈ A | ¬∃ab ∈ Ab, conflicts(a, ab)}
17 UpdateBacktrackSetDFS (tb, tconf

′,Ar, Texp ∪ {tb})
18 end

19 end

Line 5 loops over each transition tb that immediately precedes transition tcurr
in the state transition graph and has not been explored. Line 8 checks for con-
flicts between the accesses of tb and the access set A for the DFS. If a conflict
is detected, the algorithm adds the event for transition tconf to the backtrack
set. Line 16 removes the accesses that conflicted with transition tb. The search
procedure then recursively calls itself. If the current transition tb conflicts with
the transition tconf for which we are setting a backtracking point, then it is pos-
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sible that the behavior we are interested in for tconf requires that tb be executed
first. Thus, if there is a conflict between tb and tconf, we pass tb as the conflict
transition parameter to the recursive calls to UpdateBacktrackSetDFS.

Appendix B proves correctness properties for our DPOR algorithm. Ap-
pendix C revisits the example shown in Figure 3. It describes how our DPOR
algorithm explores all executions in Figure 3, including Figure 3-i.

6 Implementation and Evaluation

In this section, we present the implementation of our DPOR algorithm (Sec-
tion 6.1) and its evaluation results (Section 6.2).

6.1 Implementation

We have implemented the algorithm by extending IoTCheck [49], a tool that
model-checks pairs of Samsung’s SmartThings smart home apps and reports
conflicting updates to the same device or global variables from different apps.
IoTCheck extends Java Pathfinder, an explicit stateful model checker [55]. In
the implementation, we optimized our DPOR algorithm by caching the results
of the graph search when UpdateBacktrackSetsFromGraph is called. The
results are cached for each state as a summary of the potentially conflicting
transitions that are reachable from the given state (see Appendix D).

We selected the SmartThings platform because it has an extensive collection
of event-driven apps. The SmartThings official GitHub [45] has an active user
community—the repository has been forked more than 84,000 times as of August
2021.

We did not compare our implementation against other systems, e.g., event-
driven systems [22,30]. Not only that these systems do not perform stateful
model checking and handle cyclic state spaces, but also they implemented their
algorithms in different domains: web [22] and Android applications [30]—it will
not be straightforward to adapt and compare these with our implementation on
smart home apps.

6.2 Evaluation

Dataset. Our SmartThings app corpus consists of 198 official and third-party
apps that are taken from the IoTCheck smart home apps dataset [48,49]. These
apps were collected from different sources, including the official SmartThings
GitHub [45]. In this dataset, the authors of IoTCheck formed pairs of apps to
study the interactions between the apps [49].

We selected the 1,438 pairs of apps in the Device Interaction category as our
benchmarks set. It contains a diverse set of apps and app pairs that are further
categorized into 11 subgroups based on various device handlers [44] used in each
app. For example, the FireCO2Alarm [38] and the Lock-It-When-I-Leave [1] apps
both control and may interact through a door lock (see Section 1). Hence, they
are both categorized as a pair in the Locks group. As the authors of IoTCheck
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Table 1. Sample model-checked pairs that finished with or without DPOR. Evt. is
number of events and Time is in seconds. The complete list of results for 229 pairs
that finished with or without DPOR is included in Table A.2 in Appendices.

No. App Evt. Without DPOR With DPOR
States Trans. Time States Trans. Time

1 smart-nightlight–
ecobeeAwayFromHome

14 16,441 76,720 5,059 11,743 46,196 5,498

2 step-notifier–
ecobeeAwayFromHome

11 14,401 52,800 4,885 11,490 35,142 5,079

3 smart-security–
ecobeeAwayFromHome

11 14,301 47,608 4,385 8,187 21,269 2,980

4 keep-me-cozy–whole-house-
fan

17 8,793 149,464 4,736 8,776 95,084 6,043

5 keep-me-cozy-ii–thermostat-
window-check

13 8,764 113,919 4,070 7,884 59,342 4,515

6 step-notifier–mini-hue-
controller

6 7,967 47,796 2,063 7,907 40,045 3,582

7 keep-me-cozy–thermostat-
mode-director

12 7,633 91,584 3,259 6,913 49,850 3,652

8 lighting-director–step-notifier 14 7,611 106,540 5,278 2,723 25,295 2,552

9 smart-alarm–
DeviceTamperAlarm

15 5,665 84,960 3,559 3,437 40,906 4,441

10 forgiving-security–smart-
alarm

13 5,545 72,072 3,134 4,903 52,205 5,728

noted, these pairs are challenging to model check—IoTCheck did not finish for
412 pairs.

Pair Selection. In the IoTCheck evaluation, the authors had to exclude 175
problematic pairs. In our evaluation, we further excluded pairs. First, we ex-
cluded pairs that were reported to finish their executions in 10 seconds or less—
these typically will generate a small number of states (i.e., less than 100) when
model checked. Next, we further removed redundant pairs across the different
11 subgroups. An app may control different devices, and thus they may use
various device handlers in its code. For example, the apps FireCO2Alarm [38]
and groveStreams [39] both control door locks and thermostats in their code.
Thus, the two apps are categorized as a pair both in the Locks and Thermostats

subgroups—we need to only include this pair once in our evaluation. These steps
reduced our benchmarks set to 535 pairs.

Experimental Setup. Each pair was model checked on an Ubuntu-based server
with Intel Xeon quad-core CPU of 3.5GHz and 32GB of memory—we allocated
28GB of heap space for JVM. In our experiments, we ran the model checker for
every pair for at most 2 hours. We found that the model checker usually ran out
of memory for pairs that had to be model checked longer. Further investigation
indicates that these pairs generate too many states even when run with the
DPOR algorithm. We observed that many smart home apps generate substantial
numbers of read-write and write-write conflicts when model checked—this is
challenging for any DPOR algorithms. In our benchmarks set, 300 pairs finished
for DPOR and/or no DPOR.
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Results. Our DPOR algorithm substantially reduced the search space for many
pairs. There are 69 pairs that were unfinished (i.e., “Unf”) without DPOR.
These pairs did not finish because their executions exceeded the 2-hour limit,
or generated too many states quickly and consumed too much memory, causing
the model checker to run out of memory within the first hour of their execution.
When run with our DPOR algorithm, these pairs successfully finished—mostly
in 1 hour or less. Table A.1 in Appendices shows the results for pairs that
finished with DPOR but did not finish without DPOR. Most notably, even for
the pair initial-state-event-streamer—thermostat-auto-off that has the
most number of states, our DPOR algorithm successfully finished model checking
it within 1 hour.

Next, we discovered that 229 pairs finished when model checked with and
without DPOR. Table 1 shows 10 pairs with the most numbers of states (see
the complete results in Table A.2 in Appendices). These pairs consist of apps
that generate substantial numbers of read-write and write-write conflicts when
model checked with our DPOR algorithm. Thus, our DPOR algorithm did not
significantly reduce the states, transitions, and runtimes for these pairs.

Finally, we found 2 pairs that finished when run without our DPOR algo-
rithm, but did not finish when run with it. These pairs consist of apps that
are exceptionally challenging for our DPOR algorithm in terms of numbers of
read-write and write-write conflicts. Nevertheless, these are corner cases—please
note that our DPOR algorithm is effective in many pairs.

Overall, our DPOR algorithm achieved a 2× state reduction and a 3× tran-
sition reduction for the 229 pairs that finished for both DPOR and no DPOR
(geometric mean). Assuming that “Unf” is equal to 7,200 seconds (i.e., 2 hours)
of runtime, we achieved an overall speedup of 7× for the 300 pairs (geometric
mean). This is a lower bound runtime for the “Unf” cases, in which executions
exceeded the 2-hour limit—these pairs could have taken more time to finish.

7 Related Work

There has been much work on model checking. Stateless model checking tech-
niques do not explicitly track which program states have been visited and instead
focus on enumerating schedules [13,14,15,33].

To make model checking more efficient, researchers have also looked into
various partial order reduction techniques. The original partial order reduction
techniques (e.g., persistent/stubborn sets [13,52] and sleep sets [13]) can also be
used in the context of cyclic state spaces when combined with a proviso that en-
sures that executions are not prematurely terminated [13], and ample sets [8,7]
that are basically persistent sets with additional conditions. However, the per-
sistent/stubborn set techniques “suffer from severe fundamental limitation”[12]:
the operations and their communication objects in future process executions are
difficult or impossible to compute precisely through static analysis, while sleep
sets alone only reduce the number of transitions (not states). Work on collapses
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by Katz and Peled also suffers from the same requirement for a statically known
independence relation [23].

The first DPOR technique was proposed by Flanagan and Godefroid [12]
to address those issues. The authors introduced a technique that combats the
state space explosion by detecting read-write and write-write conflicts on shared
variable on the fly. Since then, a significant effort has been made to further im-
prove dynamic partial order reduction [42,43,26,41,47]. Unfortunately, a lot of
DPOR algorithms assume the context of shared-memory concurrency in that
each transition consists of a single memory operation. In the context of event-
driven applications, each transition is an event that can consist of different mem-
ory operations. Thus, we have to execute the event to know its effects and analyze
it dynamically on the fly in our DPOR algorithm (see Section 4.4).

Optimal DPOR [2] seeks to make stateless model checking more efficient by
skipping equivalent executions. Maximal causality reduction [19] further refines
the technique with the insight that it is only necessary to explore executions
in which threads read different values. Value-centric DPOR [6] has the insight
that executions are equivalent if all of their loads read from the same writes.
Unfolding [40] is an alternative approach to POR for reducing the number of
executions to be explored. The unfolding algorithm involves solving an NP-
complete problem to add events to the unfolding.

Recent work has extended these algorithms to handle the TSO and PSO
memory models [3,63,20] and the release acquire fragment of C/C++ [4]. The
RCMC tool implements a DPOR tool that operates on execution graphs for
the RC11 memory model [24]. SAT solvers have been used to avoid explicitly
enumerating all executions. SATCheck extends partial order reduction with the
insight that it is only necessary to explore executions that exhibit new behav-
iors [9]. CheckFence checks code by translating it into SAT [5]. Other work has
also presented techniques orthogonal to DPOR, either in a more general con-
text [10] or platform specific (e.g., Android [36] and Node.js [29]).

Recent work on dynamic partial order reduction for event-driven programs
has developed dynamic partial order reduction algorithms for stateless model
checking of event-driven applications [22,30]. Jensen et al. [22] consider a model
similar to ours in which an event is treated as a single transition, while Maiya
et al. [30] consider a model in which event execution interleaves concurrently
with threads. Neither of these approaches handle cyclic state spaces nor consider
challenges that arise from stateful model checking.

Recent work on DPOR algorithms reduces the number of executions for pro-
grams with critical sections by considering whether critical sections contain con-
flicting operations [25]. This work considers stateless model checking of multi-
threaded programs, but like our work it must consider code blocks that perform
multiple memory operations.

CHESS [33] is designed to find and reproduce concurrency bugs in C, C++,
and C#. It systematically explores thread interleavings using a preemption
bounded strategy. The Inspect tool combines stateless model checking and state-
ful model checking to model check C and C++ code [61,56,59].
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In stateful model checking, there has also been substantial work such as
SPIN [18], Bogor [11], and JPF [55]. In addition to these model checkers, other
researchers have proposed different techniques to capture program states [32,17].

Versions of JPF include a partial order reduction algorithm. The design of
this algorithm is not well documented, but some publications have reverse engi-
neered the pseudocode [34]. The algorithm is naive compared to modern DPOR
algorithms—this algorithm simply identifies accesses to shared variables and
adds backtracking points for all threads at any shared variable access.

8 Conclusion

In this paper, we have presented a new technique that combines dynamic partial
order reduction with stateful model checking to model check event-driven appli-
cations with cyclic state spaces. To achieve this, we introduce two techniques:
a new termination condition for looping executions and a new algorithm for
setting backtracking points. Our technique is the first stateful DPOR algorithm
that can model check event-driven applications with cyclic state spaces. We have
evaluated this work on a benchmark set of smart home apps. Our results show
that our techniques effectively reduce the search space for these apps. This is the
extended version of our paper, with the same title, published at VMCAI 2022.
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Appendices

A Example Event-Driven System

Figure A.1 depicts components of an example event-driven system. The applica-
tion SmartLightApp in the figure is developed using this concurrency model and
may run in the cloud. It has a fixed set of events that are associated with it and
their respective event handlers. It also has logic to decide whether to perform
specific actions based on the triggering events. For example, SmartLightApp can
turn on and off a light bulb based on specific triggers.

Our example event-driven system has the following 4 components:
(I) Event handlers: The application code is composed of a set of event han-
dlers. Each event handler processes a certain class of events. When the event
handler executes, it receives the appropriate event object. When the runtime
system dequeues an event e, it executes the relevant event handler.
(II) External events: An application can have a number of sources that deliver
triggering events: (1) a cloud service (e.g., a cloud service that reports the current
outdoor temperature), (2) a service that is running on a computing device (e.g.,
a messaging service that sends a trigger whenever there is an incoming message),
(3) a device (e.g., an illuminance sensor that sends a trigger whenever there is
a change of light intensity in its environment), (4) a scheduled event within the
application (e.g., turn on a light bulb at 6pm), or (5) an event generated by the
application that triggers another component of that app: these events potentially
change the app’s state (e.g., a scheduled mode change to night may trigger a
light bulb to turn on).
(III) Internal events: An application can directly generate events, for example
to: (a) actuate a certain device (e.g., turn on a light bulb) or (b) trigger another
app running on a computing device (e.g., trigger an email to be sent from an
email app).
(IV) Event queue: All events are pushed into an event queue to be delivered
by the runtime to the appropriate event handlers.

Examples of platforms with this event-driven model include the Samsung
SmartThings platform [46,45], a popular platform used to create apps that con-
trol devices to automate tasks for a smart home.

B Correctness

This section proves the correctness of our stateful DPOR algorithm with the
following proof strategy: we first prove that the stateless analog of our dynamic
partial order reduction algorithm is correct in Theorem 1. We then prove that the
stateful algorithm explores all transitions that the stateless algorithm explores.

Given a transition sequence S, we use the following notations in our proof:
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Fig.A.1. Example Event-driven System.

– |S| returns the length of S.
– Si denotes the i-th transition in S, and Si...j denotes the subsequence of S

from the i-th position to the j-th position.

We also define the notion of transitive dependence as follows:

Definition 1 (Transitive Dependence). Given a transition sequence τ :

s0
t1−→ s1

t2−→ s2...
tn−1−−−→ sn−1

tn−→ sn, the transitive dependence relation →τ

is the smallest partial order on τ such that if i < j and ti is dependent on tj,
then ti →τ tj.

The notion of transitive dependence enables partial order reduction. The
transition sequence τ is one linearization of the partial order →τ . A search
algorithm only needs to explore one linearization, because other linearizations
of →τ yield “equivalent” transition sequences of τ , which can be obtained by
swapping adjacent independent transitions.

B.1 Correctness of the Stateless Algorithm

For the stateless analog of the algorithm, the if conditions in lines 26 and 31 of
Algorithm 2 are always false, and the data structures S and H in Algorithm 1
and 2 are don’t-care terms. When all events in backtrack(s) have been explored,
the search from s is over, and we say that the state s is “backtracked”.

Theorem 1. Let E be a finite set of events, τ be a transition sequence from the
initial state s0 explored by the stateless analog of the algorithm in an acyclic
transition system, and s0

τ−→ s. Then, when s is backtracked,
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1. the set of events that have been explored from s is a persistent set in s, and
2. every trace τ ·λ in the state space of AG is a prefix of a linearization of→τ ·λ′

for some explored trace τ · λ′.

Proof. Acyclicity implies that the system satisfies the descending chain condi-
tion, and we can apply well-founded induction. We need to prove the statements
for the trace s0

τ−→ s, assuming that the statements hold for all longer traces

s0
τ−→ s

τ ′

−→ s′, where s′ is reachable from s in finite steps.
Let T := backtrack(s). For the first statement, i.e., T is a persistent set when

s is backtracked, we will prove it by contradiction. If T is not a persistent set,
then there must exist a transition sequence from s,

s
t1−→ s1

t2−→ s2...
tn−1−−−→ sn−1

tn−→ sn,

where event(t1), ..., event(tn) /∈ T , events event(t1), ..., event(tn−1) are read-
write independent with all events in T , and event(tn) is dependent with some
x ∈ T at state sn−1. Select the shortest such transition sequence. Let σ be
the transition sequence t1...tn−1. For simplicity, we will label event(ti) as ẽi for
1 ≤ i ≤ n. Note that ẽi and ẽj could be the same event even if i 6= j.

Since x is read-write independent with ẽi for all 1 ≤ i ≤ n− 1, we have the
following transition diagram:

s′
σ // sn−1′

s
σ //

x

OO

sn−1

x

OO

There are two cases: (1) ẽn is enabled in s; and (2) ẽn is disabled in s.

Case 1: Suppose that ẽn is enabled in s but disabled in s′. Since x ∈ T
and s

x−→ s′ has been explored when s is backtracked, the for loop at line 22 of
Algorithm 2 will add ẽn to T , contradicting the assumption that ẽn /∈ T .

Suppose that ẽn is enabled in s and s′. Then, x does not enable or disable ẽn.
Since x is read-write independent with all corresponding events in σ, ẽn is also
enabled in sn−1

′. Recall that ẽn is dependent with x at sn−1. Since x does not
enable or disable ẽn, x and ẽn must have conflicting memory accesses Ax,n in the
transition sequence τ ·σ·tx ·tn, which is equivalent to the transition sequence τ ·tx ·
σ·tn, where event(tx) = x. Since x ∈ T and by the inductive assumption, we have
explored some transition sequence τ̃ where some linearization of→τ̃ has prefix τ ·
tx ·σ·tn. Thus, line 25 in Algorithm 2 would have called UpdateBacktrackSet
and found the conflicting memory accesses Ax,n, which is not empty until some
ẽi is added to T . Thus, we have a contradiction.

Case 2: Suppose that ẽn is disabled in s. Since ẽn is enabled in sn−1, there
exists some transition ti in σ that writes to the shadow location of ẽn. Since
x is read-write independent with ẽ1, ..., ẽn−1 by assumption, x does not write
to the shadow location of ẽn, i.e., x does not enable or disable ẽn. Then, ẽn is
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also enabled in sn−1
′. Therefore, the same argument in the second paragraph of

Case 1 applies, and we have a contradiction.

We have shown that T is a persistent set. We now move to prove the second

statement in this theorem, that every trace s0
τ−→ s

λ−→ u is a prefix of a lin-
earization of →τ ·λ′ for some explored trace τ · λ′. If λ is the null sequence, then
we are done, because s0

τ−→ s is already explored.
Let λ = π ·η, where π is the maximal transition sequence such that no events

executed in π is in T . If η is not the null sequence, then the first transition in
η, denoted by η1, is in T . Since T is a persistent set, η1 is independent with all
transitions in π. Thus, τ ·π · η is equivalent to τ · η1 ·π · η2...|η|. Note that τ · η1 is
a transition sequence that is explored by the algorithm. Thus, by the inductive
assumption, τ · η1 · π · η2...|η| is a prefix of a linearization of →τ ·η1·λ′ for some
explored trace τ · η1 · λ′. Then, τ · λ = τ · π · η is a prefix of another linearization
of →τ ·η1·λ′ . The same argument holds if π is the null sequence.

Let η be the null sequence. Pick y ∈ T . Then, τ · ty is an explored transition
sequence, where event(ty) = y. The inductive assumption implies that τ · ty ·π is
a prefix of a linearization of →τ ·ty·λ′ for some explored trace τ · ty · λ′. Because
ty is independent with all transitions in π, τ · π · ty is also a prefix of some
linearization of →τ ·ty·λ′ . Hence, τ · π is a prefix of some linearization of →τ ·ty·λ′

as well.

B.2 Correctness of the Stateful Algorithm

Theorem 1 assumes that the transition system AG has an acyclic state space. In
general, we do not expect our programs to have acyclic state spaces. Therefore,
we make an acyclic version of AG by constructing a k-bounded instantiation of
the transition system AG in which each event can run at most k times. This
is equivalent to transforming the program to add a counter per event type that
permanently disables an event after the event handler has been executed k times.
Definition 2 formalizes the notion of the k-bounded instantiation. This would
conceptually be implemented by adding a separate mechanism to the algorithm
that only adds events that have not reached their k bound to the backtrack set
and would not add events that have reached their k bound to the backtrack set
in line 23 of Algorithm 2.

Definition 2 (Strictly k-Bounded Instantiation). A k-bounded instantia-
tion of a transition system AG is a program, where the execution continues until
it reaches a state, in which all enabled events have run k times.

We then will demonstrate the correctness of the results of a run of the state-
ful algorithm on the original, unbounded transition system AG by showing that
for any arbitrary k, there exists a run of the stateless algorithm on a k-bounded
instantiation of AG that explores a subset of transitions explored by the state-
ful algorithm on the original transition system. Our strict, local notion of a
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k-bounded instantiation of AG is not sufficient to show this because the state-
ful algorithm could select an event e to execute at state s that has already
reached its k-bound while there exist other events that have not reached their
k-bound. Therefore, we define a looser notion of a k-bounded instantiation of
AG in Definition 3.

Definition 3 (Loosely k-Bounded Instantiation). A loosely k-bounded in-
stantiation of a transition system AG is a program, where the execution continues
until it reaches a state, in which all enabled events have run at least k times.

We define a run of the stateful or stateless algorithm as a full invocation of
the ExploreAll procedure, which explores different executions of the targeted
program. There can be multiple runs of the stateless algorithm on a bounded
instantiation of AG, because adding to and extracting events from the back-
track sets are non-deterministic in lines 5, 13 and 17 of Algorithm 2. However,
Theorem 1 shows that different runs of the stateless algorithm on a strictly k-
bounded instantiation are equivalent in the sense that all of them explore all
reachable local states of all the events in the k-bounded instantiation. We next
prove Lemma 1 that shows that stateless model checking a loosely k-bounded
instantiation of AG is sufficient to explore the behaviors of a strictly k-bounded
instantiation of AG.

Lemma 1. Let k be any positive integer, I be a loosely k-bounded instantiation
of a transition system AG, and I0 be the strictly k-bounded instantiation of AG.
Let Execs be the set of runs of the stateless algorithm on I0. Let EI be a run
of the stateless algorithm on I. Then, there exists a run E ∈ Execs such that
for every transition sequence τ explored by E, there is a transition sequence τ ′

explored by EI such that τ is a prefix of a linearization of →τ ′ .

Proof. We will prove it by induction on the execution trees of loosely k-bounded
instantiations explored by the stateless algorithm. The idea is that given the
strictly k-bounded instantiation I0, we can construct the execution trees of an
arbitrary loosely k-bounded instantiation by injecting events one at a time into
the execution trees of I0.

Let EI be a run on the instantiation I, we will use induction to construct
the execution tree of EI . By definition, I0 is a loosely k-bounded instantiation,
and it is the simplest loosely k-bounded instantiation. Thus, the base case for
induction is the strictly k-bounded instantiation I0. It is clear that for every run
of the stateless algorithm on I0, there exists a run E ∈ Execs that satisfies this
lemma.

For the inductive step, let In be a loosely k-bounded instantiation. We as-
sume that for every run EIn of the stateless algorithm on In, there exists a run
E ∈ Execs such that for every transition sequence τ explored by E, there is a
transition sequence τ ′ explored by EIn such that τ is a prefix of a linearization
of→τ ′ . Since we are incrementally constructing the execution tree of EI , we can
in addition assume that there exists a run EIn

a of the stateless algorithm on In
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such that the execution tree of EIn
a has a common prefix as the execution tree

of EI .

We will construct a run of a new loosely k-bounded instantiation In+1 by
injecting into EIn

a the first event e ∈ E that is in the execution tree of EI but
that is not in the execution tree of EIn

a . We will label the newly constructed run
as EIn+1 . Let t be the injected transition. We will show that there exists a run
EIn
b of the stateless algorithm on In such that for every transition sequence S

explored by EIn
b , there exists a transition sequence S′ explored by EIn+1 where

S is a prefix of a linearization of →S′ .

Let S be a transition sequence explored by EIn
a where t is injected to obtain

EIn+1 . Let S̃ be the corresponding transition sequence explored by EIn+1 where
S and S̃ have a common prefix S̃pre that is the prefix of S̃ before the transition
t. Let T̃ be the subtree of the execution tree of EIn+1 whose prefix is S̃pre.

Consider all executions in T̃ of the form S̃pre · t · S̃‡. We have two cases to
consider.

Case 1: All transitions in all explored S̃‡ are independent with t. Consider
the backtrack set backtrack(dst(t)) in T̃ . We can construct another run EIn

b of
In by having the run EIn

a select the event e′ that was the first event added to

backtrack(dst(t)), and add to the backtrack set of last(S̃pre) when it first explores

the transition sequence S̃pre. Let Tb be the subtree of the execution tree of EIn
b

whose prefix is S̃pre. Then, for each transition sequence S̃pre · S# explored in Tb,
there is a transition sequence S̃pre · t · S# explored in T̃ . Since t commutes with
S#, the transition sequence S̃pre ·t ·S# is equivalent to S̃pre ·S# ·t. Furthermore,
since t commutes with all later transitions, T̃ will set the same set of backtrack
points in the transition sequence S̃pre as Tb does.

Case 2: There exists some transition t′ in some S̃‡ that conflicts with t.
Consider the first such transition sequence explored by the run EIn+1 . This
execution would add some event e′ to the backtrack set backtrack(src(t)). We
can construct a new run EIn

b of In by having the run EIn
a select the same event

e′ to add to the backtrack set of last(S̃pre) when it first explores the transition

sequence S̃pre. Then, the backtrack set at the state last(S̃pre) for EIn
b would be

a subset of the backtrack set at the state last(S̃pre) for EIn+1 . Let Tb be the

subtree of the execution tree of EIn
b whose prefix is S̃pre. Then, any execution

explored in Tb would also be explored in T̃ . Furthermore, since T̃ explores all
executions that are explored in Tb, in the transition sequence S̃pre explored by
EIn+1 , the exploration of T̃ will set at least the backtrack points as Tb does for
S̃pre in EIn

b .

We have now shown the existence of EIn
b and that for each transition sequence

S in Tb, there exists a transition sequence S′ in T̃ such that S is a prefix of a
linearization of →S′ .

Outside of T̃ , the execution EIn+1 will explore at least the set of executions
as EIn

b does outside of Tb, because EIn+1 sets at least the backtracking points in

S̃pre as EIn
b does in S̃pre.
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Since the stateless algorithm does not recognize visited states, we assume
each state encountered during the search of a run E of the stateless algorithm
has a unique identifier. In other words, there can be multiple nodes (states) in
the R graph of E that are equal but have different identifiers. However, the
stateful algorithm recognizes states that are equal but have different identifiers.

Therefore, we define a map α that maps states in R that are equal but
have different identifiers to a single state. If t is a transition in R, then we
define α(t) to be the transition whose source and destination are both mapped
by α. If S is a transition sequence in R, then α(S) is defined similarly. The
state transition graph α(R) is the transformed graph, where nodes that are
equal but have different identifiers in R are collapsed to a single node, and the
edges (transitions) are also collapsed such that if s1 → s2 is an edge in R, then
α(s1)→ α(s2) is an edge in α(R).

In Theorem 2, although α(R) is technically not a subgraph of R, we can
think of α(R) as a graph being embedded in R. Similarly, if s is a state in R,
we will think of α(s) as a state in R. If t is a transition in R, we will think of
α(t) as a transition in R.

Theorem 2. Let E be a terminating run of the stateful algorithm on the un-
bounded instantiation of a transition system AG. Let R be the state transition
graph when E terminates. Then, for any positive integer k, there is a run E of
the stateless algorithm on a loosely k-bounded instantiation of AG such that if
E explores a transition sequence s0 → s′, then

1. α(R) ⊆ R, and
2. ∀s ∈ States, backtrack(s)stateless ⊆ backtrack(α(s))stateful,

where R is the state transition graph when E reaches s′ and States is the set of
states that E have encountered when reaching s′.

Proof. We will apply the principle of structural induction on the execution tree
of E. For the base case, we are at s0, and no transitions have been explored.
Thus, R is empty and all backtrack sets are empty, and we trivially establish
α(R) ⊆ R and ∀s ∈ States, backtrack(s)stateless ⊆ backtrack(α(s))stateful.

Let s0 → sc be a transition sequence explored by E. For the inductive
step, we assume that α(R) ⊆ R and ∀s ∈ States, backtrack(s)stateless ⊆
backtrack(α(s))stateful hold the moment before Explore(sc) is called. We will
prove that the invariants hold during the call of Explore(sc).

The Explore procedure can be decomposed into two segments: the initial
setup of backtrack sets in lines 2 to 16 and iterations of the while loop in line 17.

We first consider executions of the code for the initial setup of backtrack
sets in Explore(sc). Suppose tp is the transition that leads to sc. Then, be-
fore Explore(sc) is called, tp and sc have already been added to R. Since we
have α(R) ⊆ R by inductive assumption, α(sc) is in R and the stateful algo-
rithm has explored the state α(sc). If the enabled set for α(sc) is not empty,
then the stateful algorithm has at least one event in backtrack(α(sc))stateful.
Construct E to select that same initial event as the one that E first added to
backtrack(α(sc))stateful in line 5.
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Otherwise, if the enabled set for α(sc) was empty, then the stateful and
stateless algorithms would have empty sets for backtrack(α(sc))stateful and
backtrack(sc)stateless, respectively. Thus, in either case we preserve the second
invariant. Since the graph R is not changed during the initial setup of the back-
track sets, we also preserve the first invariant.

We next consider an execution of an iteration of the while loop.
Since in the initial setup of the backtrack set of sc, we have
backtrack(sc)stateless ⊆ backtrack(α(sc))stateful. Then, the while loop will select
a b ∈ backtrack(α(s))stateful.

At line 19, the stateless algorithm will compute a transition tc such that α(tc)
is in R because next is deterministic and E executes the same event b at sc as
E does at α(sc).

After executing line 21, we have R′ = R∪{tc}. Since α(tc) ∈ R and α(R) ⊆
R, we have α(R′) ⊆ R. The first invariant holds.

Since next and dst in lines 19 and 20 are deterministic, the stateless algorithm
computes sd = dst(tc) in line 20 such that α(sd) = dst(α(tc)). In line 22, the
enabled set at sc is a subset of that at α(sc) because some events in the stateless
algorithm may become disabled due to exceeding their bounds. Recall that the
special mechanism that we use to implement bounded instantiations ensures that
events that are enabled at sc but disabled at sd due to exceeding their bounds
are not added to the backtrack set of sc. Therefore, after finishing the for loop
in line 22, we still have backtrack(sc)stateless ⊆ backtrack(α(sc))stateful, and the
second invariant is maintained at this step.

In line 25, Explore(sc) calls UpdateBacktrackSet(tc). Consider an
event e that the stateless algorithm adds to the backtrack set of spre, where

spre is some explored state in R. Then, there must exist a path Sb in R from

spre to sc. Since R ⊆ R, α(Sb) is also a path from α(spre) to α(sc) in R. Con-

sider the last transition tlast added to the path α(Sb) during the execution of E.
We have three cases to consider.

Case 1: tlast = α(tc). Then, when calling UpdateBacktrackSet(α(tc)),
E would traverse back the path α(Sb) from α(sc) to α(spre) via a depth first

search, and in the worst case, traverse a path as long as the length of Sb. Since e
is added to the backtrack set of spre in the call of UpdateBacktrackSet(tc),
then e will also be added to the backtrack set of α(spre) in the call of
UpdateBacktrackSet(α(tc)).

Case 2: tlast is in the middle of the path α(Sb), and its destination state
dst(tlast) was either in H or satisfied the full cycle predicate. In this case, E
calls UpdateBacktrackSetsFromGraph(tlast) in line 27 some time dur-
ing its execution, which will find that α(tc) is reachable from tlast and call
UpdateBacktrackSet(α(tc)). Therefore, e will also be added to the back-
track set of α(spre).

Case 3: tlast is in the middle of the path α(Sb), and its destination state
dst(tlast) was discovered in the current execution and does not satisfy the full
cycle predicate. In that case, E calls UpdateBacktrackSetsFromGraph
on tlast in line 32, which will find that tc is reachable from tlast and call
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UpdateBacktrackSet(α(tc)). Therefore, e will also be added to the back-
track set of α(spre).

Thus, we have shown that at the end of this loop iteration, both invariants
α(R) ⊆ R and ∀s ∈ States, backtrack(s)stateless ⊆ backtrack(α(s))stateful hold.

Finally, we tie all of the theorems together to obtain Theorem 3, which relates
finite transition sequences of arbitrary length coming from the initial state s0 in
the state space of AG to the results of the stateful DPOR algorithm.

Theorem 3. Let AG be a transition system with finite reachable states. Then,

1. the stateful algorithm on the unbounded instantiation of AG terminates.
2. For any finite transition sequence S from s0 in the state space of AG, the

state transition graph R computed by the stateful algorithm run contains a
path S′ such that α(S) is a prefix of some linearization of →S′ .

Proof. (1) We will first show that running the stateful algorithm on the un-
bounded instantiation of AG terminates. Recall that the unbounded instantia-
tion of AG means that each event type is allowed to execute infinite number of
times. Since AG has finite reachable states, the set of events E is a finite set. We
claim that each transition sequence explored by Explore has a finite length,
because the transition sequence will either hit a state stored in H or eventually
satisfy the full cycle condition.

Let Sa be a transition sequence explored by Explore. If Sa hits a state
stored in H, then the claim is proven. Thus, we will consider the other case and
suppose that Sa never hits a state stored in H. Since AG has finite reachable
states, Sa will eventually revisit some state s after executing some execution ta.
At the point, IsFullCycle(t) is called. If the set Efc in line 6 of Algorithm 4
is not equal to the set Eenabled computed in line 7, pick e ∈ Eenabled \ Efc. Then,

e ∈ enabled(dst(te)) for some te ∈ Sfca . Let se = dst(te).
Since AG has finite reachable states, Sa will eventually revisit the state se.

If Sa does not revisit se, there must be a state sx that Sa revisits an infinite
amount of times. However, the first |enabled(sx)| visits will explore all events
in enabled(sx) from sx, and all later visits to sx will revisit some other visited
states. If all such later visits to sx do not revisit se, then there must be a cycle
containing sx where all states in the cycle have had their enabled sets explored,
and this cycle will satisfy the full cycle condition. Thus, Sa will either revisit se
or satisfy the full cycle condition somewhere else. After revisiting the state se
for |enabled(se)| times, Sa will explore e from se.

Similarly, Sa will revisit s or terminate due to satisfying the full cycle con-
dition. If it revisits s the next time, then there is at least one less element in
Eenabled \ Efc. Therefore, we can apply the same argument for a finite number of
times and show that the transition sequence Sa will eventually satisfy the full
cycle condition and terminate.

We have shown that each transition sequence explored by an Explore call
has finite length. We will next show that each Explore call terminates. Con-
sider a call Explore(s). We define a number C as the sum of the number of
unexplored reachable states in AG, the number of unexplored transitions in AG.
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Since AG has finite reachable states, for simplicity, we will ignore unreachable
states and transitions that are potentially infinite and assume all states and
transitions in AG are reachable from s0. The number of unexplored reachable
states and transitions are finite. So, C is finite. Consider a subcall Explore(ssub)
issued by Explore(s). There are two cases.

Case 1: done(ssub) is not equal to enabled(ssub). Then, in one iteration of
the while loop in line 17, the number of unexplored transitions is reduced by
one. The number of unexplored states either decreases by one or not, depending
on whether the most recently explored transition leads to an unexplored state
or not.

Case 2: done(ssub) is equal to enabled(ssub). Then, an already explored event
is removed from done(ssub), and the while loop in line 17 reexplores the same
event. In this case, the number of unexplored states and transitions remains the
same. This transition sequence will eventually terminate, and in the worst case,
it terminates without reducing the number of unexplored states and transitions
since visiting the state ssub. However, the prefix of such transition sequence
before visiting the state ssub must contain a transition that is not explored in
other transition sequences. Otherwise, the subcall Explore(ssub) will not be
invoked. Therefore, there cannot be an infinite number of Explore calls where
C is not reduced throughout the call.

Considering the above two cases, C is either reduced or remains the same in
the subcalls of Explore invoked by Explore(s), and there is only a finite num-
ber of Explore subcalls where C stays the same. Since C is finite, Explore(s)
eventually terminates.

(2) Now, we will prove the second statement. Since S is finite, there is a k
such that S contains fewer than k instances of any event type. We will assume
that all the same states visited by S has a unique identifier. Thus, S is a prefix
of an execution of a strictly k-bounded instantiation of AG.

By Theorem 2, α(R) ⊆ R and therefore there exists a run Ẽ of the stateless
algorithm on a loosely k-bounded instantiation of AG such that every transition
sequence S̃ explored by Ẽ is mapped to a path in R by α. By Lemma 1, there
exists a run E of the stateless algorithm on the strictly k-bounded instantiation of
AG such that for every transition sequence Sa explored by E there is a transition
sequence S̃ explored by Ẽ where Sa is a prefix of some linearization of → ˜S . By

Theorem 1 the run E explores some transition sequence Sa′ for which S is a
prefix of a linearization of →Sa′ .

Therefore, the run Ẽ explores a transition sequence S̃a such that S is a
prefix of a linearization of → ˜Sa

. Define S′ = α(S̃a). Then, α(S) is a prefix of a

linearization of →S′

C Example for Stateful DPOR Algorithm

Here, we illustrate how our new stateful DPOR algorithm works with the exam-
ple from Figure 3.
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First, the algorithm starts by calling the ExploreAll procedure in Algo-
rithm 1. After the state is initialized, it calls the Explore procedure in line 5.
Let us suppose that the algorithm first explores the execution shown in Figure 3-
a. Line 5 in Algorithm 2 chooses event e1 among the enabled events. Next, event
e1 is executed: it produces a new state s1 and adds the corresponding transi-
tion to R. Line 25 calls the UpdateBacktrackSet procedure, but it does not
update the backtrack set of any state since the algorithm has only explored one
event. Line 26 evaluates to false since the termination condition is not met yet:
s1 is not found in H and it is not a full cycle. Line 31 also evaluates to false
since s1 is not found in S. Finally, Algorithm 1 calls the Explore procedure
recursively to explore the next transition.

In the subsequent transitions, line 5 chooses event e2 and then event e3.
For each of these events, the UpdateBacktrackSet procedure invokes Up-
dateBacktrackSetDFS in Algorithm 5 to perform the DFS, find conflicts,
and update the corresponding backtrack sets—it puts event e2 in the backtrack
set of s0 and event e3 in the backtrack set of s1 as it finds conflicts between
events e1 and e2 that access the shared variable z, and events e2 and e3 that
access the shared variable y. Event e2 produces a new state s2, while e3 causes
the execution to revisit state s1. At this point, line 31 evaluates to true and
the algorithm calls the UpdateBacktrackSetsFromGraph procedure. This
procedure (shown in Algorithm 3) finds that the transition that corresponds
to event e2 is reachable from the transition that corresponds to event e3 in
R and calls the UpdateBacktrackSet procedure. UpdateBacktrackSet
puts event e2 in the backtrack set of s2 as it finds a conflict between the events
e2 and e3 that access the shared variable y.

In the final transition of the first execution, line 5 chooses event e4. The Up-
dateBacktrackSet procedure finds a conflict between e4 and e1 that both
access the shared variable x: it puts event e4 in the backtrack set of state s0.
Event e4 directs the algorithm to revisit state s0. This time line 26 evaluates
to true as the termination condition is satisfied. The algorithm calls the Up-
dateBacktrackSetsFromGraph procedure—it finds that the events e1, e2,
and e3 are reachable from the transition for event e4. Next, it calls the Update-
BacktrackSet procedure for the reachable transitions. Among all the conflicts
found by the procedure, it puts event e1 in the backtrack set of state s1 as a
new backtracking point for the conflict between the events e1 and e4. Then, the
algorithm saves the visited states in this execution into H and terminates the
execution.

Now the algorithm explores the executions in the backtrack sets. This time,
line 17 in Algorithm 2 chooses the events e1 and e3 in the backtrack set of s1,
and event e2 in the backtrack set of s2. These executions terminate quickly as
they immediately revisit states s1 and s2 that have been stored in H at the end
of the first execution—line 26 evaluates to true. These executions are shown in
Figures 3-b, c, and d.

Next, let us suppose that the algorithm explores the execution from event
e2 in the backtrack set of s0 shown in Figure 3-e. At first, line 17 in Algo-
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rithm 2 chooses event e2 in the backtrack set of s0 that produces a new state
s3. When line 25 calls the UpdateBacktrackSet procedure, this invocation
allows the algorithm to perform the DFS backward to find conflicts between
event e2 and the transitions in previous executions. Thus, it finds a conflict be-
tween the current event e2 and event e3 from the previous execution shown in
Figure 3-b—both access the shared variable y. It then puts event e2 into the
backtrack set of state s1. Since lines 26 and 31 evaluate to false, the algorithm
calls the Explore procedure recursively. In the second recursion, let us suppose
that event e3 is chosen. Line 25 calls the UpdateBacktrackSet procedure:
it finds a conflict between events e3 and e2 and puts event e3 in the backtrack
set of s0. Since event e3 directs the execution to revisit s0 that is already in H,
line 26 evaluates to true and the algorithm invokes the UpdateBacktrack-
SetsFromGraph procedure. This procedure finds a conflict between event e2
of the current execution as a reachable transition from s0 and event e3 from s3
that was just executed; it next puts event e2 into the backtrack set of s3 as a
new backtracking point. At this point, this execution terminates.

The algorithm explores executions from the remaining backtracking points,
namely, executions from event e2 in the backtrack set of s3, and e3 and e4 in
the backtrack set of s0. These executions are shown in Figures 3-f, g, and h. In
the execution of event e4 from state s0, the algorithm detects a conflict with the
prior execution of event e3 from state s3; it puts event e4 into the backtrack set
of s3.

The algorithm then explores the execution shown in Figure 3-i, which con-
tains the assertion. The model checker stops its exploration and returns an error.

D Optimizing Traversals

The algorithm as presented performs graph traversals to identify conflicts. Our
implementation implements several optimizations to reduce traversal overheads.

The procedure UpdateBacktrackSetsFromGraph traverses the graph
after a state match to discover potential conflicting transactions from previous
executions. We eliminate many of these graph traversals by caching the results of
the graph search the first time UpdateBacktrackSetsFromGraph is called.
The results can be cached for each state as a summary of the potentially conflict-
ing transitions that are reachable from the given state. A potentially conflicting
transition, namely tconf, is cached in the form of a tuple that contains the event
event(tconf) and its corresponding accesses A.

This cached summary is updated by UpdateBacktrackSet during its
backwards graph traversal. With this summary, the algorithm can efficiently
re-explore the previously explored transitions: (1) when a previously discovered
state s is reached, the summary contains all potentially conflicting events reach-
able from s, and (2) when performing backwards depth first search traversal, the
algorithm can stop the traversal at any state sb whenever the algorithm finds
that the current event(tconf) and A are already cached in the summary for sb.

37



Table A.1. Model-checked pairs that finished with DPOR but unfinished (i.e., ”Unf”)
without DPOR. Evt. is number of events and Time is in seconds.

No. App Evt. Without DPOR With DPOR
States Trans. Time States Trans. Time

1 initial-state-event-streamer–
thermostat-auto-off

78 Unf Unf Unf 7,146 25,850 3,285

2 unbuffered-event-sender–
hvac-auto-off.smartapp

78 Unf Unf Unf 7,123 26,016 3,432

3 initial-state-event-sender–
hvac-auto-off.smartapp

78 Unf Unf Unf 7,007 25,220 3,215

4 initial-state-event-streamer–
hvac-auto-off.smartapp

78 Unf Unf Unf 7,007 25,220 3,230

5 initialstate-smart-app-v1.2.0–
hvac-auto-off.smartapp

78 Unf Unf Unf 7,007 25,220 3,290

6 lighting-director–circadian-
daylight

19 Unf Unf Unf 6,553 33,045 6,604

7 initial-state-event-streamer–
thermostat

81 Unf Unf Unf 5,646 26,620 2,965

8 forgiving-security–
unbuffered-event-sender

80 Unf Unf Unf 5,019 45,208 6,259

9 forgiving-security–initial-
state-event-streamer

80 Unf Unf Unf 4,902 44,230 5,697

10 forgiving-security–
initialstate-smart-app-v1.2.0

80 Unf Unf Unf 4,902 44,230 5,702

11 forgiving-security–initial-
state-event-sender

80 Unf Unf Unf 4,902 44,230 5,716

12 unbuffered-event-sender–
thermostat-window-check

79 Unf Unf Unf 4,546 17,411 2,069

13 hue-mood-lighting–Hue-
Party-Mode

18 Unf Unf Unf 3,457 49,138 6,132

14 thermostat–initial-state-
event-sender

82 Unf Unf Unf 2,530 13,105 1,621

15 thermostat–initialstate-
smart-app-v1.2.0

82 Unf Unf Unf 2,530 13,105 1,606

16 thermostat–unbuffered-event-
sender

82 Unf Unf Unf 2,517 12,880 1,626

17 initial-state-event-streamer–
unlock-it-when-i-arrive

79 Unf Unf Unf 2,459 8,825 998

18 lights-off-with-no-motion-
and-presence–smart-security

11 Unf Unf Unf 2,299 11,261 1,475

19 initial-state-event-streamer–
lock-it-when-i-leave

78 Unf Unf Unf 1,750 5,387 595

20 smart-nightlight–step-notifier 13 Unf Unf Unf 1,568 6,460 644

21 initial-state-event-sender–
NotifyIfLeftUnlocked

78 Unf Unf Unf 1,482 3,830 428

22 initial-state-event-streamer–
NotifyIfLeftUnlocked

78 Unf Unf Unf 1,482 3,830 439

38



No. App Evt. Without DPOR With DPOR
States Trans. Time States Trans. Time

23 initialstate-smart-app-v1.2.0–
NotifyIfLeftUnlocked

78 Unf Unf Unf 1,482 3,830 437

24 initial-state-event-streamer–
auto-lock-door.smartapp

80 Unf Unf Unf 1,272 3,743 422

25 lock-it-when-i-leave–
unbuffered-event-sender

78 Unf Unf Unf 1,234 3,482 438

26 lock-it-when-i-leave–initial-
state-event-sender

78 Unf Unf Unf 1,192 3,369 424

27 lock-it-when-i-leave–
initialstate-smart-app-v1.2.0

78 Unf Unf Unf 1,192 3,369 428

28 medicine-management-temp-
motion–initial-state-event-
sender

79 Unf Unf Unf 939 2,277 275

29 medicine-management-temp-
motion–initialstate-smart-
app-v1.2.0

79 Unf Unf Unf 939 2,277 275

30 medicine-management-temp-
motion–unbuffered-event-
sender

79 Unf Unf Unf 933 2,277 283

31 initial-state-event-streamer–
DeviceTamperAlarm

80 Unf Unf Unf 860 2,439 277

32 NotifyIfLeftUnlocked–
unbuffered-event-sender

78 Unf Unf Unf 811 2,181 270

33 initial-state-event-streamer–
smart-auto-lock-unlock

80 Unf Unf Unf 780 1,986 228

34 initial-state-event-streamer–
medicine-management-
contact-sensor

78 Unf Unf Unf 738 1,657 197

35 unlock-it-when-i-arrive–
initial-state-event-sender

77 Unf Unf Unf 622 2,402 273

36 unlock-it-when-i-arrive–
initialstate-smart-app-v1.2.0

77 Unf Unf Unf 622 2,402 274

37 initial-state-event-streamer–
lock-it-at-a-specific-time

79 Unf Unf Unf 621 1,451 175

38 unlock-it-when-i-arrive–
unbuffered-event-sender

77 Unf Unf Unf 618 2,405 277

39 medicine-management-
contact-sensor–initial-state-
event-sender

78 Unf Unf Unf 605 1,241 156

40 medicine-management-
contact-sensor–initialstate-
smart-app-v1.2.0

78 Unf Unf Unf 605 1,241 163

41 DeviceTamperAlarm–initial-
state-event-sender

80 Unf Unf Unf 602 1,540 206

42 DeviceTamperAlarm–
initialstate-smart-app-v1.2.0

80 Unf Unf Unf 602 1,540 209
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No. App Evt. Without DPOR With DPOR
States Trans. Time States Trans. Time

43 medicine-management-
contact-sensor–unbuffered-
event-sender

78 Unf Unf Unf 602 1,240 168

44 DeviceTamperAlarm–
unbuffered-event-sender

80 Unf Unf Unf 600 1,534 217

45 close-the-valve–initial-state-
event-sender

78 Unf Unf Unf 584 1,261 162

46 close-the-valve–initial-state-
event-streamer

78 Unf Unf Unf 584 1,261 164

47 close-the-valve–initialstate-
smart-app-v1.2.0

78 Unf Unf Unf 584 1,261 162

48 close-the-valve–unbuffered-
event-sender

78 Unf Unf Unf 581 1,259 172

49 initial-state-event-streamer–
medicine-management-temp-
motion

79 Unf Unf Unf 549 1,298 172

50 lock-it-at-a-specific-time–
initial-state-event-sender

79 Unf Unf Unf 502 1,080 141

51 lock-it-at-a-specific-time–
initialstate-smart-app-v1.2.0

79 Unf Unf Unf 502 1,080 140

52 lock-it-at-a-specific-time–
unbuffered-event-sender

79 Unf Unf Unf 500 1,079 146

53 auto-lock-door.smartapp–
initial-state-event-sender

80 Unf Unf Unf 498 1,617 196

54 auto-lock-door.smartapp–
initialstate-smart-app-v1.2.0

80 Unf Unf Unf 498 1,617 194

55 auto-lock-door.smartapp–
unbuffered-event-sender

80 Unf Unf Unf 495 1,617 202

56 initial-state-event-sender–
initialstate-smart-app-v1.2.0

78 Unf Unf Unf 473 1,054 143

57 initial-state-event-streamer–
initial-state-event-sender

78 Unf Unf Unf 473 1,054 143

58 initial-state-event-streamer–
initialstate-smart-app-v1.2.0

78 Unf Unf Unf 473 1,054 143

59 initial-state-event-sender–
unbuffered-event-sender

78 Unf Unf Unf 471 1,053 147

60 initial-state-event-streamer–
unbuffered-event-sender

78 Unf Unf Unf 471 1,053 147

61 initialstate-smart-app-v1.2.0–
unbuffered-event-sender

78 Unf Unf Unf 471 1,053 145

62 enhanced-auto-lock-door–
initial-state-event-sender

80 Unf Unf Unf 309 1,139 158

63 enhanced-auto-lock-door–
initial-state-event-streamer

80 Unf Unf Unf 309 1,139 158

64 enhanced-auto-lock-door–
initialstate-smart-app-v1.2.0

80 Unf Unf Unf 309 1,139 162
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No. App Evt. Without DPOR With DPOR
States Trans. Time States Trans. Time

65 smart-auto-lock-unlock–
initial-state-event-sender

80 Unf Unf Unf 309 1,140 159

66 smart-auto-lock-unlock–
initialstate-smart-app-v1.2.0

80 Unf Unf Unf 309 1,140 161

67 enhanced-auto-lock-door–
unbuffered-event-sender

80 Unf Unf Unf 307 1,139 164

68 smart-auto-lock-unlock–
unbuffered-event-sender

80 Unf Unf Unf 307 1,140 165

69 lighting-director–turn-on-
before-sunset

11 Unf Unf Unf 257 960 77
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Table A.2. Model-checked pairs that finished with or without DPOR. Evt. is number
of events and Time is in seconds.

No. App Evt. Without DPOR With DPOR
States Trans. Time States Trans. Time

1 smart-nightlight–
ecobeeAwayFromHome

14 16,441 76,720 5,059 11,743 46,196 5,498

2 step-notifier–
ecobeeAwayFromHome

11 14,401 52,800 4,885 11,490 35,142 5,079

3 smart-security–
ecobeeAwayFromHome

11 14,301 47,608 4,385 8,187 21,269 2,980

4 keep-me-cozy–whole-house-
fan

17 8,793 149,464 4,736 8,776 95,084 6,043

5 keep-me-cozy-ii–thermostat-
window-check

13 8,764 113,919 4,070 7,884 59,342 4,515

6 step-notifier–mini-hue-
controller

6 7,967 47,796 2,063 7,907 40,045 3,582

7 keep-me-cozy–thermostat-
mode-director

12 7,633 91,584 3,259 6,913 49,850 3,652

8 lighting-director–step-notifier 14 7,611 106,540 5,278 2,723 25,295 2,552

9 smart-alarm–
DeviceTamperAlarm

15 5,665 84,960 3,559 3,437 40,906 4,441

10 forgiving-security–smart-
alarm

13 5,545 72,072 3,134 4,903 52,205 5,728

11 smart-light-timer-x-
minutes-unless-already-
on–ecobeeAwayFromHome

9 3,775 11,160 992 2,460 5,418 645

12 smart-security–vacation-
lighting-director

12 3,759 33,264 1,641 2,849 14,108 1,604

13 smart-security–turn-on-only-
if-i-arrive-after-sunset

11 3,437 28,028 1,471 2,553 11,624 1,396

14 smart-security–turn-it-on-
when-im-here

11 3,437 28,028 1,470 2,549 11,878 1,401

15 vacation-lighting-director–
ecobeeAwayFromHome

10 3,313 11,040 856 2,158 5,779 652

16 smart-light-timer-x-minutes-
unless-already-on–step-
notifier

10 3,213 32,120 2,402 2,343 11,149 1,122

17 thermostat–thermostat-
mode-director

12 3,169 38,016 1,454 3,157 28,437 2,470

18 ecobeeAwayFromHome–
NotifyIfLeftUnlocked

9 2,329 6,984 623 1,714 377 454

19 keep-me-cozy–thermostat-
window-check

14 2,185 30,576 1,148 2,176 20,458 1,576

20 smart-security–turn-on-
before-sunset

10 2,175 16,240 855 1,588 6,119 782

21 smart-security–turn-on-at-
sunset

10 2,175 16,240 909 1,542 5,599 783

22 keep-me-cozy–thermostat 12 2,017 519,960 801 2,017 15,593 1,193
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23 smart-security–turn-it-on-
when-it-opens

10 1,763 12,760 700 1,340 5,913 737

24 smart-security–undead-early-
warning

10 1,763 12,760 688 1,340 5,913 732

25 photo-burst-when–
ecobeeAwayFromHome

13 1,409 4,576 599 1,109 2,695 627

26 auto-lock-door.smartapp–
ecobeeAwayFromHome

11 1,381 4,048 373 927 2,357 294

27 lighting-director–vacation-
lighting-director

13 1,373 17,836 623 782 4,943 395

28 let-there-be-dark–smart-
security

9 1,279 8,460 494 881 3,531 413

29 thermostat–whole-house-fan 13 1,273 16,536 690 747 8,237 790

30 let-there-be-dark–
ecobeeAwayFromHome

7 1,240 3,052 289 924 1,895 263

31 forgiving-security–smart-
security

11 1,165 7,524 620 696 2,838 547

32 lighting-director–smart-
light-timer-x-minutes-unless-
already-on

12 1,068 12,804 465 424 3,104 271

33 smart-security–turn-off-with-
motion

9 989 6,732 371 732 3,050 394

34 whole-house-fan–hvac-auto-
off.smartapp

9 958 8,613 296 935 6,852 722

35 thermostat-auto-off–whole-
house-fan

9 958 8,613 286 660 5,377 424

36 smart-security–turn-on-by-
zip-code

9 941 6,300 363 705 2,855 386

37 laundry-monitor–step-notifier 6 873 3,954 263 170 327 54

38 smart-security–
DeviceTamperAlarm

11 872 7,546 371 593 2,939 376

39 make-it-so–whole-house-fan 13 841 10,920 409 751 7,436 599

40 step-notifier–
BetterLaundryMonitor

6 810 4,854 260 453 1,283 144

41 thermostat-auto-off–
thermostat-mode-director

10 763 7,620 281 714 5,805 490

42 medicine-management-temp-
motion–circadian-daylight

14 756 10,500 431 350 3,133 293

43 smart-nightlight–turn-it-on-
when-im-here

11 736 8,085 304 238 1,085 110

44 smart-nightlight–turn-on-
only-if-i-arrive-after-sunset

11 736 8,085 309 238 1,085 109

45 lighting-director–turn-on-at-
sunset

11 734 8,063 294 241 927 80

46 unlock-it-when-i-arrive–
ecobeeAwayFromHome

8 733 2,048 192 543 1,179 170
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47 hall-light-welcome-home–
lighting-director

12 675 8,088 335 225 1,857 172

48 lights-off-with-no-
motion-and-presence–
ecobeeAwayFromHome

7 605 1,400 178 400 827 140

49 good-night-house–
ecobeeAwayFromHome

7 599 1,288 170 505 1,000 198

50 good-night-house–
ecobeeAwayFromHome

7 599 1,288 179 505 1,000 198

51 good-night-house–
ecobeeAwayFromHome

7 599 1,288 170 505 999 200

52 good-night-house–
ecobeeAwayFromHome

7 599 1,288 179 505 999 200

53 keep-me-cozy–
WindowOrDoorOpen

10 589 5,880 238 589 4,338 365

54 keep-me-cozy–hvac-auto-
off.smartapp

10 589 5,880 190 589 4,066 290

55 keep-me-cozy–thermostat-
auto-off

10 589 5,880 188 589 4,126 283

56 lock-it-at-a-specific-time–
ecobeeAwayFromHome

8 553 1,472 142 473 1,018 152

57 darken-behind-me–
ecobeeAwayFromHome

8 553 1,472 154 437 1,019 155

58 turn-off-with-motion–
ecobeeAwayFromHome

7 553 1,288 144 410 848 133

59 lights-off-with-no-motion-
and-presence–step-notifier

8 506 4,040 224 309 1,309 142

60 medicine-management-
contact-sensor–circadian-
daylight

13 492 6,318 369 310 2,729 225

61 make-it-so–single-button-
controller

6 454 906 148 369 712 165

62 lighting-director–turn-it-on-
when-it-opens

11 423 4,642 199 223 1,614 135

63 lighting-director–undead-
early-warning

11 423 4,642 199 223 1,614 133

64 thermostat-window-check–
whole-house-fan

10 388 3,870 178 388 3,409 318

65 good-night–
BetterLaundryMonitor

8 385 3,072 125 294 1,245 116

66 hue-minimote–smart-light-
timer-x-minutes-unless-
already-on

8 373 2,976 183 312 2,201 475

67 gentle-wake-up–
BetterLaundryMonitor

7 361 2,520 114 361 2,309 226

68 make-it-so–thermostat-mode-
director

8 361 2,880 137 345 2,335 251

44



No. App Evt. Without DPOR With DPOR
States Trans. Time States Trans. Time

69 smart-nightlight–turn-on-at-
sunset

10 356 3,550 141 333 2,861 239

70 smart-nightlight–turn-it-on-
when-it-opens

10 331 3,300 139 101 369 50

71 smart-nightlight–undead-
early-warning

10 331 3,300 140 101 369 50

72 gentle-wake-up–good-night 8 321 2,560 125 321 2,376 239

73 thermostat–thermostat-
window-check

10 313 3,120 147 193 1,383 159

74 smart-nightlight–vacation-
lighting-director

12 294 3,516 133 168 1,649 122

75 lighting-director–turn-on-by-
zip-code

10 278 2,770 124 115 791 77

76 smart-nightlight–turn-on-
before-sunset

9 276 2,475 92 257 2,013 146

77 good-night–humidity-alert 8 257 1,024 65 243 911 98

78 thermostat-auto-off–
thermostat-window-check

8 257 2,048 86 153 1,025 97

79 double-tap–gentle-wake-up 7 216 560 58 194 445 67

80 good-night–nfc-tag-toggle 8 215 1,712 94 215 1,433 149

81 step-notifier–Hue-Party-
Mode

6 215 1,284 82 215 1,061 126

82 step-notifier–turn-on-only-if-
i-arrive-after-sunset

6 214 1,278 81 104 305 46

83 Hue-Party-Mode–mini-hue-
controller

4 212 844 42 201 669 86

84 brighten-dark-places–
lighting-director

11 206 2,255 111 114 918 89

85 whole-house-fan–
WindowOrDoorOpen

11 196 2,145 120 196 1,691 232

86 smart-nightlight–turn-off-
with-motion

9 196 1,755 76 87 357 41

87 smart-nightlight–turn-on-by-
zip-code

9 196 1,755 79 43 131 17

88 good-night–the-big-switch 8 191 1,520 64 191 1,168 103

89 hall-light-welcome-home–
step-notifier

6 178 1,062 83 40 125 26

90 smart-light-timer-x-minutes-
unless-already-on–turn-on-
before-sunset

7 173 1,204 46 163 798 66

91 smart-light-timer-x-minutes-
unless-already-on–turn-on-at-
sunset

7 173 1,204 50 157 770 68

92 double-tap–good-night 8 161 512 49 149 456 64

93 make-it-so–thermostat-
window-check

10 157 1,560 80 157 1,231 123
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94 make-it-so–
BetterLaundryMonitor

6 145 864 43 145 735 79

95 make-it-so–thermostat 8 145 1,152 56 145 905 97

96 rise-and-shine–
BetterLaundryMonitor

6 136 810 43 103 371 74

97 nfc-tag-toggle–single-button-
controller

4 121 160 51 105 128 66

98 step-notifier–turn-on-at-
sunset

5 117 580 45 68 177 31

99 step-notifier–turn-on-before-
sunset

5 117 580 44 68 177 30

100 energy-saver–good-night 8 113 896 45 68 271 29

101 big-turn-on–
BetterLaundryMonitor

6 112 666 35 112 580 60

102 the-big-switch–
BetterLaundryMonitor

5 109 540 32 109 486 63

103 gentle-wake-up–rise-and-
shine

6 103 612 37 103 511 62

104 BetterLaundryMonitor–Hue-
Party-Mode

4 103 408 27 73 219 36

105 01-control-lights-and-locks-
with-contact-sensor–good-
night

8 97 768 69 65 399 49

106 control-switch-with-contact-
sensor–good-night

8 97 768 34 65 399 48

107 big-turn-on–good-night 7 95 658 33 95 637 64

108 forgiving-security–smart-
light-timer-x-minutes-unless-
already-on

8 95 752 40 40 212 42

109 smart-light-timer-x-minutes-
unless-already-on–turn-on-
by-zip-code

6 87 516 24 74 349 35

110 step-notifier–turn-it-on-
when-it-opens

5 87 430 37 43 111 25

111 step-notifier–undead-early-
warning

5 87 430 37 43 111 25

112 brighten-my-path–step-
notifier

5 87 430 37 42 111 26

113 thermostat–
WindowOrDoorOpen

6 85 504 37 22 44 14

114 thermostat–hvac-auto-
off.smartapp

6 85 504 32 20 47 14

115 thermostat–thermostat-auto-
off

6 85 504 30 20 47 12

116 BetterLaundryMonitor–
WindowOrDoorOpen

4 82 324 28 62 192 37
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117 good-night–make-it-so 7 81 560 33 81 448 55

118 good-night–rise-and-shine 6 80 474 25 65 294 47

119 thermostat-window-check–
WindowOrDoorOpen

7 76 525 37 75 455 62

120 make-it-so–auto-lock-
door.smartapp

8 73 576 29 73 509 56

121 good-night–once-a-day 8 73 576 27 57 402 39

122 brighten-dark-places–step-
notifier

5 71 350 35 26 72 17

123 gentle-wake-up–monitor-on-
sense

6 69 408 27 69 348 44

124 big-turn-off–good-night 7 67 462 49 59 290 42

125 good-night–monitor-on-sense 7 65 448 25 40 132 23

126 hue-minimote–mini-hue-
controller

2 60 118 15 60 118 32

127 double-tap–nfc-tag-toggle 4 57 64 32 55 57 35

128 make-it-so–
WindowOrDoorOpen

6 55 324 25 54 288 44

129 good-night–power-allowance 7 49 336 25 49 297 43

130 nfc-tag-toggle–the-big-switch 5 49 240 21 43 125 37

131 good-night–turn-it-on-for-5-
minutes

7 47 322 24 41 193 31

132 step-notifier–turn-on-by-zip-
code

4 46 180 21 27 62 17

133 make-it-so–
NotifyIfLeftUnlocked

6 43 252 19 43 232 39

134 make-it-so–hvac-auto-
off.smartapp

6 43 252 19 43 234 37

135 make-it-so–thermostat-auto-
off

6 43 252 18 43 234 35

136 gentle-wake-up–make-it-so 5 41 200 19 41 179 32

137 big-turn-on–gentle-wake-up 5 41 200 17 33 121 24

138 good-night–sunrise-sunset 8 41 320 36 33 205 43

139 good-night-house–lights-off-
with-no-motion-and-presence

5 40 195 19 40 178 44

140 single-button-controller–
NotifyIfLeftUnlocked

4 40 52 35 31 34 31

141 big-turn-off–energy-saver 6 39 228 34 39 204 31

142 good-night-house–single-
button-controller

3 37 36 26 37 36 32

143 double-tap–humidity-alert 4 37 48 20 31 34 27

144 make-it-so–rise-and-shine 5 36 175 16 36 149 29

145 good-night-house–make-it-so 4 35 136 13 35 128 30

146 big-turn-on–rise-and-shine 5 31 150 14 31 129 23

147 hue-minimote–Hue-Party-
Mode

4 31 120 19 31 93 38
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148 let-there-be-dark–vacation-
lighting-director

5 31 150 14 31 150 23

149 door-state-to-color-light-hue-
bulb–Hue-Party-Mode

4 30 116 15 27 82 21

150 monitor-on-sense–
BetterLaundryMonitor

3 28 81 12 28 72 20

151 monitor-on-sense–rise-and-
shine

5 27 130 14 24 85 22

152 turn-off-with-motion–
vacation-lighting-director

5 27 130 13 24 101 19

153 lights-off-with-no-motion-
and-presence–turn-off-with-
motion

4 27 104 14 23 82 19

154 good-night–smart-turn-it-on 6 25 144 13 25 119 18

155 make-it-so–monitor-on-sense 5 25 120 14 25 102 23

156 make-it-so–unlock-it-when-i-
arrive

5 25 120 14 25 102 22

157 nfc-tag-toggle–sunrise-sunset 4 25 96 17 25 86 37

158 good-night-house–vacation-
lighting-director

4 23 88 12 23 88 23

159 good-night-house–hue-
minimote

3 22 63 16 22 61 29

160 darken-behind-me–lights-off-
with-no-motion-and-presence

5 22 105 19 20 81 30

161 big-turn-on–monitor-on-sense 5 20 95 13 20 82 24

162 auto-lock-door.smartapp–
NotifyIfLeftUnlocked

4 19 72 16 19 68 20

163 good-night-house–turn-off-
with-motion

3 18 51 10 18 49 21

164 nfc-tag-toggle–
NotifyIfLeftUnlocked

4 18 68 15 16 43 26

165 good-night-house–auto-lock-
door.smartapp

5 17 80 12 15 60 24

166 big-turn-off–power-allowance 5 14 65 11 14 60 19

167 big-turn-on–make-it-so 4 14 52 10 14 52 17

168 forgiving-security–turn-on-at-
sunset

3 14 39 10 14 28 15

169 forgiving-security–turn-on-
before-sunset

3 14 39 9 14 28 11

170 big-turn-off–smart-turn-it-on 4 13 48 8 13 48 12

171 its-too-hot–its-too-cold 2 13 12 10 13 12 17

172 lock-it-at-a-specific-time–
make-it-so

5 13 60 10 13 54 15

173 unlock-it-when-i-arrive–auto-
lock-door.smartapp

5 13 60 12 13 56 21

174 good-night-house–nfc-tag-
toggle

2 13 24 9 11 16 18
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175 hall-light-welcome-home–
turn-on-at-sunset

3 13 36 10 8 14 8

176 hall-light-welcome-home–
turn-on-before-sunset

3 13 36 8 8 14 8

177 double-tap–smart-turn-it-on 2 12 8 11 12 8 10

178 forgiving-security–hall-light-
welcome-home

3 12 33 10 12 24 15

179 brighten-my-path–hall-light-
welcome-home

3 12 33 9 10 18 9

180 good-night-house–
NotifyIfLeftUnlocked

3 12 33 10 9 20 14

181 lock-it-when-i-leave–
NotifyIfLeftUnlocked

4 11 40 11 9 26 17

182 enhanced-auto-lock-door–
NotifyIfLeftUnlocked

4 10 36 10 10 30 16

183 forgiving-security–
DeviceTamperAlarm

4 10 36 10 10 29 14

184 hue-minimote–turn-on-by-
zip-code

2 10 18 10 10 18 17

185 darken-behind-me–turn-off-
with-motion

3 9 24 8 9 18 8

186 enhanced-auto-lock-door–
good-night-house

5 9 40 13 9 38 28

187 hvac-auto-off.smartapp–
WindowOrDoorOpen

4 9 32 12 9 2 13

188 lock-it-at-a-specific-time–
auto-lock-door.smartapp

5 9 40 9 9 36 15

189 nfc-tag-toggle–smart-turn-it-
on

2 9 16 8 9 16 14

190 thermostat-auto-off–
WindowOrDoorOpen

4 9 32 10 9 23 13

191 energy-saver–power-
allowance

3 8 21 8 8 21 14

192 thermostat-auto-off–hvac-
auto-off.smartapp

2 8 14 8 8 14 10

193 unlock-it-when-i-arrive–
NotifyIfLeftUnlocked

3 8 21 9 8 17 13

194 brighten-my-path–turn-on-
at-sunset

2 7 12 7 7 10 12

195 brighten-my-path–turn-on-
before-sunset

2 7 12 7 7 10 8

196 darken-behind-me–good-
night-house

2 7 12 8 7 11 11

197 energy-saver–smart-turn-it-
on

2 7 12 7 7 12 8

198 turn-on-at-sunset–turn-it-on-
when-it-opens

2 7 12 7 7 9 11
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199 turn-on-at-sunset–turn-on-
before-sunset

2 7 12 8 7 12 10

200 turn-on-at-sunset–undead-
early-warning

2 7 12 7 7 9 11

201 turn-on-before-sunset–turn-
it-on-when-it-opens

2 7 12 7 7 9 8

202 turn-on-before-sunset–
undead-early-warning

2 7 12 7 7 9 8

203 brighten-dark-places–turn-
on-at-sunset

2 7 12 7 6 8 8

204 brighten-dark-places–turn-
on-before-sunset

2 7 12 7 6 8 8

205 brighten-dark-places–hall-
light-welcome-home

2 7 12 7 5 6 7

206 hall-light-welcome-home–
turn-it-on-when-it-opens

2 7 12 7 5 6 7

207 hall-light-welcome-home–
turn-on-by-zip-code

2 7 12 7 5 6 7

208 hall-light-welcome-home–
undead-early-warning

2 7 12 7 5 6 7

209 brighten-dark-places–
forgiving-security

2 6 10 7 6 8 11

210 brighten-my-path–forgiving-
security

2 6 10 8 6 8 12

211 brighten-my-path–turn-it-on-
when-it-opens

2 6 10 7 6 8 11

212 brighten-my-path–undead-
early-warning

2 6 10 7 6 8 10

213 forgiving-security–turn-it-on-
when-it-opens

2 6 10 7 6 8 11

214 forgiving-security–turn-on-
by-zip-code

2 6 10 7 6 8 8

215 forgiving-security–undead-
early-warning

2 6 10 7 6 8 11

216 lock-it-at-a-specific-time–
NotifyIfLeftUnlocked

3 6 15 8 6 14 11

217 brighten-dark-places–
brighten-my-path

2 6 10 8 5 6 9

218 enhanced-auto-lock-door–
auto-lock-door.smartapp

4 5 16 9 5 15 18

219 good-night-house–lock-it-at-
a-specific-time

2 5 8 7 5 6 8

220 good-night-house–turn-on-
by-zip-code

2 5 8 7 5 6 8

221 turn-on-at-sunset–turn-on-
by-zip-code

2 5 8 6 5 6 7
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222 turn-on-before-sunset–turn-
on-by-zip-code

2 5 8 6 5 6 7

223 brighten-dark-places–turn-it-
on-when-it-opens

2 4 6 6 4 5 7

224 brighten-dark-places–turn-
on-by-zip-code

2 4 6 6 4 5 7

225 brighten-dark-places–undead-
early-warning

2 4 6 6 4 5 7

226 brighten-my-path–turn-on-
by-zip-code

2 4 6 6 4 5 6

227 turn-it-on-when-it-opens–
undead-early-warning

2 4 6 6 4 5 7

228 turn-on-by-zip-code–turn-it-
on-when-it-opens

2 4 6 6 4 5 7

229 turn-on-by-zip-code–undead-
early-warning

2 4 6 6 4 5 7
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