
Out of Control: Reducing Probabilistic Models
by Control-State Elimination ?

Tobias Winkler(B) , Johannes Lehmann , and
Joost-Pieter Katoen

RWTH Aachen University (Germany)
tobias.winkler@cs.rwth-aachen.de

johannes.lehmann@rwth-aachen.de

katoen@cs.rwth-aachen.de

Abstract. State-of-the-art probabilistic model checkers perform verifi-
cation on explicit-state Markov models defined in a high-level program-
ming formalism like the PRISM modeling language. Typically, the low-
level models resulting from such program-like specifications exhibit lots
of structure such as repeating subpatterns. Established techniques like
probabilistic bisimulation minimization are able to exploit these struc-
tures; however, they operate directly on the explicit-state model. On
the other hand, methods for reducing structured state spaces by reason-
ing about the high-level program have not been investigated that much.
In this paper, we present a new, simple, and fully automatic program-
level technique to reduce the underlying Markov model. Our approach
aims at computing the summary behavior of adjacent locations in the
program’s control-flow graph, thereby obtaining a program with fewer
“control states”. This reduction is immediately reflected in the program’s
operational semantics, enabling more efficient model checking. A key in-
sight is that in principle, each (combination of) program variable(s) with
finite domain can play the role of the program counter that defines the
flow structure. Unlike most other reduction techniques, our approach is
property-directed and naturally supports unspecified model parameters.
Experiments demonstrate that our simple method yields state-space re-
ductions of up to 80% on practically relevant benchmarks.

1 Introduction

Modelling Markov models. Probabilistic model checking is a fully automated
technique to rigorously prove correctness of a system model with randomness
against a formal specification. Its key algorithmic component is computing reach-
ability probabilities on stochastic processes such as (discrete- or continuous-time)
Markov chains and Markov Decision Processes. These stochastic processes are
typically described in some high-level modelling language. State-of-the-art tools
like PRISM [34], storm [27] and mcsta [25] support input models specified in e.g.,

? This work is supported by the Research Training Group 2236 UnRAVeL, funded by
the German Research Foundation.

ar
X

iv
:2

01
1.

00
98

3v
3

 [
cs

.L
O

]
 1

2
N

ov
 2

02
1

http://orcid.org/0000-0003-1084-6408
http://orcid.org/0000-0001-7047-3813
http://orcid.org/0000-0002-6143-1926

2 T. Winkler, J. Lehmann, and J.-P. Katoen

the PRISM modeling language1, PPDDL [42], a probabilistic extension of the
planning domain definition language [23], the process algebraic language MoD-
eST [9], the jani model exchange format [11], or the probabilistic guarded com-
mand language pGCL [35]. The recent tool from [22] even supports verification
of probabilistic models written in Java.

Model construction. Prior to computing reachability probabilities, existing model
checkers explore all the program’s reachable variable valuations and encode them
into the state space of the operational Markov model. Termination is guaranteed
as variables are restricted to finite domains. This paper proposes a simple reduc-
tion technique for this model construction phase that avoids unfolding the full
model prior to the actual analysis, thereby mitigating the state explosion prob-
lem. The basic idea is to unfold variables one-by-one—rather than all at once
as in the standard pipeline—and apply analysis steps after each unfolding. We
detail this control-state reduction technique for probabilistic control-flow graphs
and illustrate its application to the PRISM modelling language. Its principle is
however quite generic and is applicable to the aforementioned modelling for-
malisms. Our technique is thus to be seen as a model simplification front-end
for general purpose probabilistic model checkers.

Approach. Technically our approach works as follows. The principle is to unfold
a (set of) variable(s) into the control state space, a technique inspired by static
program analyses such as abstract interpretation [29]. The selection of which
variables to unfold is property-driven, i.e., depending on the reachability or re-
ward property to be checked. We define the unfolding on probabilistic control-
flow programs [20] (PCFPs, for short) and simplify them using a technique that
generalizes state elimination in (parametric) Markov chains [14]. Our elimination
technique heavily relies on classical weakest precondition reasoning [17]. This en-
ables the elimination of several states at once from the underlying “low-level”
Markov model while preserving exact reachability probabilities or expected re-
wards. Figure 1 provides a visual intuition on the resulting model compression.

The choice of the variables and locations for unfolding and elimination, resp.,
is driven by heuristics. In a nutshell, our unfolding heuristics prefers the variables
that lead to a high number of control-flow locations without self-loops. These
loop-free locations are then removed by the elimination heuristics which gives
preference to locations whose removal does not blow up the transition matrix
of the underlying model. Unfolding and elimination steps are performed in an
alternating fashion, but only until the PCFP size reaches a certain threshold.
After this, the reduction phase is complete and the transformed PCFP can be
fed into a standard probabilistic model checker.

Contributions. In summary, the main contributions of this paper are:

– A simple, widely applicable reduction technique that considers each program
variable with finite domain as a “program counter” and selects suitable vari-
ables for unfolding into the control state space one-by-one.

1 https://www.prismmodelchecker.org/manual/ThePRISMLanguage

https://www.prismmodelchecker.org/manual/ThePRISMLanguage

Reducing Probabilistic Models by Control-State Elimination 3

Fig. 1. Left: Visualization of the original nand model from [36] (930 states, parameters
5/1). Transitions go from top to bottom. Right: The same model after our reduction
(207 states). A single “program counter variable” taking at most 5 different values was
unfolded and a total of three locations were eliminated thereafter. Note that the overall
structure is preserved but several local substructures such as the pyramidal shape at
the top are compressed significantly. This behavior is typical for our approach.

– A sound rule to eliminate control-flow locations in PCFPs in order to shrink
the state space of the underlying Markov model while preserving exact reach-
ability probabilities or expected rewards.

– Elimination in PCFPs—in contrast to Markov chains—is shown to have an
exponential worst-case complexity.

– An implementation in the probabilistic model checker storm demonstrating
the potential to significantly compress practically relevant benchmarks.

Related work. The state explosion problem has been given top priority in both
classical and probabilistic model checking. Techniques similar to ours have been
known for quite some time in the non-probabilistic setting [19,33]. Regarding
probabilistic model checking, reduction methods on the state-space level in-
clude symbolic model checking using MTBDDs [1], SMT/SAT techniques [41,7],
bisimulation minimization [31,39,28], Kronecker representations [10,1] and par-
tial order reduction [4,13]. Language-based reductions include symmetry reduc-
tion [18], bisimulation reduction using SMT on PRISM modules [16], as well
as abstraction-refinement techniques [32,24,40]. Our reductions on PCFPs are
inspired by state elimination [14]. Similar kinds of reductions on probabilistic
workflow nets have been considered in [21]. Despite all these efforts, it is some-
what surprising that simple probabilistic control-flow reductions as proposed in
this paper have not been investigated that much. A notable exception is the
recent work by Dubslaff et al. that applies existing static analyses to control-
flow-rich PCFPs [20]. In contrast to our method, their technique yields bisimilar
models and exploits a different kind of structure.

Organization of the paper. Section 2 starts off by illustrating the central aspects
of our approach by example. Section 3 defines PCFPs and their semantics in
terms of MDPs. Section 4 formalizes the reductions, proves their correctness and
analyzes the complexity. Our implementation in storm is discussed in Section 5.
We present our experimental evaluation in Section 6 and conclude in Section 7.

4 T. Winkler, J. Lehmann, and J.-P. Katoen

dtmc

const int N;

module coingame

x : [0..N+1] init N/2;

f : bool init false;

[] 0<x & x<N & !f -> 1/2: (x’=x-1) + 1/2: (f’=true);

[] 0<x & x<N & f -> 1/2: (x’=x-1) & (f’=false) + 1/2: (x’=x+2) & (f’=false);

[] x=0 | x>=N -> 1: (f’=false);

endmodule

Fig. 2. The coin game as a PRISM program. Variable x stands for the current budget.

2 A Bird’s Eye View

This section introduces a running example to illustrate our approach. Consider a
game of chance where a gambler starts with an initial budget of x = N/2 tokens.
The game is played in rounds, each of which either increases or decreases the
budget. The game is lost once the budget has dropped to zero and won once
it exceeds N tokens. In each round, a fair coin is tossed: If the outcome is tails,
then the gambler loses one token and proceeds to the next round; on the other
hand, if heads occurs, then the coin is flipped again. If tails is observed in the
second coin flip, then the gambler also loses one token; however, if the outcome
is again heads then the gambler receives two tokens.

In order to answer questions such as “Is this game fair?” (for a fixed N), prob-
abilistic model checking can be applied. To this end, we model the game as the
PRISM program in Figure 2. We briefly explain its central components: The first
two lines of the module block are variable declarations. Variable x is an integer
with bounded domain and f is a Boolean. The idea of x and f is to represent
the current budget and whether the coin has to be flipped a second time, respec-
tively. The next three lines that each begin with [] define commands which are
interpreted as follows: If the guard on the left-hand side of the arrow -> is satis-
fied, then one of the updates on the right side is executed with its corresponding
probability. For instance, in the first command, x is decremented by one (and
f is left unchanged) with probability 1/2. Otherwise f is set to true. The order
in which the commands occur in the program text is irrelevant. If there is more
than one command enabled for a specific valuation of the variables, then one of
them is chosen non-deterministically. Our example is, however, deterministic in
this regard since the three guards are mutually exclusive.

Probabilistic model checkers like PRISM and storm expand the above program
as a Markov chain with approximately 2N states. This is depicted for N = 6 at
the top of Figure 3. Given that we are only interested in the winning probability
(i.e., to reach one of the two rightmost states), this Markov chain is equivalent
to the smaller one on the bottom of Figure 3. Indeed, eliminating each dashed
state in the lower row individually yields that the overall probability per round
to go one step to the left is 3/4 and 1/4 to go two steps to the right. On the
program level, this simplification could have been achieved by summarizing the
first two commands to

Reducing Probabilistic Models by Control-State Elimination 5

0 1 2 3 4 5 6 7

!f

f

f
3/4 3/4 3/4 3/4 3/4

1/4 1/4 1/4 1/4 1/4

Fig. 3. Top: The Markov chain of the original coin game for N = 6. All transition
probabilities (except on the self-loops) are 1/2. Bottom: The Markov chain of the
simplified model.

[] 0<x & x<N -> 3/4: (x’=x-1) + 1/4: (x’=x+2);

so that variable f is effectively removed from the program.
Obtaining such simplifications in an automated manner is the main purpose

of this paper. In summary, our proposed solution works as follows:

1. First, we view the input program as a probabilistic control flow program
(PCFP), which can be seen as a generalization of PRISM programs from a
single to multiple control-flow locations (Figure 4, left). A PRISM program
(with a single module) is a PCFP with a unique control location. Impera-
tive programs such as pGCL programs [35] can be regarded as PCFPs with
roughly one location per line of code.

2. We then unfold one or several variables into the location space, thereby inter-
preting them as “program counters”. We will discuss in Section 4.1 that—in
principle—every variable can be unfolded in this way. The distinction be-
tween program counters and “data variables” is thus an informal one. This
insight renders the approach quite flexible. In the example, we unfold f (Fig-
ure 4, middle), but we stress that it is also possible to unfold x instead (for
any fixed N), even though this is not as useful in this case.

3. The last and most important step is elimination. Once sufficiently unfolded,
we identify locations in the PCFP that can be eliminated. Our elimination
rules are inspired by state elimination in Markov chains [14]. In the exam-
ple, we eliminate the location labeled f. To this end, we try to eliminate
all ingoing transitions of location f. Applying the rules described in detail
in Section 4, we obtain the PCFP shown in Figure 4 (right). This PCFP
generates the reduced Markov chain in Figure 3 (bottom). Here, location
elimination has also reduced the size of the PCFP, but this is not always
the case. In general, elimination adds more commands to the program while
reducing the size of the generated Markov chain or MDP (cf. Section 6).

These unfolding and elimination steps may be performed in an alternating fash-
ion following the principle “unfold a bit, eliminate reasonably”. Here, “reason-

6 T. Winkler, J. Lehmann, and J.-P. Katoen

x=0 | x>=N

1:f=false

0
<
x
<
N
&
!
f

1/2:x--1/2:f=true

0
<
x
<
N
&
f

1/2:x--;

f=false

1/2:x+=2;

f=false

f!f

x=0 | x>=N

1

x=0 | x>=N1
0<
x<
N1/

2:
x-
- 1/2

0<
x<
N

1/2:x--

1/2:x+=2

!f

x=0 | x>=N

1

0
<
x
<
N

3/4:x--

1
/
4
:
x
+
=
2

Fig. 4. Left: The coin game as a single-location PCFP Pgame . Middle: The PCFP after
unfolding variable f. Right: The PCFP after eliminating the location labeled f.

ably” means that in particular, we must be careful to not blow up the underlying
transition matrix (cf. Section 5).

Despite its simplicity, we are not aware of any other automatic technique that
achieves the same or similar reductions on the coin game model. In particular,
bisimulation minimization is not applicable: The bisimulation quotient of the
Markov chain in Figure 3 (top) is already obtained by merging just the two
rightmost goal states.

Arguably, the program transformations in the above example could have
been done by hand. However, automation is crucial for our technique because
the transformation makes the program harder to understand and obfuscates
the original model’s mechanics due to the removed intermediate control states.
Indeed, simplification only takes place from the model checker’s perspective but
not from the programmer’s. Moreover, our transformations are rather tedious
and error-prone, and may not always be that obvious for more complicated
programs. To illustrate this, we mention the work [36] where a PRISM model of
the von Neumann NAND multiplexing system was presented. Optimizations with
regard to the resulting state space were applied manually already at modeling
time 2. Despite these (successful) manual efforts, our fully automatic technique
can further shrink the state-space of the same model by ≈ 80% (cf. Section 6).

3 Technical Background on PCFPs

In this section, we review the necessary definitions of Markov Decision Pro-
cesses (MDPs), Probabilistic Control Flow Programs (PCFPs), and reachabil-
ity properties. The set of probability distributions on a finite set S is denoted
Dist(S) =

{
p : S → [0, 1] |

∑
s∈S p(s) = 1

}
. The set of (total) functions A→ B

is denoted BA.

Basic Markov Models An MDP is tuple M = (S, Act, ι, P) where S is a
finite set of states, ι ∈ S is an initial state, Act is a finite set of action labels

2 See paragraph 7 in [36, Sec. III A.].

Reducing Probabilistic Models by Control-State Elimination 7

and P : S × Act 99K Dist(S) is a (partial) probabilistic transition function. We
say that action a ∈ Act is available at state s ∈ S if P (s, a) is defined. We use

the notation s
a, p−−→ s′ to indicate that P (s, a)(s′) = p. In the following, we write

P (s, a, s′) rather than P (s, a)(s′).
A Markov chain is an MDP with exactly one available action at every state.

We omit action labels when considering Markov chains, i.e., the transition func-
tion of a Markov chain has type P : S → Dist(S). Given a Markov chain M
together with a goal set G ⊆ S, we define the set of paths reaching G as
Paths(G) = { s0 . . . sn ∈ Sn | n ≥ 0, s0 = ι, sn ∈ G,∀i < n : si /∈ G }. The reach-

ability probability of G is PM(♦G) =
∑
π∈Paths(G)

∏l(π)−1
i=0 P (πi, πi+1) where l(π)

denotes the length of a path π and πi is the i-th state along π. P(♦G) is always
a well-defined probability (see e.g. [5, Ch. 10] for more details).

A (memoryless deterministic) scheduler of an MDP is a mapping σ ∈ ActS

with the restriction that action σ(s) is available at s. Each scheduler σ induces a
Markov chainMσ by retaining only the action σ(s) at every s ∈ S. Scheduler σ is
called optimal if σ = argmaxσ′ PMσ′ (♦G) (or argmin, depending on the context).
In finite MDPs as considered here, there always exists an optimal memoryless
and deterministic scheduler, even if the above argmax is taken over more general
schedulers that may additionally use memory and/or randomization [37].

PCFP Syntax and Semantics We first define (guarded) commands. Let
Var = {x1, . . . , xn} be a set of integer-valued variables. An update is a set of
assignments

u = {x′1 = f1(x1, . . . , xn), . . . , x′n = fn(x1, . . . , xn) }

that are executed simultaneously. We assume that the expressions fi always yield
integers. An update u transforms a variable valuation ν ∈ ZVar into a valuation
ν′ = u(ν). For technical reasons, we also allow chaining of updates, that is, if
u1 and u2 are updates, then u1 # u2 is the update that corresponds to executing
the updates in sequence: first u1 and then u2. A command is an expression

ϕ → p1 : u1 + . . . + pk : uk ,

where ϕ is a guard, i.e., a Boolean expression over program variables, ui are
updates, and pi are non-negative real numbers such that

∑k
i=1 pi = 1, i.e., they

describe a probability distribution over the updates. We further define location-
guided commands which additionally depend on control-flow locations l and
l1, . . . , lk:

ϕ, l → p1 : u1 : l1 + . . . + pk : uk : lk .

The intuitive meaning of a location-guided command is as follows: It is enabled
if the system is at location l and the current variable valuation satisfies ϕ.
Based on the probabilities p1, . . . , pk, the system then randomly executes one
of the updates ui and transitions to the next location li. We use the notation

l
ϕ→ pi : ui−−−−−−−→ li to refer to such a possible transition between locations. We call

location-guided commands simply commands in the rest of the paper.

8 T. Winkler, J. Lehmann, and J.-P. Katoen

Probabilistic Control Flow Programs (PCFPs) combine several commands
into a probabilistic program and constitute the formal basis of our approach:

Definition 1 (PCFP). A PCFP is a tuple P = (Loc, Var, dom, Cmd, ι) where
Loc is a non-empty set of (control-flow) locations, Var is a set of integer-valued
variables, dom ∈ P(Z)Var is a domain for each variable, Cmd is a set of com-
mands as defined above, and ι = (lι, νι) is the initial location/valuation pair.

This definition and our notation for commands are similar to [20]. We also allow
Boolean variables as syntactic sugar by identifying false ≡ 0 and true ≡ 1. We
generally assume that Loc and all variable domains are finite sets. For a variable
valuation ν ∈ ZVar, we write ν ∈ dom if ν(x) ∈ dom(x) for all x ∈ Var. In
some occasions, we consider only partial valuations ν ∈ ZVar′ , where Var′ (Var.
We use the notations ϕ[ν] and u[ν] to indicate that all variables occurring in
the guard ϕ (the update u, respectively) are replaced according to the given
(partial) valuation ν. For updates, we also remove assignments whose left-hand
side variables become a constant. Recall that the notation u(ν) has a different
meaning; it denotes the result of executing the update u on valuation ν.

The straightforward operational semantics of a PCFP is defined in terms of
a Markov Decision Process (MDP).

Definition 2 (MDP Semantics). For a PCFP P = (Loc, Var, dom, Cmd, ι),
we define the semantic MDP MP = (S, Act, ι, P) as follows:

S = Loc × {ν ∈ dom} ∪ {⊥}, Act = { aγ | γ ∈ Cmd } , ι = 〈lι, νι〉

and the probabilistic transition relation P is defined according to the rules

l1
ϕ→p:u−−−−→ l2 ∧ ν |= ϕ ∧ u(ν) ∈ dom

〈l1, ν〉
aγ ,p−−−→ 〈l2, u(ν)〉

,
l1

ϕ→p:u−−−−→ l2 ∧ ν |= ϕ ∧ u(ν) /∈ dom

〈l1, ν〉
aγ ,p−−−→ ⊥

where aγ ∈ Act is an action label that uniquely identifies the command γ con-

taining transition l1
ϕ→p:u−−−−→ l2.

An element 〈l, ν〉 ∈ Loc × {ν ∈ dom} is called a configuration. A PCFP is
deterministic if the MDPMP is a Markov chain. Moreover, we say that a PCFP
is well-formed if the out-of-bounds state ⊥ is not reachable from the initial state
and if there is at least one action available at each state of MP. From now on,
we assume that PCFPs are always well-formed.

Example 1. The semantic MDP—a Markov chain in this case—of the two PCFPs
in Figure 4 (left and middle) is given in Figure 3 (top), and the one of the PCFP
in Figure 4 (right) is depicted in Figure 3 (bottom). 4

Reachability in PCFPs It is natural to describe a set of good (or bad) PCFP
configurations by means of a predicate ϑ over the program variables which defines
a set of target states in the semantic MDP MP. We slightly extend this to

Reducing Probabilistic Models by Control-State Elimination 9

account for information available from previous unfolding steps. To this end,
we will sometimes consider a labeling function L : Loc → ZVar′ that assigns to
each location an additional variable valuation ν′ over Var′, a set of variables
disjoint to the actual programs variables Var. The idea is that Var′ contains the
variables that have already been unfolded (see Section 4.1 below for the details).
A predicate ϑ over Var] Var′ describes the following goal set in the MDP MP:

Gϑ = { 〈l, ν〉 | l ∈ Loc, ν ∈ dom, (ν, L(l)) |= ϑ }

where (ν, L(l)) is the variable valuation over Var] Var′ that results from com-
bining ν and L(l).

Definition 3 (Potential Goal). Let (Loc, Var, dom, Cmd, ι) be a PCFP la-
beled with valuations L : Loc→ ZVar′ and let ϑ be a predicate over Var] Var′. A
location l ∈ Loc is called a potential goal w.r.t. ϑ if ϑ[L(l)] is satisfiable in dom.

Example 2. Consider the PCFP in Figure 4 (middle) with N = 6. Note that
here, Var = {x} and Var′ = {f}. Let ϑ = (x ≥ 6 ∧ f = false). Assume the
labeling function L(!f) = {f 7→ false} and L(f) = {f 7→ true}. Then the
location labeled !f is a potential goal w.r.t. ϑ because ϑ[f 7→ false] ≡ x ≥ 6 is
satisfiable. The other location f is no potential goal. 4

In Section 4 below, we introduce PCFP transformation rules that preserve
reachability probabilities. This is formally defined as follows:

Definition 4 (Reachability Equivalence). Let P1 and P2 be PCFPs over
the same set of variables Var. For i ∈ {1, 2}, let Li : Loci → ZVar′ be labeling
functions on Pi. Further, let ϑ be a predicate over Var] Var′. Then P1 and P2

are ϑ-reachability equivalent if

opt
σ

PMσ
P1

(♦Gϑ) = opt
σ

PMσ
P2

(♦Gϑ)

for both opt ∈ {min,max} and where σ ranges of the class of memoryless deter-
ministic schedulers for the MDPs Mσ

P1
and Mσ

P2
, respectively.

Example 3. For all N ≥ 0, the PCFPs in Figure 4 (middle) and Figure 4 (right)
with labeling functions as in Example 2 are reachability equivalent w.r.t. to ϑ =
(x ≥ N∧ f = false). This follows from our intuitive explanation in Section 2, or
alternatively from the formal rules to be presented in the folowing Section 4. 4

4 PCFP Reduction

We now describe our two main ingredients in detail: variable unfolding and loca-
tion elimination. Throughout this section, P = (Loc, Var, dom, Cmd, ι) denotes
an arbitrary well-formed PCFP.

10 T. Winkler, J. Lehmann, and J.-P. Katoen

4.1 Variable Unfolding

Let Asgn be the set of all assignments that occur anywhere in the updates of P.
For an assignment α ∈ Asgn, we write lhs(α) for the variable on the left-hand side
and rhs(α) for the expression on the right-hand side. Let x, y ∈ Var be arbitrary.
Define the relation x→ y (“x depends on y”) as

x→ y ⇐⇒ ∃α ∈ Asgn : x = lhs(α) ∧ rhs(α) contains y .

This syntactic dependency relation only takes updates but no guards into ac-
count. This is, however, sufficient for our purpose. We say that x is (directly)
unfoldable if ∀y : x→ y =⇒ x = y, that is, x depends at most on itself.

Example 4. Variables x and f in the PCFP in Figure 4 (left) are unfoldable. 4
The rationale of this definition is as follows: If variable x is to be unfolded into
the location space, then we must make sure that any update assigning to x
yields an explicit numerical value and hence an unambiguous location. Formally,
unfolding is defined as follows:

Definition 5 (Unfolding). Let x ∈ Var be unfoldable. The unfolding Unf(P, x)
of P with respect to x is the PCFP (Loc′, Var \ {x}, dom, Cmd′, ι′) where

Loc′ = Loc × dom(x), ι′ = (〈 lι, νι(x) 〉, ν′ι)

where ν′ι(x) = νι(x) for all x ∈ Var′, and Cmd′ is defined according to the rule

l
ϕ→p:u−−−−→ l′ in P ∧ ν : {x} → dom(x)

〈 l, ν(x) 〉 ϕ[ν]→ p:u[ν]−−−−−−−−→ 〈 l′, u(ν)(x) 〉
.

Recall that u[ν] substitutes all x in u for ν(x) while u(ν) applies u to valuation
ν. Note that even though ν only assigns a value to x in the above rule, we
nonetheless have that u(ν)(x) is a well-defined integer in dom(x). This is ensured
by the definition of unfoldable and because P is well-formed. Unfolding preserves
the semantics of a PCFP (up to renaming of states and action labels):

Lemma 1. For every unfoldable x ∈ Var, we have MUnf(P,x) =MP.

Example 5. The PCFP in Figure 4 (middle) is the unfolding Unf(Pgame , f) of
the PCFP Pgame in Figure 4 (left) with respect to variable f. 4

In general, it is possible that no single variable of a PCFP is unfoldable. We
offer two alternatives for such cases:

– There always exists a set U ⊆ Var of variables that can be unfolded at
once (U = Var in the extreme case). Definition 5 can be readily adapted
to this case. Preferably small sets of unfoldable variables can be found by
considering the bottom SCCs of the directed graph (Var,→).

– In principle, each variable can be made unfoldable by introducing further
commands. Consider for instance a command γ with an update x′ = y.
We may introduce |dom(y)| new commands by strengthening γ’s guard with
condition “y = z” for each z ∈ dom(y) and substituting all occurrences of y
for the constant z. This transformation is mostly of theoretical interest as it
may create a large number of new commands.

Reducing Probabilistic Models by Control-State Elimination 11

s

r
p1

p2

q1

q2

s

p1

p2

q1
1−r

q2
1−r

s

p1

p2

q1

q2

p1q1

p2q
1 p1q2

p2q2

Fig. 5. State elimination in Markov chains. Left: Elimination of a self-loop. Right:
Elimination of a state without self-loops. These rules preserve reachability probabilities
provided that s is neither initial nor a goal state.

4.2 Elimination

For the sake of illustration, we first recall state elimination in Markov chains.
Let s be a state of the Markov chain. The first step is to eliminate all self-loops
of s by rescaling the probabilities accordingly (Figure 5, left). Afterwards, all
ingoing transitions are redirected to the successor states of s by multiplying the
probabilities along each possible path (Figure 5, right). The state s is then not
reachable anymore and can be removed. This preserves reachability probabilities
in the Markov chain provided that s was neither an initial nor goal state. Note
that state elimination may increase the total number of transitions. In essence,
state elimination in Markov chains is an automata-theoretic interpretation of
solving a linear equation system by Gaussian elimination [30].

In the rest of this section, we develop a location elimination rule for PCFPs
that generalizes state elimination in Markov chains. Updates and guards are
handled by weakest precondition reasoning which is briefly recalled below. We
then introduce a rule to remove single transitions, and show how it can be
employed to eliminate self-loop-free locations. For the (much) more difficult case
of self-loop elimination, we refer to Appendix C for the treatment of some special
cases. Handling general loops requires finding loop invariants which is notoriously
difficult to automize. Instead, the overall idea of this paper is to create self-loop-
free locations by suitable unfolding.

Weakest Preconditions As mentioned above, our elimination rules rely on
classical weakest preconditions which are defined as follows. Fix a set Var of
program variables with domains dom. Further, let u be an update and ϕ,ψ be
predicates over Var. We call {ψ } u {ϕ } a valid Hoare-triple if

∀ν ∈ dom : ν |= ψ =⇒ u(ν) |= ϕ .

The predicate wp(u, ϕ) is defined as the weakest ψ such that {ψ } u {ϕ } is
a valid Hoare-triple and is called the weakest precondition of u with respect to
postcondition ϕ. Here, “weakest” is to be understood as maximal in the semantic
implication order on predicates. Note that u(ν) |= ϕ iff ν |= wp(u, ϕ). It is
well known [17] that for an update u = {x′1 = f1, . . . , x

′
n = fn }, the weakest

precondition is given by

wp(u, ϕ) = ϕ[x1, . . . , xn 7→ f1, . . . , fn] ,

12 T. Winkler, J. Lehmann, and J.-P. Katoen

l l1

l2

l11

l12

l21

l22

ϕ p1 : u1

p
2 : u

2

ψ1

ψ2

q11
: v11

q12 : v12

q21
: v21

q22 : v22

l l2

l11

l12

l21

l22

ϕ ∧ w
p(u1, ψ1)

ϕ ∧ wp(u1 , ψ2)

p2
: u

2

p
2 : u

2

p1q11
: (u1 # v11)

p1q12 : (u1 # v12)

p1q21
: (u1 # v21)

p1q22 : (u1 # v22)

Fig. 6. Transition elimination in PCFPs. Transition l
ϕ→p1:u1−−−−−−→ l1 is eliminated. The

rule is correct even if the depicted locations are not pairwise distinct.

i.e., all free occurrences of the variables x1, . . . , xn in ϕ are simultaneously re-
placed by the expressions f1, . . . , fn. For example,

wp(
{
x′ = y2, y′ = 5

}
, x ≥ y) = y2 ≥ 5 .

For chained updates u1 # u2, we have wp(u1 # u2, ϕ) = wp(u1,wp(u2, ϕ)) [17].

Transition Elimination To simplify the presentation, we focus on the case
of binary PCFPs where locations have exactly two commands and commands
have exactly two transitions (the general case is treated in Appendix A). The

following construction is depicted in Figure 6. Let l
ϕ→p1:u1−−−−−−→ l1 be the transition

we want to eliminate and suppose that it is part of a command

γ : l, ϕ → p1 : u1 : l1 + p2 : u2 : l2 . (1)

Suppose that the PCFP is in a configuration 〈l, ν〉 where guard ϕ is enabled, i.e.,
ν |= ϕ. Intuitively, to remove the desired transition, we must jump with probabil-
ity p1 directly from l to one of the possible destinations of l1, i.e., either l11, l12, l21
or l22. Moreover, we need to anticipate the—possibly non-deterministic—choice
at l1 already at l. Note that guard ψ1 will be enabled at l1 iff u1(ν) |= ψ1. The
latter is true iff ν |= wp(u1, ψ1). Hence, if ν |= ϕ ∧ wp(u1, ψ1), then we can
choose to jump from l directly to l11 or l12 with probability p1. The exact prob-
abilities p1q11 and p1q12, respectively, are obtained by simply multiplying the
probabilities along each path. To preserve the semantics, we must also execute
the updates found on these paths in the right order, i.e., either u1 #v11 or u1 #v12.
The situation is completely analogous for the other command with guard ψ2.

In summary, we apply the following transformation: We remove the command

γ in (1) completely (and hence not only the transition l
ϕ→p1:u1−−−−−−→ l1) and replace

it by two new commands γ1 and γ2 which are defined as follows:

γi : l, ϕ ∧ wp(u1, ψi) → p2 : u2 : l2 +

2∑
j=1

p1qij : (u1 # vij) : lij , i ∈ {1, 2} .

Reducing Probabilistic Models by Control-State Elimination 13

Note that in particular, this operation preserves deterministic PCFPs: If ψ1 and
ψ2 are mutually exclusive, then so are wp(u1, ψ1) and wp(u1, ψ2). If the guards
are not exclusive, then the construction transfers the non-deterministic choice
from l1 to l.

Example 6. In the PCFP in Figure 4 (middle), we eliminate the transition

!f
0<x<N → 1/2:nop−−−−−−−−−−−−→ f .

The above transition is contained in the command

!f, 0 < x < N → 1/2 : nop : f + 1/2 : x-- : !f .

The following two commands are available at location f:

f, x=0 | x >= N → 1 : nop : !f

f, 0 < x < N → 1/2 : x+=2 : !f + 1/2 : x-- : !f .

Note that wp(nop, ψ) = ψ for any guard ψ. According to the construction in
Figure 6, we add the following two new commands to location !f:

!f, 0 < x < N & (x=0 | x >= N) → 1/2 : nop : !f + 1/2 : x-- : !f

!f, 0 < x < N & 0 < x < N → 1/2 : x-- : !f + 1/4 : x-- : !f

+ 1/4 : x=x+2 : !f .

The guard of the first command is unsatisfiable so that the whole command can
be discarded. The second command can be further simplified to

!f, 0 < x < N → 3/4 : x-- : !f + 1/4 : x=x+2 : !f .

Removing unreachable locations yields the PCFP in Figure 4 (right). 4

Regarding the correctness of transition elimination, the intuitive idea is that
the rule preserves reachability probabilities if location l1 is not a potential goal.
Recall that potential goals are locations for which we do not know whether they
contain goal states when fully unfolded. Formally, we have the following:

Lemma 2. Let l1 ∈ Loc \ {lι} be no potential goal with respect to goal predicate

ϑ and let P′ be obtained from P by eliminating transition l
ϕ→p1:u1−−−−−−→ l1 according

to Figure 6. Then P and P′ are ϑ-reachability equivalent.

Proof (Sketch). This follows by extending Markov chain transition elimination
to MDPs and noticing that the semantic MDP MP′ is obtained from MP by
applying transition elimination repeatedly (see Appendix B.2). �

14 T. Winkler, J. Lehmann, and J.-P. Katoen

Location Elimination We say that location l ∈ Loc has a self-loop if there ex-

ists a transition l
ϕ→p:u−−−−→ l. In analogy to state elimination in Markov chains, we

can directly remove any location without self-loops by applying the elimination
rule to its ingoing transitions. However, the case l1 = l2 in Figure 6 needs to be

examined carefully as eliminating l
ϕ→p1:u1−−−−−−→ l1 actually creates two new ingoing

transitions to l1 = l2. Termination of the algorithm is thus not immediately
obvious. Nonetheless, even for general (non-binary) PCFPs, the following holds:

Theorem 1 (Correctness of Location Elimination). If l ∈ Loc \ {lι} has
no self-loops and is not a potential goal w.r.t. goal predicate ϑ, then the algorithm

while (∃ l′ ϕ→p:u−−−−→ l in P) { eliminate l′
ϕ→p:u−−−−→ l }

terminates with a ϑ-reachability equivalent PCFP P′ where l is unreachable.

The following notion is helpful for proving termination of the above algorithm:

Definition 6 (Transition Multiplicity). Given a transition l′
ϕ→p:u−−−−→ l con-

tained in command γ, we define its multiplicity m as the total number of tran-
sitions in γ that also have destination l.

For instance, if l1 = l2 in Figure 6, then transition l
ϕ→p1:u1−−−−−−→ l1 has multiplicity

m = 2. If l1 6= l2, then it has multiplicity m = 1.

Proof (of Theorem 1). With Lemma 2 it only remains to show termination.
We directly prove the general case where P is non-binary. Suppose that l has
k commands. Eliminating a transition entering l with multiplicity 1 does not
create any new ingoing transitions (as l has no self-loops). On the other hand,
eliminating a transition with multiplicity m > 1 creates k new commands, each
with m− 1 ingoing transitions to l1. Thus, as the multiplicity strictly decreases,
the algorithm terminates. �

We now analyze the complexity of the algorithm in Theorem 1 in detail.

Theorem 2 (Complexity of Location Elimination). Let l ∈ Loc \ {lι} be
a location without self-loops. Let k be the number of commands available at l.
Further, let n be the number of distinct commands in Cmd that have a transition
with destination l, and suppose that each such transition has multiplicity at most
m. Then the location elimination algorithm in Theorem 1 applied to l has the
following properties:

– It terminates after at most n(km−1)/(k−1) iterations.
– It creates at most O(nkm) new commands.
– There exist PCFPs where it creates at least Ω(n2m) new distinct commands

with satisfiable guards.

Proof (Sketch). We only consider the case n = 1 here, the remaining details are
treated in Appendix B.3. We show the three items independently:

Reducing Probabilistic Models by Control-State Elimination 15

l′
... l

l1

l2

true

c
21

: y′1 = 1

c
2m

: y′m = 1

∨m
i=1

(xi ∧ yi)
{x′i = 0, y′i = 0 | 1≤i≤m }

¬(...)

Fig. 7. The PCFP P used for the lower bound in Theorem 2. The transitions from l′

to l have multiplicity m each. Variables x, y have Boolean domain, c is a normalizing
constant.

– The number I(m) of iterations of the algorithm in Theorem 1 applied to
location l satisfies the recurrence I(1) = 1 and I(m) = 1 + kI(m− 1) for all
m > 1 since eliminating a transition with multiplicity m > 1 yields k new
commands with multiplicity m − 1 each. The solution of this recurrence is
I(m) =

∑m−1
i=0 ki = (km−1)/(k−1) as claimed.

– For the upper bound on the number of new commands, we consider the ex-
ecution of the algorithm in the following stages: In stage 1, there is a single
command with multiplicity m. In stage j for j > 1, the commands from
the previous stage are transformed into k new commands with multiplic-
ity m − j + 1 each. In the final stage m, there are thus km−1 commands
with multiplicity 1 each. Eliminating all of them yields k · km−1 = km new
commands after which the algorithm terminates.

– Consider the PCFP P in Figure 7 where k = 2. Intuitively, location elim-
ination must yield a PCFP P′ with 2m commands available at location l′

because every possible combination of the updates y′i = 1, i = 1, . . . ,m, may
result in enabling either of the two guards at l. Indeed, for each such com-
bination, the guard which is enabled depends on the values of x1, . . . , xm
at location l′. Thus in the semantic MDP MP′ , for every variable valua-

tion ν with ν(yi) = 0 for all i = 1, . . . ,m, the probabilities P (〈l′, ν〉, 〈l1,~0〉)
are pairwise distinct. This implies that P′ must have 2m commands (with
satisfiable guards) at l′. �

5 Implementation

Overview We have implemented3 our approach in the probabilistic model
checker storm [27]. Technically, instead of defining custom data structures for our
PCFPs, we operate directly on models in the jani model exchange format [11].
storm accepts jani models as input and also supports conversion from PRISM to
jani. The PCFPs described in this paper are a subset of the models expressible
in jani. Other jani models such as timed or hybrid automata are not in the scope
of our implementation. In practice, we use our algorithms as a simplification

3 Code available at: https://github.com/moves-rwth/storm/tree/master/src/storm/
storage/jani/localeliminator

https://github.com/moves-rwth/storm/tree/master/src/storm/storage/jani/localeliminator
https://github.com/moves-rwth/storm/tree/master/src/storm/storage/jani/localeliminator

16 T. Winkler, J. Lehmann, and J.-P. Katoen

front-end, i.e., we apply just a handful of unfolding and elimination steps and
then fall back to storm’s default engine. This is steered by heuristics that we
explain in detail further below.

Features Apart from the basic PCFPs treated in the previous sections, our
implementation supports the following more advanced jani features:

– Parameters. It is common practice to leave key quantities in a high-level
model undefined and then analyze it for various instantiations of those pa-
rameters (as done in most of the PRISM case studies4); or synthesize in some
sense suitable parameters [15,38,30]. Examples include undefined probabili-
ties or undefined variable bounds like N in the PRISM program in Figure 2.
Our approach can naturally handle such parameters and is therefore par-
ticularly useful in situations where the model is to be analyzed for several
parameter configurations. Virtually, the only restriction is that we cannot
unfold variables with parametric bounds.

– Rewards. Our framework can be easily extended to accommodate expected-
reward-until-reachability properties (see e.g. [5, Def. 10.71] for a formal def-
inition). The latter are also highly common in the benchmarks used in the
quantitative verification literature [26]. Formally, in a reward PCFP, each
transition is additionally equipped with a non-negative reward that can ei-
ther be a constant or given as an expression in the program variables. Techni-
cally, the treatment of rewards is straightforward: Each time we multiply the
probabilities of two transitions in our transition elimination rule (Figure 6),
we add their corresponding rewards.

– Parallel composition. PCFPs can be extended by action labels to allow for
synchronization of various parallel PCFPs. This is standard in model check-
ing (e.g. [5, Sec. 2.2.2]). We have implemented two approaches for dealing
with this: (1) A “flat” product model is constructed first. This functional-
ity is already shipped with the storm checker. This approach is restricted
to compositions of just a few modules as the size of the resulting product
PCFP is in general exponential in the number of modules. Nonetheless, in
many practical cases, flattening leads to satisfactory results (cf. Section 6).
(2) Control-flow elimination is applied to each component individually. Here,
we may only eliminate internal, i.e. non-synchronizing commands, and we
forbid shared variables. Otherwise, we would alter the resulting composition.

– Probability expressions. Without changes, all of the theory presented so far
can be applied to PCFPs with probability expressions like |x|/(|x|+ 1) over
the program variables instead of constant probabilities only. Expressions that
do not yield correct probabilities are considered modeling errors.

Heuristics The choice of the next variable to be unfolded and the next location
to be eliminated is driven by heuristics. The overall goal of the heuristics is to
eliminate as many locations as possible while maintaining a reasonably sized

4 https://www.prismmodelchecker.org/casestudies/

https://www.prismmodelchecker.org/casestudies/

Reducing Probabilistic Models by Control-State Elimination 17

Build
dependency

graph

start

done

|Loc| < L

Unfold x ∈ Var
with max.

score

Eliminate l ∈ Loc
with min. compl.

∃ l ∈ Loc \ {lι} s.t.
– l loop-free

– l no pot. goal
– est. compl. < T

yesno

no

yes

Unfolding Elimination

Fig. 8. Our heuristics alternates between unfolding and elimination steps. The next
unfold is determined by selecting a variable with maximal score as computed by a static
analysis (see main text). Loop-free non-potential goal locations are then eliminated
until the next elimination has a too high estimated complexity.

PCFP. This is controlled by two configurable parameters, L and T . The heuristics
alternates between unfolding and elimination (see the diagram in Figure 8).

To find a suitable variable for unfolding, the heuristics first analyzes the de-
pendency graph defined in Section 4.1. It then selects a variable based on the
following static analysis: For each unfoldable variable x, the heuristics consid-
ers each command γ in the PCFP and determines the percentage p(γ, x) of γ’s
transitions that have an update with writing access to x. Each variable is then
assigned a score which is defined as the average percentage p(γ, x) over all com-
mands of the PCFP. The intuition behind this technique is that variables which
are changed in many commands are more likely to create self-loop free locations
when unfolded. We consider the percentage for each command individually in
order to not give too much weight to commands with many transitions. Unfold-
ing is only performed if the current PCFP has at most L locations. By default,
L = 10 which in practice often leads to unfolding just two or three variables
with small domains.

After unfolding a variable, the heuristics tries to eliminate self-loop-free loca-
tions that are no potential goals. The next location to be eliminated is selected
by estimating the number of new commands that would be created by the al-
gorithm. Here, we rely on the theoretical results from Theorem 2: In particular,
we take the multiplicity (cf. Definition 6) of ingoing transitions into account
which may cause an exponential blowup. We use the estimate O(nkm) from
Theorem 2 as an approximation for the elimination complexity; determining
the exact complexity of each possible elimination is highly impractical. We only
eliminate locations whose estimated complexity is at most T , and we eliminate
those with lowest complexity first. By default, T = 104.

6 Experiments

In this section, we report on our experimental evaluation of the implementation
described in the previous section.

18 T. Winkler, J. Lehmann, and J.-P. Katoen

Table 1. Reductions achieved by our control-flow elimination. Times are in ms.

Name Type
Prop. Red.

Params.
States Transitions Build time Check time Total time

type time orig. red. orig. red. orig. red. orig. red. orig. red.

brp dtmc P 134

210/5 78.9K -44% 106K -33% 261 -33% 22 -38%

16,418 -46%
211/10 291K -45% 397K -33% 1,027 -39% 101 -46%
212/20 1.11M -46% 1.53M -33% 3,945 -48% 462 -48%
213/25 2.76M -46% 3.8M -33% 9,413 -47% 1,187 -47%

coingame dtmc P 35 104 20K -50% 40K -50% 53 -24% 18,500 -79% 18,553 -78%

dice5 mdp P 671 n/a 371K -84% 2.01M -83% 1,709 -82% 9,538 -99% 11,247 -91%

eajs mdp R 223
103 194K -28% 326K -1% 1,242 -43% 220 -32%

18,397 -42%
104 2M -28% 3.38M -1% 13,154 -46% 3,780 -31%

grid dtmc P 117
104 300K -47% 410K -34% 1,062 -57% 17 -52%

11,716 -52%
105 3M -47% 4.1M -34% 10,430 -53% 207 -54%

hospital mdp P 57 n/a 160K -66% 396K -27% 502 -50% 19 -56% 521 -39%

nand dtmc P 80

20/4 308K -79% 476K -52% 589 -45% 108 -75%

86,060 -56%
40/4 4M -80% 6.29M -51% 8,248 -50% 1,859 -77%
60/2 9.42M -80% 14.9M -50% 19,701 -49% 4,685 -76%
60/4 18.8M -80% 29.8M -50% 40,168 -53% 10,703 -77%

nd-nand mdp P 106

20/4 308K -79% 476K -52% 618 -36% 127 -74%

96,956 -52%
40/4 4M -80% 6.29M -51% 8,783 -42% 2,270 -77%
60/2 9.42M -80% 14.9M -50% 21,792 -47% 5,646 -75%
60/4 18.8M -80% 29.8M -50% 44,409 -46% 13,312 -76%

negotiation dtmc P 148
104 129K -32% 184K -26% 481 -39% 22 -49%

5,631 -39%
105 1.29M -32% 1.84M -26% 4,930 -43% 197 -30%

pole dtmc R 208
102 315K -46% 790K -4% 1,496 -46% 26 -42%

17,431 -45%
103 3.16M -46% 7.9M -4% 15,503 -47% 406 -33%

Benchmarks. We have compiled a set of 10 control-flow intensive DTMC and
MDP benchmarks from the literature. Each benchmark model is equipped with
a reachability or expected reward property.

brp models a bounded retransmision protocol and is taken from the PRISM
benchmark suite. coingame is our running example from Figure 2. dice5 is an
example shipped with storm and models rolling several dice, five in this case,
that are themselves simulated by coinflips in parallel. eajs models energy-aware
job scheduling and was first presented in [3]. grid is taken from [2] and repre-
sents a robot moving in a partially observable grid world. hospital is adapted
from [8] and models a hospital inventory management problem. nand is the
von Neumann NAND multiplexing system mentioned near the end of Section 2.
nd-nand is a custom-made adaption of nand where some probabilistic behav-
ior has been replaced by non-determinism. negotiation is an adaption of the
Alternating Offers Protocol from [6] which is also included in the PRISM case
studies. pole is also from [2] and models balancing a pole in a noisy and un-
known environment. The problems brp, eajs, and nand are part of the QComp
benchmark set [26].

For all examples except dice5, we have first flattened parallel compositions
(if there were any) into a single module, cf. Section 5.

Setup. We report on two experiments. In the first one, we compare the number
of states and transitions as well as the model build and check times of the
original and the reduced program (columns ‘States’, ‘Transitions’, ‘Build time’,

Reducing Probabilistic Models by Control-State Elimination 19

and ‘Check time’ of Table 1). We work with storm’s default settings5. We also
report the time needed for the reduction itself, including the time consumed
by flattening (column ‘Red. time’). We always use the default configuration
for our heuristics, i.e., we do not manually fine-tune the heuristics for each
benchmark. We report on some additional experimental results obtained with
fine-tuned heuristics in Appendix E. For the benchmarks where this is applicable,
we consider the different parameter configurations given in column ‘Params.’.
Recall that in these cases, we need to compute the reduced program only once.
We report the amortized runtime of storm on all parameter configurations vs.
the runtime on the reduced models, including the time needed for reduction
in the rightmost column ‘Total time’. In the second, less extensive experiment,
we compare our reductions to bisimulation minimization (Table 2 below). All
experiments were conducted on a notebook with a 2.4GHz Quad-Core Intel Core
i5 processor and 16GB of RAM. The script for creating the table is available6.

Results. Our default heuristics was able to reduce all considered models in terms
of states (by 28-84%) and transitions (by 1-83%). The total time for building
and checking these models was decreased by 39-91%. The relative decrease in
the number of states is usually more striking than the decrease in the number
of transitions. This is because, as explained in Section 4, location elimination
always removes states but may add more commands to the PCFP and hence
more transitions to the underlying Markov model. Similarly, the time savings
for model checking are often higher than the ones for model building; here, this
is mostly because building our reduced model introduces some overhead due to
the additional commands. The reduction itself was always completed within a
fraction of a second and is independent of the size of the underlying state space.

Bisimulation and control-flow reduction. In Table 2, we compare the compres-
sion achieved by storm’s probabilistic bisimulation engine, our method and both
techniques combined. We also include the total time needed for reduction, model
building and checking. For the comparison, we have selected three benchmarks
representing three different situations: (1) for brp, the two techniques achieve
similar reductions, (2) for nand, our reduced model is smaller than the bisimu-
lation quotient, and (3) for pole, the situation is the other way around, i.e., the
bisimulation quotient is (much) smaller than our reduced model. Interestingly,
combining the two techniques yields an even smaller model in all three cases.
This demonstrates the fact that control-flow reduction and bisimulation are or-
thogonal to each other. In the examples, control-flow reduction was also faster
than bisimulation as the latter has to process large explicit state spaces. It is
thus an interesting direction for future work to combine program-level reduction
techniques that yield bisimilar models with control-flow reduction.

5 By default, storm builds the Markov model as a sparse graph data structure and
uses (inexact) floating point arithmetic.

6 https://doi.org/10.5281/zenodo.5497947

https://doi.org/10.5281/zenodo.5497947

20 T. Winkler, J. Lehmann, and J.-P. Katoen

Table 2. Comparison of bisimulation minimization and our control-flow reduction
(‘CFR’). Column ‘Total time’ includes building, reducing and checking the model.

Name Params.
States Transitions Total time

Bisim. CFR both Bisim. CFR both Bisim. CFR both

brp 212/20 598K 606K 344K 852K 1.02M 598K 4,767 2,883 2,965

nand 40/4 3.21M 816K 678K 5M 3.1M 2.46M 17,868 5,588 8,199

pole 103 4.06K 1.72M 1.2K 12.2K 7.54M 9.82K 19,443 10,305 10,801

When does control-flow reduction work well? Our technique works best for mod-
els that use one or more explicit or implicit program counters. Such program
counters often come in form of a variable that determines which commands are
currently available and that is updated after most execution steps. Unfolding
such variables typically yields several loop-free locations. For example, the vari-
able f in Figure 2 is of this kind. However, we again stress that there is no formal
difference between program counter variables and “data variables” in our frame-
work. The distinction is made automatically by our heuristics; no additional user
input is required. Control-flow reduction yields especially good results if it can
be applied compositionally such as in the dice5 benchmark.

Limitations. Finally, we remark that our approach is less applicable to exten-
sively synchronizing parallel compositions of more than just a handful of mod-
ules. The flattening approach then typically yields large PCFPs which are not
well suited for symbolic techniques such as ours. Larger PCFPs also require a sig-
nificantly higher model building time. Another limiting factor are dense variable
dependencies in the sense of Section 4.1, i.e., the variable dependency graph has
relatively large BSCCs. The latter, however, seems to rarely occur in practice.

7 Conclusion

This paper presented a property-directed “unfold and eliminate” technique on
probabilistic control-flow programs which is applicable to state-based high-level
modeling languages. It preserves reachability probabilities and expected rewards
exactly and can be used as a simplification front-end for any probabilistic model
checker. It can also handle parametric DTMC and MDP models where some key
quantities are left open. On existing benchmarks, our implementation achieved
model compressions of up to an order of magnitude, even on models that have
much larger bisimulation quotients. Future work is to amend this approach to
continuous-time models like CMTCs and Markov automata, and to further prop-
erties such as LTL.

References

1. de Alfaro, L., Kwiatkowska, M.Z., Norman, G., Parker, D., Segala, R.: Sym-
bolic model checking of probabilistic processes using MTBDDs and the Kro-

Reducing Probabilistic Models by Control-State Elimination 21

necker representation. In: TACAS 2000, Proceedings. pp. 395–410 (2000), https:
//doi.org/10.1007/3-540-46419-0 27

2. Andriushchenko, R., Ceska, M., Junges, S., Katoen, J., Stupinský, S.: PAYNT:
A tool for inductive synthesis of probabilistic programs. In: CAV 2021, Proceed-
ings, Part I. Lecture Notes in Computer Science, vol. 12759, pp. 856–869. Springer
(2021), https://doi.org/10.1007/978-3-030-81685-8 40

3. Baier, C., Daum, M., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-utility quan-
tiles. In: NFM 2014, Proceedings. Lecture Notes in Computer Science, vol. 8430,
pp. 285–299. Springer (2014), https://doi.org/10.1007/978-3-319-06200-6 24

4. Baier, C., Größer, M., Ciesinski, F.: Partial order reduction for probabilistic sys-
tems. In: QEST 2004. pp. 230–239 (2004), https://doi.org/10.1109/QEST.2004.
1348037

5. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
6. Ballarini, P., Fisher, M., Wooldridge, M.J.: Automated Game Analysis via Proba-

bilistic Model Checking: a case study. Electron. Notes Theor. Comput. Sci. 149(2),
125–137 (2006), https://doi.org/10.1016/j.entcs.2005.07.030

7. Batz, K., Junges, S., Kaminski, B.L., Katoen, J., Matheja, C., Schröer, P.: PrIC3:
Property directed reachability for MDPs. In: CAV 2020, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 12225, pp. 512–538. Springer (2020), https:
//doi.org/10.1007/978-3-030-53291-8 27

8. Biagi, M., Carnevali, L., Santoni, F., Vicario, E.: Hospital Inventory Manage-
ment Through Markov Decision Processes @runtime. In: QEST 2018, Proceed-
ings. Lecture Notes in Computer Science, vol. 11024, pp. 87–103. Springer (2018),
https://doi.org/10.1007/978-3-319-99154-2 6

9. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.: MODEST: A com-
positional modeling formalism for hard and softly timed systems. IEEE Trans.
Software Eng. 32(10), 812–830 (2006), https://doi.org/10.1109/TSE.2006.104

10. Buchholz, P., Katoen, J., Kemper, P., Tepper, C.: Model-checking large structured
Markov chains. J. Log. Algebraic Methods Program. 56(1-2), 69–97 (2003), https:
//doi.org/10.1016/S1567-8326(02)00067-X

11. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: TACAS 2017, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 10206, pp. 151–168 (2017), https:
//doi.org/10.1007/978-3-662-54580-5 9

12. D’Argenio, P., Jeannet, B., Jensen, H., Larsen, K.: Reachability analysis of proba-
bilistic systems by successive refinements. In: Proc. 1st Joint International Work-
shop on Process Algebra and Probabilistic Methods, Performance Modelling and
Verification (PAPM/PROBMIV’01). LNCS, vol. 2165, pp. 39–56. Springer (2001)

13. D’Argenio, P.R., Niebert, P.: Partial order reduction on concurrent probabilistic
programs. In: QEST 2004. pp. 240–249 (2004), https://doi.org/10.1109/QEST.
2004.1348038

14. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains.
In: ICTAC 2004. Lecture Notes in Computer Science, vol. 3407, pp. 280–294.
Springer (2004), https://doi.org/10.1007/978-3-540-31862-0 21

15. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen,
J., Ábrahám, E.: Prophesy: A probabilistic parameter synthesis tool. In: CAV 2015,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 9206, pp. 214–231.
Springer (2015), https://doi.org/10.1007/978-3-319-21690-4 13

16. Dehnert, C., Katoen, J., Parker, D.: SMT-based bisimulation minimisation
of Markov models. In: VMCAI 2013, Proceedings. Lecture Notes in Com-

https://doi.org/10.1007/3-540-46419-0_27
https://doi.org/10.1007/3-540-46419-0_27
https://doi.org/10.1007/978-3-030-81685-8_40
https://doi.org/10.1007/978-3-319-06200-6_24
https://doi.org/10.1109/QEST.2004.1348037
https://doi.org/10.1109/QEST.2004.1348037
https://doi.org/10.1016/j.entcs.2005.07.030
https://doi.org/10.1007/978-3-030-53291-8_27
https://doi.org/10.1007/978-3-030-53291-8_27
https://doi.org/10.1007/978-3-319-99154-2_6
https://doi.org/10.1109/TSE.2006.104
https://doi.org/10.1016/S1567-8326(02)00067-X
https://doi.org/10.1016/S1567-8326(02)00067-X
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1109/QEST.2004.1348038
https://doi.org/10.1109/QEST.2004.1348038
https://doi.org/10.1007/978-3-540-31862-0_21
https://doi.org/10.1007/978-3-319-21690-4_13

22 T. Winkler, J. Lehmann, and J.-P. Katoen

puter Science, vol. 7737, pp. 28–47. Springer (2013), https://doi.org/10.1007/
978-3-642-35873-9 5

17. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)
18. Donaldson, A.F., Miller, A., Parker, D.: Language-Level Symmetry Reduction for

Probabilistic Model Checking. In: QEST 2009, Proceedings. pp. 289–298 (2009),
https://doi.org/10.1109/QEST.2009.21

19. Dong, Y., Ramakrishnan, C.R.: An Optimizing Compiler for Efficient Model
Checking. In: FORTE XII/PSTV XIX. IFIP Conference Proceedings, vol. 156,
pp. 241–256. Kluwer (1999)

20. Dubslaff, C., Morozov, A., Baier, C., Janschek, K.: Reduction methods on
probabilistic control-flow programs for reliability analysis. In: 30th European
Safety and Reliability Conference, ESREL (2020), https://www.rpsonline.com.sg/
proceedings/esrel2020/pdf/4489.pdf

21. Esparza, J., Hoffmann, P., Saha, R.: Polynomial analysis algorithms for free choice
probabilistic workflow nets. Perform. Evaluation 117, 104–129 (2017), https://doi.
org/10.1016/j.peva.2017.09.006

22. Fatmi, S.Z., Chen, X., Dhamija, Y., Wildes, M., Tang, Q., van Breugel, F.: Prob-
abilistic Model Checking of Randomized Java Code. In: SPIN 2021, Proceedings.
Lecture Notes in Computer Science, vol. 12864, pp. 157–174. Springer (2021),
https://doi.org/10.1007/978-3-030-84629-9 9

23. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal plan-
ning domains. J. Artif. Intell. Res. 20, 61–124 (2003), https://doi.org/10.1613/
jair.1129

24. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PASS: Abstraction Refinement
for Infinite Probabilistic Models. In: TACAS 2010, Proceedings. Lecture Notes in
Computer Science, vol. 6015, pp. 353–357. Springer (2010), https://doi.org/10.
1007/978-3-642-12002-2 30

25. Hartmanns, A., Hermanns, H.: The Modest Toolset: An Integrated Environment
for Quantitative Modelling and Verification. In: TACAS 2014, Proceedings. Lecture
Notes in Computer Science, vol. 8413, pp. 593–598. Springer (2014), https://doi.
org/10.1007/978-3-642-54862-8 51

26. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quantita-
tive verification benchmark set. In: TACAS 2019, Proceedings, Part I. pp. 344–350
(2019), https://doi.org/10.1007/978-3-030-17462-0 20

27. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilis-
tic model checker storm. International Journal on Software Tools for Technology
Transfer pp. 1–22 (2021)

28. Jansen, D.N., Groote, J.F., Timmers, F., Yang, P.: A near-linear-time algorithm
for weak bisimilarity on Markov chains. In: CONCUR 2020. LIPIcs, vol. 171, pp.
8:1–8:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020), https://doi.
org/10.4230/LIPIcs.CONCUR.2020.8

29. Jeannet, B.: Dynamic partitioning in linear relation analysis: Application to the
verification of reactive systems. Formal Methods in System Design 23(1), 5–37
(2003)

30. Junges, S., Ábrahám, E., Hensel, C., Jansen, N., Katoen, J., Quatmann, T., Volk,
M.: Parameter synthesis for Markov models. CoRR abs/1903.07993 (2019), http:
//arxiv.org/abs/1903.07993

31. Katoen, J., Kemna, T., Zapreev, I.S., Jansen, D.N.: Bisimulation minimisation
mostly speeds up probabilistic model checking. In: TACAS 2007, Proceedings.
Lecture Notes in Computer Science, vol. 4424, pp. 87–101. Springer (2007), https:
//doi.org/10.1007/978-3-540-71209-1 9

https://doi.org/10.1007/978-3-642-35873-9_5
https://doi.org/10.1007/978-3-642-35873-9_5
https://doi.org/10.1109/QEST.2009.21
https://www.rpsonline.com.sg/proceedings/esrel2020/pdf/4489.pdf
https://www.rpsonline.com.sg/proceedings/esrel2020/pdf/4489.pdf
https://doi.org/10.1016/j.peva.2017.09.006
https://doi.org/10.1016/j.peva.2017.09.006
https://doi.org/10.1007/978-3-030-84629-9_9
https://doi.org/10.1613/jair.1129
https://doi.org/10.1613/jair.1129
https://doi.org/10.1007/978-3-642-12002-2_30
https://doi.org/10.1007/978-3-642-12002-2_30
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.4230/LIPIcs.CONCUR.2020.8
https://doi.org/10.4230/LIPIcs.CONCUR.2020.8
http://arxiv.org/abs/1903.07993
http://arxiv.org/abs/1903.07993
https://doi.org/10.1007/978-3-540-71209-1_9
https://doi.org/10.1007/978-3-540-71209-1_9

Reducing Probabilistic Models by Control-State Elimination 23

32. Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for Markov Decision Processes. Formal Meth-
ods Syst. Des. 36(3), 246–280 (2010), https://doi.org/10.1007/s10703-010-0097-6

33. Kurshan, R.P., Levin, V., Yenigün, H.: Compressing Transitions for Model Check-
ing. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002, Proceedings. Lecture Notes
in Computer Science, vol. 2404, pp. 569–581. Springer (2002), https://doi.org/10.
1007/3-540-45657-0 48

34. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of Proba-
bilistic Real-Time Systems. In: CAV 2011, Proceedings. Lecture Notes in Com-
puter Science, vol. 6806, pp. 585–591. Springer (2011), https://doi.org/10.1007/
978-3-642-22110-1 47

35. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science, Springer (2005), https://doi.org/10.1007/
b138392

36. Norman, G., Parker, D., Kwiatkowska, M.Z., Shukla, S.K.: Evaluating the reli-
ability of NAND multiplexing with PRISM. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 24(10), 1629–1637 (2005), https://doi.org/10.1109/TCAD.
2005.852033

37. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics, Wiley (1994), https://doi.
org/10.1002/9780470316887

38. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.: Parameter Synthe-
sis for Markov Models: Faster Than Ever. In: ATVA 2016, Proceedings. Lecture
Notes in Computer Science, vol. 9938, pp. 50–67 (2016), https://doi.org/10.1007/
978-3-319-46520-3 4

39. Valmari, A., Franceschinis, G.: Simple O(m logn) time Markov chain lumping.
In: TACAS 2010, Proceedings. Lecture Notes in Computer Science, vol. 6015, pp.
38–52. Springer (2010), https://doi.org/10.1007/978-3-642-12002-2 4

40. Wachter, B., Zhang, L.: Best probabilistic transformers. In: VMCAI 2010, Proceed-
ings. Lecture Notes in Computer Science, vol. 5944, pp. 362–379. Springer (2010),
https://doi.org/10.1007/978-3-642-11319-2 26

41. Wimmer, R., Braitling, B., Becker, B.: Counterexample Generation for Discrete-
Time Markov Chains Using Bounded Model Checking. In: VMCAI 2009, Proceed-
ings. Lecture Notes in Computer Science, vol. 5403, pp. 366–380. Springer (2009),
https://doi.org/10.1007/978-3-540-93900-9 29

42. Younes, H.L., Littman, M.L.: PPDDL1.0: An extension to PDDL for expressing
planning domains with probabilistic effects. Techn. Rep. CMU-CS-04-162 2, 99
(2004)

https://doi.org/10.1007/s10703-010-0097-6
https://doi.org/10.1007/3-540-45657-0_48
https://doi.org/10.1007/3-540-45657-0_48
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1109/TCAD.2005.852033
https://doi.org/10.1109/TCAD.2005.852033
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-642-12002-2_4
https://doi.org/10.1007/978-3-642-11319-2_26
https://doi.org/10.1007/978-3-540-93900-9_29

24 T. Winkler, J. Lehmann, and J.-P. Katoen

A Transition Elimination: The General Case

We show how ingoing transition can be eliminated in the general case. This
generalizes the case of binary PCFPs covered by Figure 6.

Let l̂
ϕ→p:u−−−−→ l be an ingoing transition of l ∈ Loc that we wish to eliminate.

Suppose that the transition is part of a command

γ := l̂, ϕ → p : u : l +

n∑
j=1

pj : uj : lj

where we use the sum notation in the obvious way (note that n = 0 is possible
when p = 1). Our goal is to remove γ completely (and thus not only the above
transition) and replace it by a collection of m new commands γ′i, where m is the
number of commands available at location l. More specifically, let

γi := l, ψi →
mi∑
j=1

qij : vij : lij

for 1 ≤ i ≤ m be one of those m commands. For all 1 ≤ i ≤ m, we define the
following new commands:

γ′i := l̂, ϕ ∧ wp(u, ψi) →
n∑
j=1

pj : uj : lj +

mi∑
j=1

p qij : (u # vij) : lij .

After this operation, there will be a total of at most m−1 additional commands
and (m− 1)n+

∑m
i=1mi − 1 additional transitions.

B Full Proofs

B.1 Proof of Lemma 1 (Unfolding preserves the MDP semantics)

Let P = (Loc, Var, dom, Cmd, ι), Unf(P, x) = (Loc′, Var′, dom′, Cmd′, ι′),MP =
(S, Act, ι, P) and MUnf(P,x) = (S′, P ′,Act′, ι′).

For the proof, we identify MDP states named 〈〈l, ν(x)〉, ν〉 and 〈l, (ν(x), ν)〉
and denote the extension of a valuation as (ν(x), ν′) = ν if ν′ is the restriction
of ν to Var \ {x}. Consequently,

S = Loc× {ν ∈ dom} = Loc× dom(x)× {ν ∈ dom′} = Loc′ × {ν ∈ dom′} = S′ .

In the following, we show that P = P ′. To this end, we regard P and P ′ as
the sets of transitions they describe.

We first show P ⊆ P ′. Let 〈l, ν〉 aγ ,p−−−→ 〈l′, u(ν)〉 be a transition inMP. Then,

by Definition 2, we have l
ϕ→p:u−−−−→ l′ ∧ ν |= ϕ ∧ u(ν) ∈ dom in P. We define

νx : {x} → dom(x) with νx(x) = ν(x). By the rule from Definition 5 it follows
that

〈 l, νx(x) 〉 ϕ[νx]→ p :u[νx]−−−−−−−−−−→ 〈 l′, u(νx)(x) 〉

Reducing Probabilistic Models by Control-State Elimination 25

holds in Unf(P, x). Let ν′ be the restriction of ν to Var \ {x}. From ν |= ϕ, it
follows that ν′ |= ϕ[νx]. Since u(ν) ∈ dom holds in P, u(ν′) ∈ dom′ holds in
Unf(P, x). Applying the rule from Definition 2 yields that

〈 〈 l, νx(x) 〉, ν′ 〉 aγ ,p−−−→ 〈 〈 l′, u(νx)(x) 〉, u(ν) 〉

holds in Unf(P, x). As 〈〈l, νx(x)〉, ν′〉 = 〈l, ν〉 and 〈〈l′, u(νx)(x)〉, u(ν′)〉 = 〈l′, u(ν)〉,
we have thus shown that P ⊆ P ′.

We now show P ′ ⊆ P . Let 〈〈l, νx(x)〉, ν′〉 aγ ,p−−−→ 〈〈l′, u(νx)(x)〉, u(ν′)〉 be a
transition in Unf(P, x). This implies that there exists a guard ϕ′ over Var′ such
that

〈 l, νx(x) 〉 ϕ′→p :u−−−−−→ 〈 l′, u(νx)(x) 〉 ∧ ν′ |= ϕ′ ∧ u(ν′) ∈ dom

holds in Unf(P, x). We have u(νx)(x) ∈ dom(x) because otherwise 〈l′, u(νx)(x)〉 ∈
Loc′ would not hold. We have already shown that u(ν′) ∈ dom′ holds, so for the

combination ν = (νx, ν
′), ν ∈ dom also holds. As 〈l, νx(x)〉 ϕ′→p:u−−−−−→ 〈l′, u(νx)(x)〉

is a transition in Unf(P, x), by Definition 5 there is a ϕ with ϕ′ = ϕ[νx] such that

l
ϕ→p:u−−−−→ l′ holds in P. Additionally, because ν′ |= ϕ′ and ϕ′ = ϕ[νx], it holds

that ν |= ϕ. By the rule from Definition 2, 〈l, ν〉 aγ ,p−−−→ 〈l′, u(ν)〉 must therefore
be a transition in MP.

Finally, notice that ι = 〈lι, νι〉 = 〈lι, νι(x), ν′ι〉 = 〈〈lι, νι(x)〉, ν′ι〉 = ι′.
�

B.2 Proof of Lemma 2 (Transition elimination is correct)

We formally prove that the transition elimination rule from Figure 6 is correct
in the sense of Lemma 2, i.e., that it yields a reachability equivalent PCFP.

First, we argue that state elimination in Markov chains (Figure 5) can also
be extended to MDPs. We explain the corresponding rule for binary MDPs (each
state has two available actions and each action leads to at most 2 two distinct
successor states; the generalization to arbitrary MDPs is straightforward). Let
M = (S, Act, ι, P) be a (binary) MDP. Let s1 ∈ S and suppose we want to

eliminate the ingoing transition s
α, p1−−−→ s1 (see Figure 9). To this end, we also

remove the other transition s
α, p2−−−→ s2, and introduce the new action labels α; γ

and α; δ and the following new transitions:

s
α;γ, p2−−−−→ s2 s

α;γ, p1q11−−−−−−→ s11 s
α;γ, p1q12−−−−−−→ s12

s
α;δ, p2−−−−→ s2 s

α;δ, p1q21−−−−−−→ s21 s
α;δ, p1q22−−−−−−→ s22 .

Let G ⊆ S and let M′ be the MDP resulting from M by applying the above
transformation. We claim that maxσ PMσ (♦G) = maxσ PM′σ (♦G) provided that
s1 /∈ G and s1 6= ι, i.e., s1 is neither an initial state nor a goal state (the proof
is analogous for minimal reachability probabilities). Here, the maximum ranges
over all memoryless and deterministic schedulers of M and M′, respectively.
Recall from Section 3 and [37] that this class of schedulers suffices for maximal

26 T. Winkler, J. Lehmann, and J.-P. Katoen

and minimal reachability probabilities. To show our claim let σ be a maximizing
scheduler in M. W.l.o.g. assume that σ(s) = α since otherwise there is nothing
to show because the transition we eliminate is never actually chosen. Further,
suppose that σ(s1) = γ (the other case σ(s1) = δ is symmetric). We now define
a scheduler σ′ in M′ that is like σ but selects action σ′(s) = α; γ. Then it
is easy to see that the induced Markov chain M′σ′

is obtained from Mσ by

applying Markov chain transition elimination to the transition s
p1−→ s1. Since

s1 was neither initial nor contained in the goal set G, this preserves reachability
probabilities w.r.t. G.

Now let P = (Loc, Var, dom, Cmd, ι) be a (binary, well-formed) PCFP. Let
l1 ∈ Loc \ {lι} be no potential goal with respect to goal predicate ϑ over Var and

let P′ be obtained from P by eliminating transition l
ϕ→p1:u1−−−−−−→ l1 according to

the rule in Figure 6. We have to show that P and P′ are reachability equivalent
w.r.t. ϑ. To this end, we show that the semantic MDP M′ := MP′ can be
obtained fromM :=MP by applying MDP transition elimination as in Figure 9
repeatedly.

By Definition 2 we have for all ν |= ϕ, ν′ |= ψ1 and ν′′ |= ψ2 the following
transitions (?) in the MDP M:

〈 l, ν 〉 aα, p1−−−−→ 〈 l1, u1(ν) 〉

〈 l, ν 〉 aα, p2−−−−→ 〈 l2, u2(ν) 〉

〈 l1, ν′ 〉
aγ , q11−−−−→ 〈 l11, v11(ν′) 〉 (?)

〈 l1, ν′ 〉
aγ , q12−−−−→ 〈 l12, v12(ν′) 〉

〈 l1, ν′′ 〉
aδ, q21−−−−→ 〈 l21, v21(ν′′) 〉

〈 l1, ν′′ 〉
aδ, q22−−−−→ 〈 l22, v22(ν′′) 〉 .

Here, α, β, and δ refer to the commands containing transitions l
ϕ→p1:u1−−−−−−→ l1,

l1
ψ1→q11:v11−−−−−−−→ l11, and l1

ψ2→q21:v21−−−−−−−→ l21, respectively.
On the other hand, again by Definition 2, in M′ for all ν |= ϕ ∧ wp(u1, ψ1)

and ν′ |= ϕ ∧ wp(u1, ψ2) there exist the transitions (??)

〈 l, ν 〉 aα;γ , p1q11−−−−−−−→ 〈 l11, (u1 # v11)(ν) 〉

〈 l, ν 〉 aα;γ , p1q12−−−−−−−→ 〈 l12, (u1 # v12)(ν) 〉

〈 l, ν 〉 aα;γ , p2−−−−−→ 〈 l2, u2(ν) 〉 (??)

〈 l, ν′ 〉 aα;δ, p1q21−−−−−−−→ 〈 l21, (u1 # v21)(ν′) 〉

〈 l, ν′ 〉 aα;δ, p1q22−−−−−−−→ 〈 l22, (u1 # v22)(ν′) 〉

〈 l, ν′ 〉 aα;δ, p2−−−−−→ 〈 l2, u2(ν′) 〉 .

Here, α; γ and α; δ denote the two commands available at l in P′. We claim
that all the transitions (??) in M′ are obtained from the transitions (?) in M
by applying the rule in Figure 9. To see this, note that the condition ν |=

Reducing Probabilistic Models by Control-State Elimination 27

ϕ∧wp(u1, ψ1) holds iff ν |= ϕ and u1(ν) |= ψ1. Therefore, for all ν and i ∈ {1, 2}
we have that

〈 l, ν 〉 aα;γ , p1q1i−−−−−−−→ 〈 l1i, (u1 # v1i)(ν) 〉 (is a transition in M′)

⇐⇒ 〈 l, ν 〉 aα, p1−−−−→ 〈 l1, u1(ν) 〉

and 〈 l1, u1(ν) 〉 aγ , q1i−−−−→ 〈 l1i, v1i(u1(ν)) 〉 . (are transitions in M)

Similarly, the condition ν |= ϕ ∧ wp(u1, ψ2) holds iff ν |= ϕ and u1(ν) |= ψ2.
Therefore, for all ν and i ∈ {1, 2} we have that

〈 l, ν′ 〉 aα;δ, p1q2i−−−−−−−→ 〈 l2i, (u1 # v2i)(ν′) 〉 (is a transition in M′)

⇐⇒ 〈 l, ν 〉 aα, p1−−−−→ 〈 l1, u1(ν) 〉

and 〈 l1, u1(ν) 〉 aγ , q2i−−−−→ 〈 l2i, v2i(u1(ν)) 〉 . (are transitions in M)

We now show that the transitions (??) in M′ can be constructed from the
transitions (?) by MDP transition elimination. To this end, we make the following
case distinction for all ν ∈ dom:

– ν |= ϕ ∧ wp(u1, ψ1) and ν |= ϕ ∧ wp(u1, ψ2). In this case, by the previous
observation we can apply the MDP transition elimination rule as in Figure 9
with
• s = 〈 l, ν 〉,
• s1 = 〈 l1, u1(ν) 〉, s2 = 〈 l2, u2(ν) 〉,
• s11 = 〈 l11, v11(u1(ν)) 〉, s12 = 〈 l12, v12(u1(ν)) 〉
• s21 = 〈 l21, v21(u1(ν)) 〉, s22 = 〈 l22, v22(u1(ν)) 〉, and
• α = aα, γ = aγ , δ = aδ

to obtain the desired transitions 〈 l, ν 〉 aα;γ , p1q1i−−−−−−−→ 〈 l1i, (u1 # v1i)(ν) 〉 and

〈 l, ν′ 〉 aα;δ, p1q2i−−−−−−−→ 〈 l2i, (u1 # v2i)(ν′) 〉, i ∈ {1, 2} in M′.
– ν |= ϕ ∧ wp(u1, ψ1) and ν 2 ϕ ∧ wp(u1, ψ2). In this case, we apply the MDP

transition elimination rule just “partially” as follows:
• s = 〈 l, ν 〉,
• s1 = 〈 l1, u1(ν) 〉, s2 = 〈 l2, u2(ν) 〉,
• s11 = 〈 l11, v11(u1(ν)) 〉, s12 = 〈 l12, v12(u1(ν)) 〉, and
• α = aα, γ = aγ ,

i.e., at s2 there is just a single action γ available, but the other action δ as
in Figure 9 is not present.

– The case ν |= ϕ ∧ wp(u1, ψ2) and ν 2 ϕ ∧ wp(u1, ψ1) is symmetric to the
previous case.

– For the remaining case ν 2 ϕ ∧ wp(u1, ψ1) and ν 2 ϕ ∧ wp(u1, ψ2) there is
nothing to show.

Overall, the claim follows as the MDP transition elimination rule preserves
reachability probabilities and because 〈 l1, ν 〉 /∈ Gϑ for all ν ∈ dom as l1 is no
potential goal w.r.t. ϑ by assumption.

�

28 T. Winkler, J. Lehmann, and J.-P. Katoen

s

. . .

s1

s2

s11

s12

s21

s22

α

β

p1

p
2

γ

δ

q11

q12

q21

q22

s

. . .

s2

s11

s12

s21

s22

β

α; γ

α; δ

p2

p
2

p1q11

p1q12

p1q21

p1q22

Fig. 9. Transition elimination in binary MDPs. The rule preserves reachability prob-
abilities provided that s1 is neither initial nor a goal state. The transformation also
works if there is just one action available at s1.

B.3 Proof of Theorem 2 (Complexity of Location Elimination)

We restate the theorem for convenience:

Theorem 2 (Complexity of Location Elimination). Let l ∈ Loc \ {lι} be
a location without self-loops. Let k be the number of commands available at l.
Further, let n be the number of distinct commands in Cmd that have a transition
with destination l, and suppose that each such transition has multiplicity at most
m. Then the location elimination algorithm in Theorem 1 applied to l has the
following properties:

– It terminates after at most n(km−1)/(k−1) iterations.
– It creates at most O(nkm) new commands.
– There exist PCFPs where it creates at least Ω(n2m) new distinct commands

with satisfiable guards.

We now prove the theorem by discussing each item individually:

– Let γ1, . . . , γn be the n distinct commands in Cmd that have a transition
leading to l, i.e., for i = 1, . . . , n we have at least one transition of the form

li
ϕi→ pi : ui−−−−−−−→ l

contained in γi . Moreover, the multiplicity of these transitions is at most
m by assumption. We process each of these commands as follows: We ap-
ply transition elimination to an arbitrary γ1-transition first and then to all
new ingoing transitions to l created by this7. We iterate this until no new
ingoing transitions are created. After that, we process the other commands
γ2, . . . , γn.

7 See the paragraph above Theorem 1 for an explanation why transition elimination
may create new ingoing transitions; recall that this is impossible in the case of
Markov chain transition elimination. Also recall that new transitions may only be
created if the multiplicity of the transition to be eliminated is greater than 1.

Reducing Probabilistic Models by Control-State Elimination 29

The number I(m) of iterations of the algorithm in Theorem 1 (which is
equal to the number of times we apply transition elimination) for processing
a single command with transitions leading to l with multiplicity m satisfies
the recurrence I(1) = 1 and I(m) = 1 + kI(m − 1) for all m > 1 since
eliminating a transition with multiplicity m > 1 yields k new commands with
multiplicity m−1 each. The solution of this recurrence is I(m) =

∑m−1
i=0 ki =

(km−1)/(k−1). Thus, to process all n commands, n(km−1)/(k−1) iterations
suffice.

– As in the previous item, we process each command γ1, . . . , γn one after an-
other. We may think of the following stages when processing one such com-
mand: In stage 1, there is a the single command γi with multiplicity m. In
stage j for j > 1, the commands from the previous stage are transformed
into k new commands with multiplicity m− j+ 1 each. In the final stage m,
there are thus km−1 commands with multiplicity 1 each. Eliminating all of
them yields k · km−1 = km new commands, but no new commands with a
transition leading to l. Hence, the algorithm creates a total of at most nkm

new commands after processing all n commands γ1, . . . , γn.
– We first give an example for n = 1 and k = 2. Consider the deterministic

PCFP P with Var = {xi, yi | 1 ≤ i ≤ m} and dom(xi) = dom(yi) = {0, 1}
depicted in Figure 7. Let P′ be the result of applying the location elimination
algorithm from Theorem 1 to the loop-free location l of P. As eliminating l
with our rule preserves reachability, in the Markov chain MP′ it holds that

P (〈l′, ν〉, 〈l1,~0〉) = c
∑
i

δ1,ν(xi)
1

2i

for all ν ∈ dom with ν(yi) = 0 for all i and where δ is the Kronecker-Delta.
Note that all these 2m probabilities are pairwise distinct: In each case, the
probability is equal to the binary decimal 0.ν(x1) . . . ν(xm) multiplied by the
normalizing constant c.
This implies that P′ must have at least 2m commands available at l′ as
otherwise there would be at most 2m − 1 pairwise distinct probabilities
P (〈l′, ν〉, 〈l1,~0〉) in MP′ , where ν ∈ dom with ν(yi) = 0 for all i = 1, . . . ,m.
Moreover, it is clear that these commands have satisfiable guards and are
pairwise distinct.
The example can be extended to n > 1 as well: We simply make n copies of
the location l′.
It is less obvious how to adapt the example to k > 2, and we shall content
ourselves with the exponential lower bound that is already implied by the
k = 2 case.

�

C Eliminating Self-Loops

Analyzing loops is notoriously difficult—even in non-probabilistic programs—
and usually boils down to finding loop-invariants. The general idea of this paper

30 T. Winkler, J. Lehmann, and J.-P. Katoen

l′
... l

l1

l2

true

c
21

: y′1 = 1

c
2m

: y′m = 1

∨m
i=1

(xi ∧ yi)
{x′i = 0, y′i = 0 | 1≤i≤m }

¬(...)

Fig. 10. The PCFP P used in the proof of Theorem 2. The transitions from l′ to l have
multiplicity m each. Variables x, y have Boolean domain, ∧ denotes logical conjunction,
and c is a normalizing constant.

is to fall back to further variable unfolding (Section 4.1) if no location without
self-loops exists. However, in several special cases, we can eliminate self-loops.

First, we observe that there are “lucky cases” where the transition elimination
rule is sufficient even for locations with self-loops: Assume that location l has
a self-loop and an ingoing transition from source location l̂ 6= l, to which we
apply transition elimination. Our rule then yields (among others) transitions of
the form

l̂
ϕ∧wp(u,ψ)→ pq: v#u−−−−−−−−−−−−−→ l

where l remains a target due to its self-loop. However, it is possible that the
guards ϕ∧wp(u, ψ) in these transitions are all unsatisfiable. Likewise, transition
elimination can be applied directly to self-loops to eliminate similar lucky cases.

We develop one further loop elimination rule. As a first observation, suppose

that location l has a self-loop l
ϕ→p:u−−−−→ l with u = nop (an effectless update)

and p < 1. Then the probability p can be redistributed over the remaining prob-
abilistic choices in the corresponding command by multiplying their respective
probabilities with (1−p)−1, just like in Markov chain self-loop elimination (Fig-
ure 5, left). Now suppose that u is idempotent, that is u(u(ν)) = u(ν) for all
variable valuations ν. For instance, the update x′ = y is idempotent, but the
update x′ = x+ 1 is not. In this case, we can also formulate an elimination rule:

Proposition 1. Let P be a PCFP with self-loop l
ϕ→p:u−−−−→ l where u is idempo-

tent and p < 1. Further, suppose that l is no potential goal w.r.t. goal predicate ϑ
or that wp(u1, ϑ) is unsat. Let P′ be the resulting PCFP after applying the rule
in Figure 11. Then P and P′ are ϑ-reachability equivalent.

Proof. This rule is seen to be correct by introducing a “temporal location” l̂

with l
ϕ→p1:u1−−−−−−→ l̂ and that is otherwise like l except l̂

ϕ→p1:nop−−−−−−→ l̂ is a nop self-
loop. The intuitive meaning of l̂ is that it encodes the state that results from
applying u1 in location l. Since u1 is idempotent, l̂ has a nop self-loop that can
be immediately eliminated by redistributing the probability p1 over the other

choices. Applying the transition elimination rule (Lemma 2) to l
ϕ→p1u1−−−−−→ l̂ then

yields the result as claimed. �

Notice though that this rule only effectively removes a self-loop if the four loca-
tions in Figure 11 are pairwise distinct as it otherwise introduces new self-loops.

Reducing Probabilistic Models by Control-State Elimination 31

ll′

l1

l2

ϕ

p1 : u1

p2 : u2

ψ

q 1
: v

1

q
2
: v

2

ll′

l1

l2

ϕ1

ϕ2

p1
: u

1
u2

p2
: u

2

p2 : u2 ψ

q 1
: v

1

q
2
: v

2

p1q1 : u1 # v1

p1q2 : u1 # v2

Fig. 11. Elimination rule for idempotent self-loops. Self-loop l
p1:u1−−−→ l is eliminated.

In the figure, ϕ1 := ϕ ∧ wp(u1, ψ) and ϕ2 := ϕ ∧ wp(u1, ϕ)

D Benchmarks Details

In the following list, the “short descriptions” formatted as quotes are literal
quotes from the previously listed references.

brp Bounded retransmission protocol
– From: [12], PRISM benchmark suite, QComp [26] benchmark set
– Short description: “The BRP protocol sends a file in a number of chunks,

but allows only a bounded number of retransmissions of each chunk.”
– Verified property: P=? [F s=5]

– Parameters: N (positive integer): number of chunks in a file, MAX: (positive
integer) maximum number of retransmissions.

coingame Coin game used as running example in this paper
– From: this paper
– Short description: See Section 2.
– Verified property: P=? [F (x>= N) & (f=false)]

– Parameters: N number of rounds.
dice5 Rolling several dice in parallel

– From: Example shipped with storm.
– Short description: This benchmark models rolling several dice, five in

this case, in parallel. The individual dice are themselves simulated by
coin flips similar to the Knuth-Yao die.

– Verified property: Pmax=? [F s1=7 & s2=7 & s3=7 & s4=7 & s5=7 &

d1+d2+d3+d4+d5=15]

– Parameters: n/a
eajs Energy-aware job scheduling

– From: [3], QComp [26] benchmark set
– Short description: “A system of N processes which need to enter a critical

section in order to perform tasks, each within a given deadline. Access
to the critical section is exclusively granted by a scheduler, which selects
processes only if they have requested to enter.”

– Verified property: R{"utilityLocal"}min=? [F localFailure]

– Parameters: energy capacity (positive integer): The amount of avail-
able energy.

32 T. Winkler, J. Lehmann, and J.-P. Katoen

grid Partially observable grid world
– From: [2]
– Short description: Models a robot moving in a partially observable grid

world.
– Verified property: P=? [F (o=2)]

– Parameters: CMAX (positive integer): maximum counter value.
– Remarks: This is a random instance of the original template benchmark

from [2].
hospital Hospital inventory management

– From: [8]
– Short description: “[The model represents] daily drug ordering in a ward

of an Italian public hospital, where patient admission/discharge and drug
consumption during the sojourn are subject to uncertainty.”

– Verified property: Pmax=? [F s=7]

– Parameters: n/a
– Remarks: We have extended the planning horizon to 6 weeks and used

random probabilities for the daily drug consumption.
nand von Neumann NAND multiplexing system

– From: [36], PRISM benchmark suite, QComp [26] benchmark set
– Short description: “The case study concerns NAND multiplexing, a tech-

nique for constructing reliable computation from unreliable devices.”
– Verified property: P=? [F s=4 & z/N<0.1]

– Parameters: N (positive integer) number of inputs in each bundle, K:
(positive integer) number of restorative stages

nd-nand MDP version of the previous benchmark
– From: [36], PRISM benchmark suite, QComp [26] benchmark set
– Short description: (see above)
– Verified property: P=? [F s=4 & z/N<0.1]

– Parameters: N (positive integer) number of inputs in each bundle, K:
(positive integer) number of restorative stages

– Remark: In the original PRISM program, we have replaced the command

[] s=2 & u>1 & zy<(N-c) & zy>0 ->

p1 : <choice A> + p2: <choice B>

by two commands to resolve the above probabilistic choice in a non-
deterministic way.

negotiation Alternating Offers Protocol
– From: [6], PRISM benchmark suite
– Short description: “This case study is about the analysis of a Negotiation

Framework known as Rubinstein’s Alternating Offers Protocol. In such
a framework two agents, the Buyer (B) and the Seller (S), bargain over
an item. ”

– Verified property:
P=? [F s=2 & b=3 & (bid=TIMELINE/2 | cbid=TIMELINE/2)]

– Parameters: TIMELINE (positive integer).

Reducing Probabilistic Models by Control-State Elimination 33

pole Balancing a pole
– From: [2]
– Short description: Models balancing a pole in a noisy and unknown en-

vironment.
– Verified property: R{"rounds"}=? [F x = 0 | x = MAXX]

– Parameters: CMAX (positive integer): maximum counter value.
– Remarks: This is a random instance of the original template benchmark

from [2].
tireworld Navigation of a vehicle

– From: IPPC 2006 benchmark set, QComp [26] benchmark set
– Short description: Navigation of a vehicle which can only recover from

faults at specific service stations.
– Verified property: Pmax=? [F var15 = 10]

– Parameters: n/a
– Originally specified in PPDDL.

E Experiments with fine-tuned Heuristics

We have also encountered examples in the literature (see Table 3) where our
default heuristics does not lead to substantial reductions. However, by increas-
ing either the number of maximally permitted locations (as in tireworld) or
decreasing the allowed elimination complexity (as in negotitation), we could
nonetheless achieve noticeable reduction on these models, too.

Moreover, it is occasionally possible to improve performance by fine-tuning
the heuristics, even if the default settings already yield good results. This is the
case for, e.g., brp.

Table 3. Further experimental results with manually tuned benchmark settings. Recall
that the default is 10, 10000.

Name Type
Prop. Red. Heuristics

Params.
States Transitions Build time [ms] Check time [ms] Total time [ms]

type time L , T orig. red. orig. red. orig. red. orig. red. orig. red.

brp dtmc P 134 10,10000

210/5 78.9K -44% 106K -33% 261 -33% 22 -38%

16,418 -46%
211/10 291K -45% 397K -33% 1,027 -39% 101 -46%
212/20 1.11M -46% 1.53M -33% 3,945 -48% 462 -48%
213/25 2.76M -46% 3.8M -33% 9,413 -47% 1,187 -47%

brp dtmc P 705 50,2500

210/5 78.9K -75% 106K -43% 270 -39% 23 -68%

16,590 -55%
211/10 291K -76% 397K -43% 969 -55% 99 -72%
212/20 1.11M -76% 1.53M -42% 4,003 -58% 450 -72%
213/25 2.76M -76% 3.8M -42% 9,636 -59% 1,140 -71%

negotiation dtmc P 148 10,1000
104 129K -32% 184K -26% 481 -39% 22 -49%

5,631 -39%
105 1.29M -32% 1.84M -26% 4,930 -43% 197 -30%

tireworld mdp P 134 55,10000 n/a 197K -24% 851K +10% 923 -21% 412 -47% 1,335 -19%

	Out of Control: Reducing Probabilistic Models by Control-State Elimination

