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Abstract

Strategic behaviors often render the equilibrium outcome inefficient. Recent literature

on information design, a.k.a. signaling, looks to improve equilibria by selectively revealing

information to players in order to influence their actions. Most previous studies have focused

on the prescriptive question of designing optimal signaling schemes. This work departs

from previous research by considering a descriptive question, and looks to quantitatively

characterize the power of signaling (PoS), i.e., how much a signaling designer can improve

her objective at the equilibrium outcome.

We consider four signaling schemes with increasing power: full information, optimal

public signaling, optimal private signaling, and optimal ex-ante private signaling. Our

main result is a clean and tight characterization of the additional power each signaling

scheme has over its predecessors above in the general classes of cost-minimization and payoff-

maximization games where: (1) all players minimize non-negative cost functions or maximize

non-negative payoff functions; (2) the signaling designer (naturally) optimizes the sum of

players’ utilities. We prove that the additional power of signaling — defined as the worst-

case ratio between the equilibrium objectives of any two signaling schemes in the above

list — is bounded precisely by the well-studied notion of the price of anarchy (PoA) of the

corresponding games. Moreover, we show that all these bounds are tight.

1 Introduction

A basic lesson from game theory is that strategic behaviors often render the equilibrium outcome

inefficient. That is, the objective function value of an equilibrium outcome may be far from

that of an optimal outcome in the absence of strategic behaviors. To reduce such inefficiency,

one can “tune” the game equilibrium towards a more desirable outcome, and there are two

primary ways to achieve this goal: through providing incentives or providing information. The

∗This work is done while Nachbar is visiting the University of Virginia as a summer research intern.
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former approach has been widely studied in the celebrated field of mechanism design [27, 29,

7, 9]. This paper, however, focuses on the second approach, namely, improving equilibrium by

providing carefully designed information to influence players’ decisions. This falls into the recent

flourishing literature on information design, a.k.a., signaling or persuasion [11, 19]. Researches

in this literature so far have mainly focused on computing optimal signaling schemes for either

fundamental setups [13, 14, 33, 6] or models motivated by varied applications including auctions

[15, 3, 24], public safety and security [34, 30], conservation [35], privacy protection [36], voting

[5], congestion games [2, 10, 4], recommender systems [25], robot design [21], etc.

Departing from the theme of all these previous works, this paper considers a different style of

question. We look to characterize the power of signaling (PoS) — how much a signaling designer

can improve her objective function of the equilibrium and can we quantitatively characterize this

power? To our knowledge, this descriptive question has not been formally examined before

in the literature of signaling, except for a few studies which implicitly show certain PoS-type

results in the special case of non-atomic routing games [11, 10, 26]. Nevertheless, the study of

the PoS is extremely well-motivated. It not only deepens our understanding about signaling as

an important “knob” to influence equilibrium, but also justifies the value of previous prescriptive

studies of optimal signaling design — after all, the designed optimal signaling schemes are useful

in practice only when the power of signaling is not negligible. Thus PoS is an important measure

when determining the adoption of a signaling scheme in practice, especially when its tradeoff

with other potential drawbacks such as communication costs [17] and fairness concerns [18] need

to be balanced.

We focus on the general classes of cost-minimization games and payoff-maximization games,

where each player minimizes a non-negative cost function or maximizes a non-negative payoff

function. These classes of games are often studied in the literature of the price of anarchy

(PoA) [31], and include many widely studied examples such as routing games, congestion games,

most formats of auctions, valid utility games [32], etc. Like all standard models of signaling,

players’ utilities depend on a common random state of nature θ, which is drawn from a publicly

known prior distribution. A signaling designer, referred to as the sender, has an informational

advantage and can access the realized state θ. The sender is equipped with the natural objective

of optimizing the total welfare, i.e., sum of players’ utilities.

Power of Signaling (PoS). Our goal is to formally quantify the relative power of different types

of signaling schemes as they become less constrained. In particular, we consider four types of

signaling schemes with increasing power: full information (FI), optimal public signaling (Pub),

optimal private signaling (Pri), and optimal ex-ante private signaling (exP). FI is a natural

benchmark without any strategic use of information whereas Pub, Pri, exP are arguably the

three most widely studied schemes in previous literature.1 The power of signaling of scheme B

1Public and private signaling has been extensively studied in previous works. Several recent works study
ex-ante private signaling with motivations from recommender systems [6, 4, 33].
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over A for any A preceding B in list {FI, Pub, Pri, exP} — termed PoS(B:A) — is defined as the

ratio of the sender’s utilities from scheme A and B. This ratio is at least 1 for cost-minimization

games and at most 1 for payoff-maximization games (the same as the range of the price of

anarchy). Moreover, the further it is from 1, the more powerful scheme B is than scheme A.

Characterizations of PoS. Our main result is a clean and tight characterization about the

power of signaling. Concretely, for any cost-minimization game with a random state, we prove

that all the aforementioned PoS ratios are upper bounded by the maximum PoA of its corre-

sponding realized games. Moreover, all these upper bounds are tight in the following sense: for

any ratio r ≥ 1 and any scheme A preceding B in the list {FI, Pub, Pri, exP}, there exists a

Bayesian cost-minimization game where all of its realized games have PoA = r and moreover

PoS(B:A) = r as well. We show that exactly the same results hold for payoff-maximization

games — the PoSs are similarly bounded by PoA and all the bounds are tight.2

Our results reveal the intrinsic connections between the power of signaling and price of

anarchy. Prior to this work, it was not clear that these two concepts are inherently related — PoA

characterizes the worst-case equilibrium welfare whereas PoS characterizes how much information

can be strategically used to improve welfare. To our knowledge, recent work [26] is the only one

to observe this connection but only for the power of public signaling over full information in non-

atomic routing with afffine latency functions. Our results are more systematic and general. An

interesting computational implication of our characterization is that the full information scheme

always serves as an r approximation simultaneously for optimal public signaling, optimal private

signaling and optimal ex-ante private signaling for cost-minimization or reward-maximization

games, where r is the worst PoA among realized games.

2 Preliminaries

2.1 Cost-Minimization/Payoff-Maximization Games

A cost-minimization game G is a standard strategic game where each player i minimizes a non-

negative cost function ci ≥ 0. Let n denotes the number of players in the game. Each player

i ∈ [n] = {1, · · · , n} has action space Si. Let S = S1 × S2 · · ·Sn denote the space of action

profiles and s ∈ S is a generic action profile. A (randomized) mixed strategy for player i is

a distribution xi over Si where xi(si) is the probability of taking action si. By convention, x

denotes the profile of mixed strategies for all players, and x−i denotes all the mixed strategies

excluding i’s. With slight abuse of notation, let ci(x) = Esi∼xi,∀i ci(s) denote the expected

utility of player i under mixed strategy x. There is also a global objective which is simply to

minimize the sum of the total costs C(x) =
∑

i ci(x).

We adopt the standard mixed-strategy Nash equilibrium (NE) as the solution concept. A

2Instead of FI, another natural benchmark scheme is to reveal no information. The PoSs compared to this
benchmark turn out to be unbounded, which we show in Appendix A.
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strategy profile x∗ is a NE if for each player i, ci(x
∗) ≤ ci(xi,x

∗
−i) for any xi ∈ ∆(Si). Let X∗

denote the set of all NEs. The well-studied concept of the price of anarchy (for mixed equilibria)

for a cost-minimization game is defined as follows [22, 23, 31, 16]

POA =
maxx∗∈X∗ C(x∗)

mins∈S C(s)
∈ [1,∞) (1)

In other words, the POA is the ratio between the worst Nash equilibrium and the optimal social

outcome.

Remark 1. The PoA can also be defined with respect to pure Nash equilibrium in which case X∗

consists of all pure equilibria. Since not every game admits a pure Nash equilibrium, in striving

for generality, we choose to analyze the version w.r.t. to mixed equilibria since they always exist

in finite games as well as in many infinite games. However, all our results — both upper and

lower bound proofs — hold for pure equilibria as well, so long as they exist.

Payoff-maximization games are defined similarly; here each player i maximizes expected

payoff ui(x) ≥ 0. The global objective is to maximize U(x) =
∑

i ui(x). The price of anarchy

here is defined similarly as POA =
min

x
∗∈X∗ U(x∗)

maxs∈S U(s) , which now lies in [0, 1].

This paper concerns games with uncertainty. Specifically, players’ payoffs depend also on

a random state of nature θ drawn from support Θ with distribution λ. We use cθi (s)/u
θ
i (s) to

denote the cost/payoff function at state θ. Such a Bayesian game is denoted by {Gθ}θ∼λ. As is

standard in information design, the prior distribution λ is publicly known to every player. We

assume Θ to be finite for ease of notation, and use λ(θ) to denote the probability of state θ.

However, all our results hold for infinite state space.

2.2 Signaling Schemes and Equilibrium Concepts

This paper adopts the perspective of an informationally advantaged sender who has privileged

access to the realized state θ and would like to strategically signal this information to players in

order to influence their actions. The sender is equipped with the natural objective of optimizing

the sum of the players’ utilities, i.e., the global objective C(x) or U(x), at equilibrium. We

consider three natural types of signaling schemes with increasing generality.

Public Signaling. At a high level, a public signalling scheme constructs a random variable

σ from support Σ — called the signal — that is correlated with the state of nature θ. The

scheme then sends the sampled signal σ publicly to all players, which carries information about

the state θ due to their correlation. Such a public scheme ϕ can be fully described by variables

{ϕ(σ; θ)}σ∈Σ,θ∈Θ where ϕ(σ; θ) is the probability of sending signal σ conditioned on state of

nature θ. Adopting the standard information design assumption [20, 19], the sender commits

to the signaling scheme before state θ is realized. Therefore, ϕ is publicly known to all players.

The probability of sending signal σ equals Pr(σ) =
∑

θ λ(θ)ϕ(σ; θ). Upon receiving signal σ, all

4



players perform a standard Bayesian update and infer the following posterior probability about

the state θ: Pr(θ|σ) = λ(θ)ϕ(σ; θ)/P (σ).

Since all players receive the same information, the game will be played according to the

expected cost ci(s;σ) =
∑

θ Pr(θ|σ)cθi (s) or ui(s;σ) =
∑

θ Pr(θ|σ)uθi (s) for all i and signal σ.

We assume that players will reach a NE of this average game. Let C(σ) denote the sender’s

expected cost at equilibrium under signal σ and C(ϕ) =
∑

σ Pr(σ)C(σ) denote the expected

sender cost under signaling scheme ϕ. Like the PoA literature, when there are multiple Nash

equilibria, we always adopt the worst one in our analysis. Notations for payoff maximization

are defined similarly.

Private Signaling. Private signaling relaxes public signaling by allowing the sender to send

different, and possibly correlated, signals to different players. Specifically, let Σi denote the set

of possible signals to player i and Σ = Σ1 × ...×Σn denote the set of all possible signal profiles.

With slight abuse of notation, a private signaling scheme can be similarly captured by variables

{ϕ(σ; θ)}θ∈Θ,σ∈Σ. When signal profile σ is restricted to have the same signal to all players, this

degenerates to public signaling. Private signaling leads to a truly Bayesian game where each

player holds different information about the state of nature. The standard solution concept

in this case is the Bayes correlated equilibrium (BCE) introduced by Bergemann and Morris

[1], which consists of all outcomes that can possibly arise at Bayes Nash equilibrium under

all possible signaling schemes. Standard revelation-principle type argument shows that signals

of private signaling schemes in a BCE can be interpreted as obedient action recommendations

[20, 1, 13]. That is, Σi can W.L.O.G. be Si and Σ = S. An action recommendation si to player

i is obedient if following this recommended action is indeed a best response for i, or formally,

for any si, s
′
i ∈ Si we have

∑

θ∈Θ,s−i∈S−i

ϕ(si, s−i; θ)λ(θ)c
θ
i (si, s−i) ≥

∑

θ∈Θ,s−i∈S−i

ϕ(si, s−i; θ)λ(θ)c
θ
i (s

′
i, s−i) (2)

Ex-Ante Private Signaling. Motivated by recommender system applications, recent works

[33, 6, 4] relax the obedience constraints (2) of BCE to a coarse correlated equilibrium type of

obedience constraints, described as follows:

∑

θ∈Θ,s∈S

ϕ(si, s−i; θ)λ(θ)c
θ
i (si, s−i) ≥

∑

θ∈Θ,s∈S

ϕ(si, s−i; θ)λ(θ)c
θ
i (s

′
i, s−i),∀s

′
i ∈ Si. (3)

That is, for any player i, following the recommendation is better than opting out of the signaling

scheme and acting just according to his prior belief. A signaling scheme satisfying Constraint

(3) is dubbed an ex-ante private scheme [6, 4].

5



3 The Power of Signaling (PoS)

We now formalize the Power of Signaling (PoS) in cost-minimization and payoff-maximization

games. Intuitively, the PoS characterizes how much additional power a class of signaling schemes

has over another. Formally, let Φa and Φb be two classes of signaling schemes (e.g., public and

private schemes). We say Φb is less restricted than Φa, conveniently denoted as Φa ⊆ Φb, if

ϕ ∈ Φb whenever ϕ ∈ Φa.

Definition 1 (PoS of Φb over Φa). For any two classes of signaling schemes Φa,Φb where Φb

is less restricted than Φa (i.e., Φa ⊆ Φb), the power of signaling of Φb over Φa, or PoS(Φb : Φa)

for short, is defined as

PoS(Φb : Φa) =
minϕ∈Φa C(ϕ)

minϕ∈Φb C(ϕ)

(

or
maxϕ∈Φa U(ϕ)

maxϕ∈Φb U(ϕ)

)

,

for cost-minimization (or payoff-maximization) games.

In other words, PoS is the ratio between the objectives of the optimal scheme from signaling

class Φa and that from a less restricted class Φb. Similar to the PoA ratio, PoS(Φb : Φa) ≥ 1

for cost-minimization games, and the larger this ratio is, the more powerful Φb is over Φa. In

contrast, PoS(Φb : Φa) ≤ 1 for payoff-maximization games, and the smaller this ratio is, the

more powerful Φb is over Φa. If both the numerator and denominator are 0, we say the PoS is

1; if only the denominator is 0, the PoS is +∞.

Though PoS is well-defined for any two classes of signaling schemes, in this paper we primarily

consider the following well-studied classes of signaling schemes:

• Φ1 or FI: full information ;

• Φ2 or Pub: public signaling schemes;

• Φ3 or Pri: private signaling schemes;

• Φ4 or exP: ex-ante private signaling schemes.

The full information class FI only contains a single signaling scheme, i.e., fully revealing

the state θ. This serves as a benchmark scheme where information is not strategically signaled.

Another natural benchmark scheme is to reveal no information. We show in Appendix A that

the PoS compared to this benchmark turns out to be unbounded.

4 PoS in Cost-Minimization Games

The main result of this section is the following tight characterization about the PoS ratios in

cost-minimization games.
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Theorem 1. For any Bayesian cost-minimization game {Gθ}θ∼λ, let PoAmax = maxθ PoA(G
θ)

denote the worst PoA ratio among game Gθs. We have

PoS(Φj : Φi) ≤ PoAmax, ∀ 1 ≤ i < j ≤ 4. (4)

Moreover, these upper bounds are all tight in the following sense: for any r ≥ 1 and 1 ≤ i <

j ≤ 4, there exits a Bayesian cost-minimization game {Gθ}θ∼λ with PoA(Gθ) = r for any θ and

PoS(Φj : Φi) = r as well.

The remainder of this section is devoted to the proof of Theorem 1. The following simple

observation follows from Definition 1 of the PoS, and will be useful for proving the tightness of

the bounds in Inequality (4).

Fact 1. For any 1 ≤ i < j < j′ ≤ 4, we have

PoS(Φj : Φi) ≤ PoS(Φj′ : Φi).

As a consequence of Fact 1, if we prove the tightness of PoS(Φ2 : Φ1), i.e., PoS(Pub:FI) by

constructing an example with PoS(Pub:FI) = PoAmax, the example must satisfy PoS(Pri:FI) =

PoS(exP:FI) = PoAmax as well, implying their tightness. Therefore, to prove the tightness

of Inequality (4), we only need to prove the tightness of PoS(Pub:FI), PoS(Pri:Pub) and

PoS(exP:Pri).

4.1 A Simultaneous Proof of all the PoS Upper Bounds

We first prove all the upper bounds in Inequality (4) through a unified result, summarized in

the following theorem.

Theorem 2. For any Bayesian cost-minimization game {Gθ}θ∼λ, we have PoS(Φb : Φa) ≤

maxθ PoA(G
θ) for any two classes of signaling schemes Φa,Φb satisfying Φa ⊆ Φb and that the

full information scheme is contained in Φa.

Proof. Let PoAmax = maxθ PoA(G
θ) be the worst (i.e., the maximum) price of anarchy ratio

among game Gθs. Denote by C∗(Gθ) = mins∈S C(S) the minimum total social cost among

all outcomes (not necessarily an equilibrium) for game Gθ; let sθ∗ be an strategy profile that

achieves C∗(Gθ). ϕ
0 denotes the full information revelation scheme.

Observe that for any signaling scheme ϕ we must have C(ϕ) ≥
∑

θ λ(θ)C
∗(Gθ) because

regardless of how players act in the scheme ϕ, its expected total cost can never be less than the

7



minimum possible total cost
∑

θ λ(θ)C
∗(Gθ). Now since Φa contains ϕ0, we thus have

min
ϕ′∈Φa

C(ϕ′) ≤ C(ϕ0)

=
∑

θ∈Θ

λ(θ)C(Gθ)

≤
∑

θ∈Θ

λ(θ) · rC∗(Gθ)

≤ rC(ϕ), for any scheme ϕ

where C(Gθ) is the worst (i.e., maximum) equilibrium cost of game Gθ and the second inequality

is by the definition of the price of anarchy. As a result, PoS(Φb : Φa) =
minϕ′∈Φa C(ϕ′)

min
ϕ∈Φb C(ϕ) ≤ r, as

desired.

4.2 Tightness of the Upper-Bound for PoS(Pub:FI)

Non-Atomic Routing. It turns out that all the PoS bounds in Theorem 1 are tight in a

special and well-studied class of cost-minimization games, i.e., non-atomic routing. The game

takes place on a directed graph G = (V,E) with V as the vertex set and E as the edge set. There

is a continuum of players, each controlling a negligible amount of flow characterized by a pair

of nodes (s, t) where s ∈ V is the starting node of the flow and t ∈ V is its destination. In non-

atomic routing with incomplete information, each edge e ∈ E can be described by a congestion

function cθe(x) which depends on the total amount of flow x on edge e as well as a random state

of nature θ ∈ Θ. Each player (s, t) optimizes her own utility by taking a minimum-cost directed

path from s to t. The sender minimizes overall congestion cost. There is an essentially unique

pure Nash equilibrium for non-atomic routing under a public scheme. Therefore, equilibrium

selection is not an issue in non-atomic routing.

We now show the tightness of PoS(Pub:FI) for any ratio r ≥ 1 via a non-atomic routing game

example, which implies the tightness of PoS(Pri:FI) and PoS(exP:FI) by Fact 1. Consider a

variant of Pigou’s example [28], as depicted in Figure 1, where cost functions are described on

each edge. The traffic demand from s1 to t is set as d(α) =
(

1
α+1

)
1
α
whereas the demand from

s2 to t is 1− d(α). Each state of nature occurs with probability 0.5.

s2

t

s1

xα

1

2 0

θ1

s2

t

s1

xα

1

0 2

θ2

Figure 1: A Tight Example for PoS(Pub:FI)
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First, we compute the price of anarchy (PoA) of each game, as a function of α. Clearly, at

equilibrium no flow will pass through the edge with cost 2 since deviating to the edge with cost

0 is strictly better. It is easy to see that at equilibrium all flow will go through the edge with

cost xα, leading to total congestion 1 at equilibrium. The optimal flow, however, is that all flow

at s1 goes through edge (s1, t) and all flow at s2 goes through (s2, t), leading to minimum total

congestion
(

1
α+1

)

(α+1)
α

+1 −
(

1
α+1

)
1
α
. Therefore, the PoA as a function of α in this instance is

PoA =
1

(

1
α+1

)

(α+1)
α

+ 1 −
(

1
α+1

)
1
α

, (5)

which is a continuous function of α > 0. Standard analysis shows that this function tends to ∞

as α → ∞ and tends to 1 as α → 0+. For the special case of α = 0, it can be directly verified

that the PoA ratio is 1. Therefore, this PoA ratio can take any value r ≥ 1 with a proper choice

of α.

We now consider the cost of the full information scheme FI. In this case, all flow will always go

through the edge with cost 1 at equilibrium, leading to total cost 1. The optimal public scheme

in this example happens to be revealing no information. Without being able to distinguish the

zero-cost edge from the edge of cost 2, all flow at s2 will take the (s2, t) path. This achieves the

minimum total cost, rendering the PoS(Pub:FI) ratio equal the PoA for any n.

4.3 Tightness of the Upper-Bound for PoS(Pri:Pub)

We now show the tightness of PoS(Pri:Pub) for any ratio r ≥ 1, which implies the tightness

of PoS(exP:Pub) by Fact 1. We construct a Bayesian non-atomic routing game as depicted in

Figure 2, which can be viewed as another variant of Pigou’s example.3 There is a 1 unit of flow

demand from s to t. Each state has equal probability 0.5.

s t

2

1

xα

θ1

s t

xα

1

2

θ2

Figure 2: A Tight Example for PoS(Pri:Pub)

Similarly to the calculation for the Example in Figure 1, the PoA for each game here also

equals that as described in Equation (5). We now argue that the expected cost of any public

signaling scheme will equal 1 in this example — i.e., all public schemes are equally bad and

will not be able to reduce any congestion. Any public signal gives the same information about

3This example generalizes an earlier example observed by Cheng, Dughmi and Xu [11]. It also avoided their
use of the (unrealistic) ∞ flow cost, and relies on a less trivial analysis due to the finite edge cost.
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the game state to all players. Let λ ∈ [0, 1] denote the posterior probability of θ1 given any

public signal. W.l.o.g., consider the case λ ≥ 0.5 since the other case is symmetric. The top

edge will have expected cost 2λ+ xα(1− λ) > 1 for any x > 0, therefore this edge will never be

taken since the bottom edge is a strictly better choice. Consequently, players will be choosing

between the middle edge, with expected cost function f(x) =: xαλ+ 2(1 − λ), and the bottom

edge with fixed cost 1. Note that f(0) = 2(1 − λ) ≤ 1 and f(1) = 1− λ ≥ 1. Therefore, at the

unique equilibrium, the amount of flow through the middle edge will be exactly the x∗ such that

f(x∗) = 1 whereas the remaining flow will be through the bottom edge. The expected total cost

at this equilibrium is 1.

Finally, we show that the optimal private signaling will be able to induce the optimal flow,

concluding our tightness proof. Consider the following private signaling scheme: revealing full

information to a randomly selected x∗ = (1/(α + 1))1/α fraction of the players, and revealing

no information to the remaining players. The x∗ fraction of players given the full information

has a dominant action of taking the edge with cost xα at the told state. For the remaining

players with no information, their cost of taking either the top or the middle edge will be at

least 2× (1/2) + (x∗)α × (1/2) > 1. Therefore, their optimal response will be taking the bottom

edge. This leads to exactly the optimal flow for each state, as desired.

4.4 Tightness of the Upper-Bound for PoS(exP:Pri)

Finally, we prove the tightness of PoS(exP:Pri). Consider the non-atomic routing game depicted

in Figure 3.4 There is one unit of flow from s to t and the two states θ1, θ2 occurs with equal

probability 0.5.

s t
α+ 1
α+ 1

1

xα

θ1

s t
α+ 1
α+ 1

1
xα

θ2

Figure 3: A Tight Example for PoS(exP:Pri)

Similar to the analysis for previous examples, the PoA for each game equals also the function

described in Equation (5), which takes value in [1,∞) as we vary the parameter α.

Next we argue that the optimal private signaling scheme is full-revelation, with cost 1. Recall

from the preliminary section, any private scheme can be viewed as obedient action recommen-

dations. Numbering the edges from the top to the bottom as edge 1, 2, 3, 4, we claim that any

obedient action recommendation should never recommend edge 2 and 3. This is because if a non-

zero amount of players are recommended, e.g., to edge 2, switching to edge 1 or 4 will be strictly

4This example generalizes an earlier example observed by Cheng [8] after removing (unrealistic) ∞ cost edges.
Note that the analysis of the example becomes less obvious without the use of ∞ costs.
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better. In particular, if the players are certain that they are at state θ1, they will prefer to switch

to edge 4. Otherwise, there is non-zero probability that they are at state θ2. In this case, switch-

ing to edge 1 is strictly better. Consequently, the optimal private scheme can be captured by two

variables: (1) x: the amount of flow recommended to edge 4 at state θ1 (thus edge 1 consumes

the remaining 1−x amount); (2) y: the amount of flow recommended to edge 1 at θ2. It can be

shown that the parameterized total expected cost [xα+1+(α+1)(1−x)+yα+1+(α+1)(1−y)]/2

is minimized at x = 1, y = 1, i..e, the full information scheme.

Finally, we show that the optimal ex-ante private scheme achieves the minimum possible

total social cost, concluding the tightness proof of PoS(exP:Pri). In particular, consider the

ex-ante private scheme that induces the optimal flow by recommending a randomly chosen

(1/(α + 1))1/α amount of the flow to the edge with cost xα at any state and the remaining flow

to the edge with cost 1. This is indeed obedient in the ex-ante sense because opting out from

this scheme and taking any path will lead to cost at least (α + 1 + 1
α+1 )/2, which is at least 1

and thus is larger than its expected utility in the scheme (less than 1).

5 PoS in Payoff-Maximization Games

In this section, we show that a similar tight characterization as in Theorem 1 holds for payoff-

maximization games as well.

Theorem 3. For any Bayesian payoff-maximization game {Gθ}θ∼λ, let PoAmin = minθ PoA(G
θ)

denote the worst-case PoA ratio among game Gθs. We have

PoS(Φj : Φi) ≥ PoAmin, ∀1 ≤ i < j ≤ 4. (6)

Moreover, these lower bounds are all tight in the following sense: for any r ∈ (0, 1] and any

1 ≤ i < j ≤ 4, there exits a Bayesian payoff-maximization game {Gθ}θ∼λ with PoA(Gθ) = r for

any θ and PoS(Φj : Φi) = r as well.

Remark 2. In payoff-maximization games, the smaller PoS is, the more powerful signaling is.

Therefore, Inequality (6) is a lower bound for the PoS ratio but an upper bound for the power of

signaling. Similar discrepancies also arise in the definition of the PoA for payoff-maximization

game [31].

The remaining of this section is devoted to the proof of Theorem 3. A simultaneous proof

of all the PoS lower bounds in Inequality (6) follow an analogous argument as that for Theorem

2, and thus is omitted here. We only prove their tightness. One might wonder whether the

tightness proof here can be adapted from that for cost-minimization games by simply reversing

minimizing cost functions to be maximizing their negations (plus a large constant to make it

positive). The answer turns out to be no. We illustrate the detailed reasons in the Appendix

B, but at a high level there are at least two reasons. First, the optimal flow for congestion
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minimization may not be optimal any more in the negation of the game. Second, some PoA

ratios cannot be achieved in the negation of routing games.

Our tightness proof here requires carefully constructed payoff-maximization games and anal-

ysis. Thanks to Fact 1, we will only need to prove the tightness of PoS(Pub:FI), PoS(Pri:Pub)

and PoS(exP:Pri).

5.1 Tightness of the Lower-Bound for PoS(Pub:FI)

Consider the following game played by two players P1, P2 where α, ǫ are parameters satisfying

α−1 > 2ǫ > 0. Each player has two actions, conveniently denoted as A,B. There are two states

θ1, θ2 with equal probability 0.5. The only difference of the two states is the payoffs for action

profile (B,A), which is (1, α) at state θ1 and (α, 1) at state θ2.

P2
A B

P1
A (1 + ǫ, 1) (1− ǫ, 1− ǫ)
B (1, α) (1, 1 + ǫ)

θ1

P2
A B

P1
A (1 + ǫ, 1) (1− ǫ, 1− ǫ)
B (α, 1) (1, 1 + ǫ)

θ2

We first consider full information (FI). At state θ1, action A is a strictly dominant action

for Player 2. This implies that both players choosing action A is the only Nash equilibrium,

resulting in sender utility 2 + ǫ. However, the optimal outcome at state θ1 is that Player 1

chooses B and Player 2 chooses A, leading to total payoff α + 1 (> 2 + 2ǫ since α − 1 > 2ǫ).

State θ2 is symmetric. The expected utility of full information is 2+ ǫ, and the PoA of each game

is 2+ǫ
α+1 .

We now show that the optimal public signaling scheme can maximize total payoff. Consider

the scheme which reveals no information at all. The only change is that the expected payoffs

of action profile (B,A) becomes α+1
2 for both players. We see then, that A remains a strictly

dominant strategy for Player 2 and B becomes a strictly dominant action for Player 1. The only

equilibrium is the action profile (B,A), resulting in expected sender utility α + 1. Therefore,

PoS(Pub:FI) = 2+ǫ
α+1 , equaling the price of anarchy. If α → 1, the PoS ratio tends to 1, and

α → ∞ with a fixed ǫ makes the PoS ratio continuously tend to 0. Setting α = 1 + ǫ gives a

trivial case where the PoS and PoA are both 1. Thus, the ratio achieves all possible values within

(0, 1].

5.2 Tightness of the Lower-Bound for PoS(Pri:Pub)

The Robber’s Game. As a means of illustrating our constructed game, consider two robbers

robbing a bank. They have triggered the alarm, and are pressed for time. As they enter the

vault, they have to make a decision. In the vault are two safes, and a huge pile of cash. There

are three options: attempt to crack Safe 1 (action S1), Safe 2 (action S2), or simply take as
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much cash as they can carry (action C), worth α. In order to protect the bank’s valuable items,

one of the safes is a decoy safe, and is empty. Inside the other safe are two objects: a gold bar

worth α+ ǫ, where 1 ≥ α > ǫ > 0, and an extremely delicate but valuable crystal worth 1. The

two robbers (players) have very different skill sets. Player 1 (P1) is a lock picking expert, and

Player 2 (P2) is a demolitions expert. The players’ payoffs equal whatever they individually

steal from the vault. Only P2 is capable of carrying the crystal without breaking it. If P1 cracks

the safe using his lockpicking, P2 can take the crystal on the way out, leaving P1 with the gold

bar. However, if P2 cracks the safe, the crystal will be destroyed due to his explosions, leaving

him only the gold bar. In addition, if both players try to crack the same safe, they get in each

others’ way and are forced to leave with nothing.

P2
S1 C S2

S1 (0, 0) (0, α) (0, α + ǫ)
P1 C (α, 0) (α,α) (α,α + ǫ)

S2 (α + ǫ, 1) (α + ǫ, 1) (0, 0)

θ1

P2
S1 C S2

S1 (0, 0) (α+ ǫ, 1) (α+ ǫ, 1)
P1 C (α,α + ǫ) (α,α) (α, 0)

S2 (0, α + ǫ) (0, α) (0, 0)

θ2

Figure 5: Payoffs of the robber’s game achieving tight PoS(Pri:Pub); each state occurs with
probability 0.5.

Concretely, the payoff matrix for the aforementioned game is in the above tables. At θ1, safe

1 is empty, and at θ2, safe 2 is empty. Note that θ2 simply exchanges the payoffs of strategies S1

and S2 symmetrically for both players. A-priori, both robbers do not know the state and share

the common uniform random prior. The sender is a heist leader and knows which safe is which.

The sender gets to pocket a cut of the total haul, so naturally she is interested in maximizing

the total utility. In public signaling, both robbers use the same radio to communicate with the

sender, but in private signaling each player has his own communication radio.

We first calculate the PoA for the game at each state. W.l.o.g., we consider equilibria for

state θ1 as θ2 is symmetric. Since action C dominates action S1 (i.e., cracking the empty safe)

for both players, without loss of generality we will assume both players do not play action S1

in our following analysis. It is easy to see that (S2, C) and (C,S2)) are the only two pure

Nash equilibria after excluding action S1. We now consider mixed equilibrium in this game.

Note that since both players have only two actions, both players must randomize in any mixed

equilibrium. Let λ1, λ2 ∈ (0, 1) denote the probability that player 1 and 2 play C, respectively.

We have λ2(α + ǫ) = α since player 1’s both actions must be equally good, and similarly

λ1α+ (1−λ1) = (α+ ǫ)λ1. This implies λ1 = 1/(1+ ǫ) and λ2 = α/(α+ ǫ). The total expected

payoff of this mixed strategy equilibrium is α+(α+ ǫ)/(1+ ǫ), which is the smallest equilibrium

total payoff. The largest social payoff is however α + ǫ + 1. Therefore, the PoA of this game is
2α+ǫ+αǫ

(1+α+ǫ)(1+ǫ) .

We now show that the optimal public signalling scheme is to reveal full information, assuming

worst-case equilibrium selection. We prove this by arguing that for any public signal with
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posterior probability p ∈ [0, 1] of state θ1, the sender’s utility is at most U0 = α+(α+ ǫ)/(1+ ǫ)

in the worst equilibrium, which is the sender utility of full information revelation. This follows

a case analysis, depending on whether p is between ǫ
α+ǫ and α

α+ǫ , greater than or equal to α
α+ǫ ,

or less than or equal to ǫ
α+ǫ . By cases:

1. When p(α+ ǫ) < α and (α+ ǫ)(1− p) < α, i.e., ǫ
α+ǫ < p < α

α+ǫ (recall that our parameter

choice satisfies α > ǫ). In this case, for P1, the utility α of the safer action C is strictly

larger than the best possible expected utility (α+ ǫ)(1− p) of taking action S1 and larger

than the best possible expected utility (α + ǫ)p of taking action S2 as well. Given that

P1 will always take C, P2 strictly prefers C as well as his utility (α + ǫ)(1 − p) for

S1 and utility (α + ǫ)p for S2 are both smaller. Therefore, both players taking action

C is the unique equilibrium, leading to sender utility 2α which is less than U0 since

U0 > α+ (α+ ǫα)/(1 + ǫ) = 2α.

2. When p(α+ ǫ) ≥ α. In this case, state θ1 is very likely and action S1 is strictly dominated

by action C for P1 and thus will not be taken by P1. We show that there exists a mixed

strategy that has sender utility worse than U0. In particular, consider the following mixed

strategies: (1) P1 chooses action C with probability pC = p+α(1−p)
ǫp+p and action S2 with

remaining probability 1 − pC ; (2) P2 chooses action C with probability qC = α
(α+ǫ)p and

action S2 with remaining probability 1 − qC . We claim that this is a mixed strategy

equilibrium. In particular, both action C and S2 have expected utility α to P1 and both

action C and S2 have expected utility pC(α + ǫ)p. Therefore, the sender’s utility at the

worst mixed equilibrium is at most

α+
p+ α(1− p)

ǫp+ p
(α+ ǫ)p = α+

α+ ǫ

ǫ+ 1
[p+ α(1 − p)]

≤ α+
α+ ǫ

ǫ+ 1
= U0.

3. When (1 − p)(α + ǫ) ≥ α, i.e. p ≤ ǫ
α+ǫ . This case is symmetric to Case 2, and thus has

the same conclusion.

Finally, we argue that the optimal private scheme results in the optimal social outcome.

Consider the private scheme that reveals no information to Player 2 but full information to

Player 1. Given no information, Player 2 has a strictly dominant action C since ǫ < α. With

full information, Player 1 will always open the non-empty safe. This leads to the optimal

outcome and sender utility 1 + α + ǫ. Therefore, the PoS(Pri:Pub) for this game equals the

PoA = 2α+ǫ+αǫ
(1+α+ǫ)(1+ǫ) . We see that when α = 1 and ǫ → 0, the PoA tends to 1; when α → 0 and

ǫ → 0, the PoA tends to 0. When α = 1 and ǫ = 0, we have a trivial case, with PoA and PoS 1.

Thus its ratio takes any value within (0, 1].
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5.3 Tightness of the Lower-Bound for PoS(exP:Pri)

Finally, for any r ∈ (0, 1], we show the tightness of PoS(exP:Pri). Consider the same two

robbers, robbing the same bank. However, the bank has now upgraded its anti-theft counter-

measures. Instead of a decoy safe, there is now an entire decoy vault. Naturally, any robber who

goes into it will leave empty-handed. In the real vault, there is again a large pile of cash, but

now (only) one safe. A robber can choose to take cash for a guaranteed payoff (α+ ǫ for Player

1, α for Player 2). The safe contains the same fragile, valuable crystal as in the previous section,

but this time, no gold bar. If both players attempt to crack the safe, they get in each others’

way and will fail. After cracking the safe, each player has enough time to take cash instead of

the contents of the safe if they choose. We assume 1 ≥ α > ǫ ≥ 0 and α + ǫ < 1. If Player 2

attempts to take the cash, and Player 1 cracks the safe, Player 2 can take the crystal on the way

out, instead of the cash. However, if Player 2 does not go into the correct vault, he will leave

with nothing. The detailed payoff is as in the following table. Here, θ1 corresponds to the first

vault being the decoy one, whereas θ2 corresponds to the second vault being empty. Each state

occurs with equal probability 0.5. The sender as the heist leader knows which vault is empty.

P2
C1 S1 C2 S2

P1

C1 (0, 0) (0, 0) (0, ǫ) (0, ǫ)
S1 (0, 0) (0, 0) (0, α) (0, α)
C2 (α+ ǫ, 0) (α+ ǫ, 0) (α+ ǫ, α) (α+ ǫ, α)
S2 (α, 0) (α, 0) (α, 1) (0, 0)

θ1

P2
C1 S1 C2 S2

P1

C1 (α+ ǫ, α) (α+ ǫ, α) (α+ ǫ, 0) (α+ ǫ, 0)
S1 (α, 1) (0, 0) (α, 0) (α, 0)
C2 (0, α) (0, α) (0, 0) (0, 0)
S2 (0, α) (0, α) (0, 0) (0, 0)

θ2

Figure 6: Payoffs of the robber’s game variant with tight PoS(exP:Pri); each state occurs with
probability 0.5.

We first calculate the PoA of each game. For the game at state θ1, it is easy to see that action

C2 strictly dominates all other actions for Player 1. This leads to (C2, C2) and (C2, S2) be the

two unique NEs and the total payoff of any equilibrium is (α+ ǫ) + α = 2α+ ǫ. The maximum

total payoff however is α + 1, under action profile (S2, C2). Similar analysis holds for state θ2.

The PoA for each game is thus (2α+ ǫ)/(1 + α) (recall α+ ǫ < 1 in our game).

We now argue that an optimal private scheme is to reveal full information. Crucially, Player

1’s strictly dominant action is to take C1 or C2, whichever is more likely to get the α + ǫ cash
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amount in the posterior distribution of his private signal. Given this, Player 2’s optimal action

is to choose C1/S1 or C2/S2, whichever is more likely to get the α payoff (from cash or from

opening the safe) in the posterior distribution of his private signal. Consequently, any partial

information will lead to Player 1 utility at most α + ǫ and Player 2 utility at most α. This

renders full information revelation optimal, leading to total player utility 2α+ ǫ.

Finally, we show that an ex-ante signaling scheme induces the optimal outcome. The scheme

simply recommends (S2, C2) at state θ1 and (S1, C1) at state θ2. This satisfies the ex-ante

obedience constraint (3) because: (1) if Player 1 opts out and acts according to his prior belief,

he gets expected utility at most 1
2(α+ ǫ), which is strictly less than his utility α in the scheme;

(2) Player 2 gets utility 1 in the scheme and certainly does not want to opt out. Therefore, the

PoS(exP:Pri) ratio in this game equals precisely the PoA of each game 2α+ǫ
1+α . This ratio tends

to 1 as α + ǫ → 1 and tends to 0 as α, ǫ → 0+. If α + ǫ = 1, the PoA and PoS(exP:Pri) are

trivially equal to 1. Therefore, the ratio takes any value r ∈ (0, 1].

6 Discussions and Future Work

In this paper, we initiate and formalize the concept of the power of signaling (PoS). In the general

classes of cost-minimization and payoff-maximization games, we show that the PoS is inherently

related to, in fact precisely characterized by, the price of anarchy (PoA).

There are many possibilities for future research. In our analysis, we use the full informa-

tion scheme (FI) as the benchmark, since the no information scheme (NI) will lead to infinite

bound. However, another natural and stronger benchmark is the better of these two schemes FI,

NI. With such a stronger benchmark, the power of signaling will not increase. One interesting

question is whether we will have strictly less power of signaling when compared to this strong

benchmark. We observe that positive answers to this characterization question will have inter-

esting algorithmic implications. For example, even restricting to non-atomic routing games with

linear latency functions, if one can show that PoS(Pub:max{FI,NI}) = r for some r < 4/3, this

would imply that the better between FI and NI — which certainly can be computed efficiently

— will serve as an r-approximation for optimal public signaling. However, it is proved in [2] that

it is NP-hard to approximate optimal public signaling for this setting to be within a ratio better

than 4/3 in this setting. This shows that for non-atomic routing with linear latency functions,

even PoS(Pub:max{FI,NI}) is strictly smaller than the PoA ratio 4/3, it will be NP-hard to

prove this conclusion since any proof implies an efficient approximation algorithm with ratio

strictly better than 4/3.

The above discussion considers stronger benchmark schemes. Another direction is to study

the power of signaling for more restricted classes of signaling schemes, such as schemes with

limited communication power [12] or schemes with costly communication [17]? For these classes

of schemes, the power of signaling will also decrease. It is interesting to understand how much

these restrictions limit the power of signaling. On the other hand, the sender’s objective con-
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sidered in this paper is the total social welfare. In many applications of signaling, the sender’s

objective may be different from the welfare, e.g., revenue as in auctions. In this case, tools be-

yond the price of anarchy may be needed since PoA mainly concerns welfare. It is an intriguing

open direction to characterize the power of signaling in these settings.
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A PoS w.r.t the No Information (NI) Benchmark

In the main body of our paper, we choose full information (FI) as our benchmark scheme. One

might wonder what happens if the no information scheme is used instead. It turns out that no

information (NI) may lead to very bad social welfare, and examples are fairly easy to construct.

Massicot and Langbort gave a Bayesian cost-minimization game with PoA = 4/3 for each game

— more concretely, a non-atomic routing game example with affine latency function — such

that PoS(Pub:NI)→ ∞ [26].

We now exhibit a simple reward-maximization game with PoA = 1 but PoS(Pub:NI) → 0.

Consider a (trivial) game with n actions A1, A2, A3, ..., An and a single player. There are n

equally likely states of nature, with each state of nature θi gives utility 1 to action Ai and 0

utility to all other actions. The price of anarchy of this game is trivially 1, since there is only one

reward-maximizing player, and full information as the optimal public scheme achieves optimal

welfare 1. However, in the case of no information, the player can only get expected utility 1
n .

As n → ∞, PoS(Pub:NI)→ 0.

B Non-tightness of PoS in “Reverse” Routing

When proving the tightness for payoff-maximization games, a very natural first attempt is,

perhaps, to convert the previously constructed cost-minimization routing games into payoff-

maximization games by flipping the sign of cost functions and adding a large constant to make

it positive. One example by reversing our game constructed for the tightness of PoS(Pri:Pub)

is depicted in Figure 7. That is, any edge with cost function ce(x) in our original construction

can be changed to instead having payoff N − ce(x) for large positive constant N . Clearly, this

is a valid payoff-maximization game, which we term “reverse” routing game for convenience.

s t

N - 2

N − 1

N − xα

Figure 7: A reverse routing example

We argue this natural adaptation of our previous routing game constructions in this way

does not produce an example with, e.g., tight PoS(Pri:Pub) ratio. This is why we must turn

to new constructions of payoff-maximization games. There are two reasons. First, this adaption

cannot lead to any price of anarchy ratio within (0, 1). In particular, it can be verified that

the PoA of the game in Figure 7 is at least 1/2 since N ≥ 2. The second major reason is that

optimal routes in the standard cost-minimization routing game may not be optimal any more in

its natural adaption to the reward-maximization situation. For example, in cost minimization,

one never wants to route through a cycle but in its reward maximization variant, we would like

to route through a cycle as much as possible to collect rewards (such examples are fairly easy

to construct).

20


	1 Introduction
	2 Preliminaries
	2.1 Cost-Minimization/Payoff-Maximization Games
	2.2  Signaling Schemes and Equilibrium Concepts

	3 The Power of Signaling (PoS)
	4 PoS in Cost-Minimization Games
	4.1 A Simultaneous Proof of all the PoS Upper Bounds
	4.2 Tightness of the Upper-Bound for PoS(Pub:FI)
	4.3 Tightness of the Upper-Bound for PoS(Pri:Pub)
	4.4 Tightness of the Upper-Bound for PoS(exP:Pri)

	5 PoS in Payoff-Maximization Games
	5.1 Tightness of the Lower-Bound for PoS(Pub:FI) 
	5.2 Tightness of the Lower-Bound for PoS(Pri:Pub)
	5.3 Tightness of the Lower-Bound for PoS(exP:Pri)

	6 Discussions and Future Work
	A PoS w.r.t the No Information (NI) Benchmark
	B Non-tightness of PoS in ``Reverse'' Routing

