
Safe Distributional Reinforcement Learning

Jainyi Zhang1 Paul Weng1,2

1UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai, China
2Department of Automation, Shanghai Jiao Tong University, Shanghai, China

Abstract

Safety in reinforcement learning (RL) is a key prop-
erty in both training and execution in many do-
mains such as autonomous driving or finance. In
this paper, we formalize it with a constrained RL
formulation in the distributional RL setting. Our
general model accepts various definitions of safety
(e.g., bounds on expected performance, CVaR, vari-
ance, or probability of reaching bad states). To
ensure safety during learning, we extend a safe pol-
icy optimization method to solve our problem. The
distributional RL perspective leads to a more effi-
cient algorithm while additionally catering for nat-
ural safe constraints. We empirically validate our
propositions on artificial and real domains against
appropriate state-of-the-art safe RL algorithms.

1 INTRODUCTION

Reinforcement learning (RL) has shown great promise in
various applications [Silver et al., 2017, Jin, 2017]. As such
techniques start to be deployed in real applications, safety
in RL [Garcia and Fernandez, 2015] starts to be recognized
as a key consideration both during learning, but also dur-
ing execution after training. Indeed, in many domains from
medical applications to autonomous driving to finance, the
actions chosen by an RL agent can have disastrous conse-
quences and therefore the corresponding risks need to be
controlled both during training, but also during execution.

While traditional RL does not take safety into account, re-
cent work has started to studied it more actively. Safety takes
various definitions in the literature. In its simplest sense, it
means avoiding bad states [Geibel and Wysotzky, 2005], but
it can take more general meaning such as decision-theoretic
risk aversion [Borkar, 2010], or risk constraints [Prashanth
and Ghavamzadeh, 2016], satisfaction of logic specifica-
tions [Alshiekh et al., 2018], but also simple bounds on

expected cumulated costs [Yu et al., 2019].

For a given definition of safety, one may want to learn
a policy that satisfies it, without constraining the training
process. Such approach would provide a safe policy for
deployment after training. In contrast, recent work in safe
RL aims at enforcing safety during learning as well, which
is a difficult task as the RL agent needs to explore.

This paper follows this latter trend and safety is formulated
as the satisfaction of a set of general constraints on distribu-
tions of costs or rewards. Thus, a safe policy is defined as
a policy that respects some constraints in expectation or in
probability. Our goal is to learn among safe policies one that
optimizes the usual expected discounted sum of rewards.
Furthermore, we also require safe learning, i.e., the safety
constraints shall be satisfied during training as well.

To that aim, we first propose a general framework that ac-
cepts various safety formulations from bounds on CVaR to
variance, to probability of reaching bad states. This general
framework is made amenable by formulating the problem in
the distributional RL setting, where distributions of returns
are learned in contrast to their expectations. Based on this
general distributional formulation, we extend an existing
safe RL algorithm, Interior-Point Policy Optimization (IPO)
[Liu et al., 2020], to the distributional setting, for which we
formulate a performance bound.

Contributions Our contributions are threefold: (1) We
propose a general framework for safe RL where safety is
expressed as the satisfaction of risk constraints, which is
enforced during and after training. A risk constraint can be
expressed as any (sub)differentiable function of a random
variable representing a cumulative reward or cost. (2) In
order to obtain a practical algorithm, we formulate our prob-
lem and solution method in the distributional RL setting.
(3) Our proposition, called SDPO, is empirically validated
on multiple domains with various risk constraints against
relevant state-of-the-art algorithms.

Submitted to the 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021).

ar
X

iv
:2

10
2.

13
44

6v
1

 [
cs

.L
G

]
 2

6
Fe

b
20

21

mailto:Jianyi Zhang <zhangjy97@sjtu.edu.cn>?Subject=Safe Distributional Reinforcement Learning

Algorithm PD CPO IPO PCPO SDPO

Expectation 3 3 3 3 3

Variance 3 7 7 7 3

CVaR 3 7 7 7 3

(Sub)differentiable fun. 7 7 7 7 3

Safe learning 7 3 3 3 3

Safe execution 3 3 3 3 3

Table 1: Summary of related algorithms: which constraints
are accepted, whether safety is guaranteed during learn-
ing/execution. PD (primal-dual) actually corresponds to sev-
eral algorithms.

2 RELATED WORK

Safe RL is becoming an important research direction in RL
[Garcia and Fernandez, 2015]. In this paper, we distinguish
three main non-exclusive aspects for safe RL: policy safety,
algorithmic safety, and exploration safety in exploration.

Policy safety corresponds to the goal of learning a safe pol-
icy such that its execution would avoid/limit the occurrence
of bad outcomes (e.g., probability of reaching bad states
or bound on performance). Safety can be modeled as ad-
ditional constraints or penalization. In that sense, safe RL
is related to risk-sensitive RL [Borkar, 2010, Chow and
Ghavamzadeh, 2014, Chow et al., 2015] where the goal is
to learn a policy that optimizes a risk-sensitive objective
function, constrained RL [Achiam et al., 2017, Tessler et al.,
2019, Miryoosefi et al., 2019, Liu et al., 2020] where the
goal is to learn a policy that optimizes some constraints, and
risk-constrained RL [Geibel and Wysotzky, 2005, Borkar
and Jain, 2014, Prashanth and Ghavamzadeh, 2016, Chow
et al., 2017, Brazdil et al., 2020], which in some sense com-
bines the previous settings. The works in those three areas,
with a few exceptions (CPO [Achiam et al., 2017], IPO [Liu
et al., 2020], PCPO [Yang et al., 2020]), do not provide
any safety guarantee during learning. They are based on a
primal-dual approach (PD). For the exceptions, they can
only accept simple constraints on expected discounted total
costs. Notably, our algorithm, called Safe Distributional Pol-
icy Optimization (SDPO), builds on IPO [Liu et al., 2020]
and extends it to the distributional RL setting, which then
allows the formulation of sophisticated constraints. See Ta-
ble 1 for a summary.

Algorithmic safety corresponds to the idea that running a
safe RL algorithm should also guarantee some safety prop-
erty, e.g., continuous policy improvement [Pirotta et al.,
2013], convergence to stationary point [Yu et al., 2019],
satisfaction of logic specifications [Alshiekh et al., 2018],
satisfaction of constraints [Achiam et al., 2017, Yang et al.,
2020] during learning. However, none of those propositions
can take into account sophisticated safety constraints (e.g.,
on risk measure).

Exploration safety focuses on an important aspect of safe
RL: the exploration problem during learning in order to
limit/avoid selecting dangerous actions.. In this context,
safety is generally modeled as avoiding bad states. One
main line of work [Turchetta et al., 2016, Berkenkamp et al.,
2017, Wachi et al., 2018, Cheng et al., 2019] tries to pre-
vent the choice of a bad action by learning a model. Other
directions have been explored, for instance, by using a veri-
fication method [Fulton and Platzer, 2018] or by correcting
a chosen action [Dalal et al., 2018]. However, this type of
approaches requires the assumption that the environment is
deterministic.

Although research has been active in safe RL, to the best
of our knowledge, no efficient algorithm has been proposed
for the general framework that we propose. In particular,
our proposition can learn a risk-constrained policy while en-
suring the satisfaction of the risk constraint during learning.
Our proposition is based on distributional RL [Bellemare
et al., 2017], which has demonstrated that estimating distri-
butions of returns instead of their expectations can ensure
better overall performance of RL algorithms. Most work
[Dabney et al., 2018, Yang et al., 2019] in this area focuses
on value-based methods, extending mostly the DQN algo-
rithm [Mnih et al., 2015]. However, one recent work has
also investigated the extension of the distributional setting
to policy optimization [Barth-Maron et al., 2018]. Our work
is based on the IQN algorithm [Dabney et al., 2018] in-
stead of more recent propositions (e.g., [Yang et al., 2019])
because of its simplicity and because it perfectly fits our
purposes. Note that in IQN, the authors consider optimizing
a risk-sensitive objective function, but they do not consider
constraints, as we do.

3 BACKGROUND

In this section, we present the notations, recall the definition
of a Markov Decision Process (MDP) as well as its exten-
sion to Constrained Markov Decision Process (CMDP), and
review the notions (e.g., CVaR) and the related deep RL
algorithms, which we use to formulate our method.

Notations For any set X , ∆(X) denotes the set of probabil-
ity distributions (or densities if X is continuous) over X . For
any function f : Y → ∆(X) and any (x,y) ∈ X ×Y , f (x | y)
denotes the probability (or density value if X is continuous)
of obtaining x according to f (y). For any n ∈ N, [n] denotes
{1,2, . . . ,n}. Vectors (resp. matrix) will be denoted in bold
lowercase (resp. uppercase) with their components in normal
font face with indices. For instance, vvv = (v1, . . . ,vn) ∈ Rn

or MMM = (mi j)i∈[n], j∈[m] ∈ Rn×m.

MDP Model A Markov Decision Process (MDP) [Sutton
and Barto, 2018] is defined as a tuple (S ,A ,P,r,µµµ,γ),
where S is a set of states, A is a set of actions, P :

2

S ×A → ∆(S) is a transition function, r : S ×A → R
is a reward function, µµµ ∈ ∆(S) is a distribution over initial
states, and γ ∈ [0,1) is a discount factor. In this model, a
policy π : S → ∆(A) is defined as a mapping from states
to distributions over actions. We also use notation πθθθ to
emphasize that the policy is parameterized by θθθ (e.g., pa-
rameters of neural network). In the remaining, we identify
πθθθ to its parameter θθθ for ease of notation. The usual goal
in an MDP is to search for a policy that maximizes the
expected discounted total reward:

J(θθθ) = Eµµµ,P,πθθθ
[∑∞

t=0 γ tr(st ,at)] (1)

where Eµµµ,P,πθθθ
is the expectation with respect to the distri-

bution µµµ , the transition function P, and πθθθ . We define the
(state) value function of a policy πθθθ for state s as:

V θθθ (s) = EP,πθθθ
[∑∞

t=0 γ tr(st ,at)|s0 = s] (2)

where EP,πθθθ
is the expectation with respect to the transition

function P and πθθθ . The (action) value function is defined as
follows:

Qθθθ (s,a) = EP,πθθθ
[∑∞

t=0 γ tr(st ,at)|s0 = s,a0 = a] (3)

and the advantage function is defined as: Aθθθ (s,a) =
Qθθθ (s,a)−V θθθ (s). As there is no risk of ambiguity, to avoid
clutter we drop µµµ and P in the notation of the expectation
from now on.

Reinforcement learning (RL) is based on MDP, but in RL,
the transition and reward functions are not assumed to be
known. Thus, in (online) RL, an optimal policy needs to be
learned by trial and error.

CMDP Model The MDP model can be extended to the
Constrained MDP (CMDP) setting [Altman, 1999] in order
to handle constraints. In a CMDP, m cost functions ci : S ×
A →R for i ∈ [m] are introduced in addition to the original
rewards. For each cost function ci, the corresponding value
functions can be defined. They are denoted with a subscript,
e.g., Jci , Vci , or Qci . For a CMDP, the goal is to find a policy
that maximizes the expected discounted total reward while
satisfying constraints on the expected costs Jci(θθθ):

max
θθθ

J(θθθ) s.t. Jci(θθθ)≤ di ∀i ∈ [m], (4)

where ddd = (d)i∈[m] ∈ Rm is a fixed vector constraint bound.

Proximal Policy Optimization The family of policy gra-
dient methods constitutes the standard approach for tackling
an RL problem when considering parametrized policies.
Such a method iteratively updates a policy parameter in the
direction of a gradient given by [Sutton and Barto, 2018]:

∇θθθ J(θθθ) = E(s,a)∼dddπ
θθθ [Aθθθ (s,a)∇θθθ logπθθθ (a | s)]

where the expectation is taken with the respect to the state-
action visitation distribution of πθθθ . One issue in applying

a policy gradient method is the difficulty of estimating Aθθθ

online. This issue motivates the use of an actor-critic scheme
where an actor (πθθθ) and a critic (e.g., Aθθθ or V θθθ depending
on the specific algorithm) are simultaneously learned. Learn-
ing the value function can help the policy update, such as
reducing the gradient variance.

Proximal Policy Optimization (PPO) [Schulman et al., 2017]
is a state-of-the-art actor-critic algorithm, which optimizes
instead a clipped surrogate objective function JPPO(θθθ) de-
fined by:

∑
∞
t=0 min(ωt(θθθ)Aθ̄θθ (st ,at),clip(ωt(θθθ),ε)Aθ̄θθ (st ,at)), (5)

where θ̄θθ is the current policy parameter, ωt(θθθ) =
πθθθ (at |st)
π

θ̄θθ
(at |st)

,
and clip(·,ε) is the function to clip between [1− ε,1+ ε].
This surrogate function was motivated as an approximation
of that used in TRPO [Schulman et al., 2015], which was
introduced to ensure monotonic improvement after a policy
parameter update. Although PPO is more heuristic than
TRPO, its advantages are its simplicity and lower sample
complexity.

Distributional Reinforcement Learning The key idea in
distributional RL [Bellemare et al., 2017] is to learn a ran-
dom variable to represent the discounted return ZZZθθθ (s,a) =
∑

∞
t=0 γ trrrt where rrrt is the random variable representing the

immediate reward received at time step t when applying
action a in state s and policy πθθθ thereafter. In contrast, stan-
dard RL algorithms directly estimate the expectation of
ZZZθθθ (s,a), since Qθθθ (s,a) = EZZZθθθ [ZZZθθθ (s,a)] where the expecta-
tion is with respect to the distribution of ZZZθθθ (s,a).

Recall that any real random variable Z can be represented by
its cumulative distribution denoted FZ(z)=P(Z≤ z)∈ [0,1],
or equivalently by its quantile function (inverse cumula-
tive distribution) denoted F−1

Z (p) = inf{z ∈ R | p≤ FZ(z)}
for any p ∈ [0,1]. For ease of notation, Zp denotes the p-
quantile F−1

Z (p). In the Implicit Quantile Network (IQN)
algorithm, Dabney et al. [2018] proposed to approximate
the quantile function of ZZZ(s,a) with a neural network and
to learn it using quantile regression [Koenker, 2005].

Concretely, the quantile function of ZZZ(s,a) can be learned as
follows. Denote ẐZZ(s,a) the approximated random variable
whose quantile function is given by a neural network Ψ(s,τ),
which takes as input a state s and a probability τ ∈ [0,1] and
returns the corresponding τ-quantile ẐZZτ(s,a) for each action
a. After observing a transition (s,a,r,s′), Ψ can be trained by
sampling 2N values τττ = (τ1, . . . ,τN) and τττ ′ = (τ ′1, . . . ,τ

′
N)

with the uniform distribution on [0,1]. By inverse transform
sampling, sampling τττ amount to sampling N values from
ẐZZ(s,a) corresponding to ẐZZτ1(s,a), . . . , ẐZZτN (s,a)), and simi-
larly for τττ ′ and sampling from ẐZZ(s′,π(s′)) where π is the
current policy. Those samples define N2 TD errors in the
distributional setting:

δi j = r+ γẐZZτ ′j
(s′,π(s′))− ẐZZτi(s,a) (6)

3

Following quantile regression, the following loss function
for training the neural network Ψ in (s,a,r,s′) is given by:

LIQN =
1
N

∑i∈[N] ∑ j∈[N] ξ
κ
τi
(δi j) (7)

where for any τ ∈ (0,1], ξ κ
τ (δi j) = |τ− I(δi j < 0)|Lκ (δi j)

κ
is

the quantile Huber loss with threshold κ with Lκ(δ) =
1
2 δ 2

for |δ | ≤ κ or κ(|δ |− 1
2 κ) otherwise.

Interior-Point Policy Optimization In the CMDP set-
ting, Interior-point Policy Optimization (IPO) [Liu et al.,
2020] is a recent RL algorithm to maximize an expected dis-
counted total rewards while satisfying constraints on some
expected discounted total costs. To deal with a constraint,
IPO augments PPO’s objective function with a logarithmic
barrier function applied to it, which provides a smooth ap-
proximation of the indicator function. The constrained prob-
lem then becomes an unconstrained one with an augmented
objective function:

max
θθθ

JIPO(θθθ) = JPPO(θθθ)+∑i∈[m]
ln(di−Jci (θθθ))

η
, (8)

where η is a hyper-parameter. As η tends to ∞, the solution
of (8) tends to that of the original constrained problem. The
objective JIPO is differentiable, therefore, we can apply a
gradient-based optimization method to update the policy.

4 PROBLEM FORMULATION

Let ∆(R) denote the set of real random variables. Therefore,
ZZZ ∈ ∆(R)S denotes a function from states to random vari-
ables. Given an (unknown) CMDP, the problem tackled in
this paper can be expressed as a constrained optimization
problem formulated in the distributional RL setting:

max
θθθ

Es0∼µµµ,ZZZθθθ [ZZZθθθ (s0)] (9)

s.t. ρi(YYY θθθ
i)≤ di ∀i ∈ [m] (10)

where ZZZθθθ (s) corresponds to the return distribution generated
by policy πθθθ from the reward function, for all i ∈ [m], YYY θθθ

i (s)
corresponds to the cumulated cost distribution from cost
function ci, and ρi : ∆(R)S → R is a (sub)differentiable
function. Note that this formulation is strictly more general
than problem (4) thanks to the possibly non-linear functions
ρi’s.

We recall a few common cases for ρi in Table 2. The ex-
pectation is a simple example. For episodic MDPs with
absorbing bad states, another simple example is the prob-
ability of bad states, which is defined like the expectation,
but applied to a undiscounted cost equal to 1 for a bad state
and 0 otherwise. CVaR is a widely-used risk measure in
finance. In this context, the α-CVaR of a portfolio is intu-
itively its expected return in the worst α×100% cases. Here,

ρi Definition

Expectation Es0∼µµµ,YYY [YYY (s0)]
Prob. of bad states Es0∼µµµ,YYY [YYY (s0)]

α-CVaR of rewards Es0∼µµµ [
1
α

∫
α

0 Yζ (s0)dζ]

Variance Es0∼µµµ [EYYY [YYY (s0)
2]−EYYY [YYY (s0)]

2]

Table 2: Common examples for ρi.

we adapted the definition to rewards (instead of costs). Nat-
urally, a CVaR of an additional cost would also be possible.
In contrast to previous methods, our framework can accept
any (sub)differentiable definitions for ρi (e.g., coherent risk
measures).

Note that we chose to take the mean (over initial states)
of the CVaRs instead of the CVaR of the mean. The latter
would have been possible as well, but because CVaR is a
convex risk measure, our definition is an upperbound of the
CVaR of the mean, which means that our formulation is
more conservative and in that sense, safer. The same trick
applies if ρi were defined based on any other coherent risk
measure, of which CVaR is only one instance. Similarly,
for the variance, we use the mean (over initial states) of
variances instead of the other way around. Since the initial
states are sampled in an independent way, the YYY (s0)’s are
independent. This means that our definition upperbounds
the variance of the mean of the YYY (s0)’s, leading to a more
cautious formulation, which is more desirable for safe RL.

In this paper, we define a safe policy as a policy satisfying
constraints (10). Our goal is to learn a policy maximizing
an expected discounted total rewards (9) among all safe
policies (i.e., safe execution). Besides, we require that any
policy used during learning be safe (i.e., safe learning).

The formulation of (9)-(10) in the distributional RL setting
serves two purposes. First, as observed in distributional
RL, estimating the distributions of the cumulated rewards
improves the overall performance. Second, many safety
constraints (10), such as CVaR, become natural and simple
to express in the distributional setting.

5 PROPOSED METHOD

To solve problem (9)-(10) in the safe RL setting, we extend
IPO to the distributional RL setting and combine it with an
adaptation of IQN. Next, we explain the general principle
of our approach, and then discuss some techniques to obtain
a concrete efficient implementation.

4

5.1 GENERAL PRINCIPLE

To adapt IPO, we rewrite the surrogate objective function
used in PPO in the distributional setting:

JPPO(θθθ) =
∞

∑
t=0

min(ωt(θθθ)Eθθθ [ZZZ
θ̄θθ (st ,at)−ZZZθ̄θθ (st)],

clip(ωt(θθθ),ε)Eθθθ [ZZZ
θ̄θθ (st ,at)−ZZZθ̄θθ (st)]). (11)

Problem (9)-(10) can then be tackled by iteratively solving
the following problem with this surrogate function:

max
θθθ

JPPO(θθθ) s.t. ρi(YYY θθθ
i)≤ di ∀i ∈ [m]. (12)

Now, following IPO, using the log barrier function, we
reformulate problem (12) as an unconstrained problem:

max
θθθ

JPPO(θθθ)+ ∑
i∈[m]

ln(di−ρi(YYY θθθ
i))

ηi
. (13)

In contrast to convex optimization [Boyd and Vandenberghe,
2004], we introduce a constraint-dependent hyperparame-
ter ηi to better control the satisfaction of each constraint
separately.

Finally, we propose to solve problem (13) with an actor-
critic architecture where both the actor and the critic are
approximated with neural networks. For the critic, we adapt
the approach proposed for IQN [Dabney et al., 2018] to
learn random returns ZZZ and random cumulated costs YYY i’s.
For the actor, parameter θθθ of policy πθθθ (a|s) is updated in
the direction of the gradient of the objective function defined
in (13):

∇θθθ JPPO(θθθ)− ∑
i∈[m]

1
ηi

∇θθθ ρi(YYY θθθ
i)

di−ρi(YYY θθθ
i)

. (14)

This gradient raises one difficulty regarding the computa-
tion of ∇θθθ ρi(YYY θθθ

i), which corresponds to the gradient of a
critic with respect to the parameters of the actor. When ρi is
linear (i.e., for expectation constraints), the policy gradient
theorem [Sutton et al., 2000] applies and specifies how to
compute ∇θθθ ρi(YYY θθθ

i). However, when ρi is non-linear (i.e.,
for more sophisticated risk constraints), the gradient in (14)
cannot be obtained easily. To solve this issue, we propose a
simple and generic solution, which consists in connecting
the actor network to any critic network with a non-linear ρi
(see Figure 1 for an illustration where only one critic corre-
sponding to non-linear ρi is displayed). Using this construct,
the exact gradient of ρi(YYY θθθ

i) can be computed by automatic
differentiation if ρi is (sub)differentiable and YYY θθθ

i is approx-
imated with a neural network, as we assume. Note that in
previous work, Dabney et al. [2018] who proposed to opti-
mize a risk measure in IQN did not face this gradient issue
because their algorithm is based on DQN [Mnih et al., 2015]
and therefore does not have an actor network. As a side note,

Figure 1: Architecture of SDPO where critic Ψ corresponds
to the objective function and critic Ψi corresponds to con-
straint i. Both critics outputs a distribution.

this construct could be used to deal with a more general
problem than (9)-(10) where a non-linear transformation
is also applied on the objective function. For instance, one
may want to optimize the CVaR of some rewards subject
to some other risk constraints, which is as far as we know
a completely novel problem. We leave this investigation to
future work.

Like any interior point method, an initial feasible (i.e., safe)
solution is needed. This requirement is actually not as strong
as it seems. In many MDPs (or CMDPs), there is a known
safe action for every state. For instance, in navigation prob-
lem, the action of not moving is safe if the current state
is safe. In finance, investing in cash or a risk-free asset is
safe. For many problems, a dummy action that does not
have any effect can be added to define an initial safe action.
More generally, when such a simple safe policy cannot be
defined, an expert could possibly provide this initial safe pol-
icy or it could be obtained by pretraining with an imperfect
simulator.

5.2 TECHNIQUES FOR EFFICIENT
IMPLEMENTATION

In this section, to simplify notations, we do not write the
superscript θθθ for the random variables ZZZ and YYY i’s.

To make our final algorithm more efficient, we propose to
learn ZZZ(s) only, instead of ZZZ(s,a) as it is the usual prac-
tice in distributional RL. This serves two purposes: (1) a
state-dependent distribution is easier to learn, and (2) the ad-
vantage function can be easily estimated from a state value
function alone. Note that for the constraints only YYY i(s) is
needed for any i ∈ [m]. Recall that the two random variables
ZZZ(s) and ZZZ(s,a) are related by the following equation:

ZZZ(s,a) = R(s,a)+ γEs′∼P(·|s,a)[ZZZ(s
′)] (15)

Following IQN, random variable ZZZ(s) is approximated by a
random variable ẐZZ, which is represented by a neural network.
The expectation of ZZZ(s) can then be approximated by that

5

Algorithm 1 SDPO
Require: Constraint bound ddd, Initial policy network πθθθ 0 , Initial

IQN network Ψ0, Hyperparameters ε for PPO clip rate and ηi
for each logarithmic barrier function.

1: for k = 0,1, . . . do
2: B← run policy πθθθ for N trajectories
3: # update the IQN network
4: Sample τ1 < ... < τN from U [0,1]
5: # quantile regression
6: for i, j ∈ [N] do
7: δi j = r+ γẐZZτ ′j

(s′,π(s′))− ẐZZτi(s,a)
8: end for
9: Update Ψk+1 with ∇LIQN (see (7)) using B

10: Update θθθ k+1 with ∇J(θθθ k) defined in (14) using B
11: end for

of ẐZZ(s) with τττ randomly uniformly sampled in [0,1]:

Eθθθ [ZZZ(s)]≈
N

∑
i=1

(τi− τi−1)ẐZZτi(s). (16)

setting τ0 = 0 by convention and assuming 0 < τ1 < τ2 <
.. . < τN < 1.

The exact handling of the constraints depend on the defi-
nition of ρi. As illustrative examples, we explain how they
can be computed for some concrete cases. If ρi is simply
defined as an expectation, it can be dealt with like the objec-
tive function. For CVaR, it can be estimated as follows for a
random variable YYY (s0):

cα(YYY)≈ cα(ŶYY) =
1
α

∑
i|τi≤α

(τi− τi−1)ŶYY τi(s0) (17)

Here, in contrast to the standard expectation (e.g., (16)),
an implementation trick consists in sampling τττ in [0,α]
such as τ1 < τ2 < .. . < τN = α since (17) corresponds to
the expectation conditioned on event “ŶYY ≤ ŶYY α ”. For the
variance, ρi(YYY) can be estimated by:

N

∑
i=1

(τi− τi−1)ŶYY τi(s0)
2−

(
N

∑
i=1

(τi− τi−1)ŶYY τi(s0)

)2

(18)

The pseudo code of our method is shown in Algorithm 1.

5.3 PERFORMANCE GUARANTEE BOUND

For fixed ηηη , solving (13) instead of (12) may incur a per-
formance loss, which can be bounded under natural condi-
tions, which we discuss below. Since this result uses weak
Lagrange duality, we first recall the definition of the La-
grangian of (12):

L (θθθ ,λλλ) = JPPO(θθθ)+ ∑
i∈[m]

λi(di−ρi(YYY θθθ
i))

and its dual function: g(λλλ) =maxθθθ L (θθθ ,λλλ). The following
bound can be proven:

Theorem 1. If θθθ
∗
1 is an optimal solution of (12), θθθ

∗
2 is the

strictly feasible optimal solution of (13) and the unique
stationary point of L (·,λλλ ∗) with λ ∗i = 1

ηi(di−ρi(YYY
θθθ∗2
i))

then:

JPPO(θθθ
∗
1)− JPPO(θθθ

∗
2)≤ ∑

i∈[d]

1
ηi

(19)

Proof. This result generalizes Theorem 1 of [Liu et al.,
2020], whose proof implicitly uses convexity (which does
not hold in deep RL) and follows from the discussion in
page 566 of [Boyd and Vandenberghe, 2004].

We adapt the proof to our more general setting. We have:

JPPO(θθθ
∗
1)≤ g(λλλ ∗) (20)

= JPPO(θθθ
∗
2)+ ∑

i∈[m]

λ
∗
i (di−ρi(YYY

θθθ
∗
2

i)) (21)

= JPPO(θθθ
∗
2)+ ∑

i∈[m]

1
ηi

(22)

Step (20) holds by weak duality because λ ∗i ≥ 0 for all
i∈ [m] (since θθθ

∗
2 is strictly feasible). Step (21) holds because

we have by definition of θθθ
∗
2:

∇θθθ JPPO(θθθ
∗
2)− ∑

i∈[m]

∇θθθ ρi(YYY
θθθ
∗
2

i)

ηi(di−ρi(YYY
θθθ
∗
2

i))
= 0 (23)

which implies that θθθ
∗
2 maximizes L (·,λλλ ∗) since θθθ

∗
2 is as-

sumed to be its unique stationary point. Step (22) holds by
definition of λλλ

∗.

The conditions in this theorem are natural. In order to apply
an interior point method, the constrained problem needs to
be strictly feasible. The condition on the stationarity of θθθ

∗
2

is reasonable and can be controlled by setting ε (used in the
clipping function of JPPO) small enough.

As a direct corollary, this result implies that if (13) could
be solved exactly, the error made by algorithm SDPO is
controllable via setting appropriate ηi’s. Naturally, in the on-
line RL setting, this assumption does not hold perfectly, but
this result still provides some theoretical foundation to our
proposition. In the next section, we validate the algorithm
using various experimental settings.

6 EXPERIMENTAL RESULTS

The experiments are carried out in three different domains
to validate our algorithm: random CMDPs, safety gym, as
well as financial investment. See Appendix A for details
about hyperparameter settings.

Random CMDPs are CMDPs with N states and M actions,
where transition probabilities P(s′ | s,a) are randomly as-
signed with dlnNe positive values for each pair of state-
action, and rewards are sampled from a uniform distribution,

6

(a) rewards (b) constraint

Figure 2: 2(a): Average performance over 10 runs of PPO,
SDPO and PD-CVaR under the random CMDP for N =
1000. 2(b): 0.1-CVaR bounded by 51. Both SDPO and PD-
CVaR converge to the level indicated by the dashed line.

i.e., r(s,a)∼U [0,1]. In the experiments, we set N = 1000
and M = 10. We consider two cases: a bound over the vari-
ance or a bound over the CVaR, both over the distribution
of discounted total rewards.

Safety gym [Ray et al., 2019] includes a set of environments
designed for evaluating safe exploration in RL. They all cor-
respond to navigation problems where an agent (i.e., Point,
Car, Doggo) moves to some random goal positions to per-
form some tasks (i.e., Goal, Button, Push) while avoiding
entering dangerous hazards or bumping into fragile vases.
Each task has two difficulty levels (i.e., 1 or 2). See Ap-
pendix A for more details. For space reasons, we only
present a selection of results in this domain in the main
paper. More experimental results in these Mujoco environ-
ments are shown in Appendix B.

The third domain is the financial stock market. The RL agent
can observe the close prices of the stocks in one day, i.e., the
observation ot = pppt = (1, p1,t , ..., pN,t) for N selected stocks
where the first component corresponds to cash. We further
assume that all transactions are dealt at these prices. The
action of the agent is defined by a portfolio vector, which
corresponds to allocation weights over cash and stocks, i.e.,
at = wwwt+1 = (w0,t+1, ...,wN,t+1), w0 (resp. wi for i ∈ [N]) is
the weight for cash (resp. stock i) and ∑

N
i=0 wi,t = 1. Natu-

rally, for each stock, we want to maximize the profit. Thus,
with reward function rt = ln∑

N
i=0 wi,t

pi,t
pi,t−1

, optimizing the
undiscounted cumulative rewards can maximize the profit.
We set the CVaR boundary d1 = 0 to avoid any possible loss.
Detailed settings of the experiment are listed in Appendix A.

In all our experiments, all the agents are initialized so that
they are in a feasible region at the beginning. In practice,
an initial safe policy can be defined using domain knowl-
edge or by an expert, e.g., in Mujoco domain, the agent can
be initialized to stay and doing nothing. For fairness, the
PPO agent is also initialized with the same safe policy as
all other agents. Two policy gradient algorithms with CVaR
and variance constraints respectively, PD-CVaR [Chow and
Ghavamzadeh, 2014] and PD-VAR, which is modified from

(a) rewards (b) constraint

Figure 3: 3(a): Average performance over 10 runs of PPO,
SDPO and PD-VAR under the random CMDP for N = 1000.
3(b): Variance bounded by 2. Both SDPO and PD-VAR
converge to the level indicated by the dashed line.

Algorithm 2 in [Prashanth and Ghavamzadeh, 2016] are
used as baselines in the first domain. SDPO is compared
with CPO [Achiam et al., 2017], PCPO [Yang et al., 2020],
and IPO [Liu et al., 2020] in the second domain. PPO [Schul-
man et al., 2017] is evaluated on all domains to serve as a
non-safe RL method. Note that in contrast to our architec-
ture SDPO, none of those algorithms can tackle the problem
defined in (9)-(10) in its most general form.

The experiments are designed to evaluate SDPO in a variety
of domains with various risk constraints and to answer the
following questions: (A) How does SDPO compare with
methods based on Lagrangian relaxation? (B) How does
SDPO compare with other safe RL algorithms? Does the
distributional formulation of SDPO help compared to IPO?
(C) How does SDPO perform with multiple constraints
(cumulative cost and probability of reaching a bad states)?
(D) How does SDPO perform on a real domain? How does
the constraint stringency impact the performance of SDPO?

Question (A) To answer (A), we perform some experi-
ments on the first domain, random CMDPs, with either a
constraint on CVaR or a constraint on variance. Both are
based on the rewards. Therefore, the first needs to be lower-
bounded, while the second needs to be upper-bounded. The
confidence level is fixed to α = 0.1 and the bound for CVaR
is set to 51 and that for the variance is set to 2. The bounds
were chosen so that they are not too restrictive.

From the results in Figure 2, as expected, PPO without
constraint achieves the best total rewards and converges
faster than the constrained ones. When the CVaR value is
bounded, PD-CVaR and SDPO both converge to a slightly
worse but safe policy, however SDPO converges faster. From
the results in Figure 3, similar observations can be drawn
for PPO, PD-VAR, and SDPO. With regards to safety, we
can again conclude than SDPO is superior.

Question (B) To answer (B), we perform some experi-
ments on the second domain, Safety gym, which is a much
more difficult domain than random CMDPs. For this domain,

7

(a) rewards (b) constraint

Figure 4: Average performance over 10 runs of PPO, SDPO,
CPO, PCPO and IPO under Point-Goal1. They are bounded
by the dashed line d1 = 25 in 4(b).

we did not evaluate the methods based on Lagrangian relax-
ation: since they do not use a critic, they would not be com-
petitive. In Safety gym, the agent is penalized by receiving a
cost c1 = 1 when touching a fragile vase. With a constraint
on expected total cost ρ1(YYY 1) = Es0∼µµµ,YYY 1 [YYY 1(s0)]≤ d1, we
are able to compare SDPO with other safe RL algorithms
like CPO, PCPO and IPO.

We only show the results for Point-Goal1 in Figure 4. For
other tasks, please refer to Appendix B. According to Fig-
ure 4, SDPO, PCPO and IPO can explore safely, while CPO
cannot satisfy the constraint well. This latter observation
regarding CPO may be surprising since CPO was designed
to solve CMDPs, but similar results were also reported in
previous work [Ray et al., 2019]. Among these three latter
algorithms, SDPO and IPO performs the best. In Figure 4
and in all the Safety-gym environments (see Appendix B),
SDPO dominates IPO in terms of either returns or con-
vergence rates (and sometimes both), which confirms the
positive contribution of the distributional critics.

Question (C) To demonstrate that SDPO can satisfy mul-
tiple constraints, the safety gym environment is used again,
but with a variation. We modify the hazard area to be end
states where an agent receives a cost c2 = 1, and the episode
is terminated. In addition to the previous constraint, another
one is enforced: ρ2(YYY 2) =Es0∼µµµ,YYY 2 [YYY 2(s0)]≤ d2, where YYY 2
is the undiscounted cumulative cost distribution from cost
function c2. Here, we set the bounds: d1 = 10 and d2 = 0.1.

From Figures 5(a) and 5(b), PPO without constraints
achieves much more goals, but at the cost of violating all the
constraints. For constraint ρ2, both SDPO and IPO agents
can avoid entering into hazards during training. For con-
straint ρ1, SDPO converges faster than IPO because of the
adaption to distributional RL.

Question (D) To answer (D), we switch to the finance
domain, where the stock market data of year 2019 is used.
We run SDPO with a constraint on CVaR defined over re-
wards using different confidence levels α . Note that since
the CVaR is defined over rewards, it needs to be lower-

(a) rewards (b) constraints

Figure 5: 5(a): Average performance over 5 runs of PPO,
SDPO and IPO under Point-Goal2. 5(b): Average costs of
PPO, SDPO and IPO under Point-Goal2.

Figure 6: Average performance over 10 runs of PPO and
SDPO with confidence level α = 0.01,0.05,0.1.

bounded. We also run PPO as a baseline to show the perfor-
mance without any constraints.

From Figure 6, all agents manage to make profits. With
tighter constraint on risk (smaller α), the SDPO agent makes
less profit. While PPO does not satisfy the constraint as
expected, the curves for the constraint satisfaction of all
SDPO agents are all similar. We therefore plot their average
directly in Figure 6. PPO without constraint cannot avoid
risk and thus suffers from fluctuation and loss at some time
point. Interestingly, all the SDPO agents eventually perform
better than PPO, which demonstrates that enforcing safety
does not necessarily prevent good performance. Finally,
SDPO with α = 0.1 performs best.

7 CONCLUSION

We presented a general framework for safe RL that encom-
passes many previous propositions. The novelty of our ap-
proach is the exploitation of a distributional RL formulation
that allows us to deal with sophisticated risk constraints
in a natural and efficient way for policy optimization. Our
algorithm, SDPO, is shown to perform well in diverse en-
vironments and is competitive with previous algorithms in
situations when they can be applied. However, SDPO can
cover a larger range of safety formulations.

8

References

J. Achiam, D. Held, and A. Tamar et al. Constrained policy
optimization. In ICML, 2017.

M. Alshiekh, R. Bloem, R. R. Ehlers, B. Könighofer,
S. Niekum, and U. Topcu. Safe reinforcement learning
via shielding. In AAAI, 2018.

E. Altman. Constrained Markov Decision Processes. CRC
Press, 1999.

G. Barth-Maron, M. W Hoffman, and D. et al. Budden.
Distributed distributional deterministic policy gradients.
ICLR, 2018.

M. Bellemare, W. Dabney, and R. Munos. A distributional
perspective on reinforcement learning. ICML, 2017.

F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause.
Safe model-based reinforcement learning with stability
guarantees. In NeurIPS, 2017.

V. Borkar and R. Jain. Risk-constrained Markov decision
processes. IEEE Transactions on Automatic Control, 59
(9):2574–2579, 2014.

V. S. Borkar. Learning algorithms for risk-sensitive control.
In International Symposium on Mathematical Theory of
Networks and Systems, 2010.

S. Boyd and L. Vandenberghe. Convex Optimization. Cam-
bridge university press, 2004.

T. Brazdil, K. Chatterjee, P. Novotny, and J. Vahala. Rein-
forcement learning of risk-constrained policies in Markov
decision processes. AAAI, 2020.

R. Cheng, G. Orosz, R. M Murray, and J. W Burdick. End-to-
end safe reinforcement learning through barrier functions
for safety-critical continuous control tasks. In AAAI,
2019.

Y. Chow and M. Ghavamzadeh. Algorithms for CVaR opti-
mization in MDPs. In NeurIPS, 2014.

Y. Chow, A. Tamar, S. Mannor, and M. Pavone. Risk-
Sensitive and Robust Decision-Making: a CVaR Opti-
mization Approach. In NeurIPS, 2015.

Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone. Risk-
constrained reinforcement learning with percentile risk
criteria. JMLR, 18(1), 2017.

W. Dabney, G. Ostrovski, D. Silver, and R. Munos. Im-
plicit quantile networks for distributional reinforcement
learning. ICML, 2018.

G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru,
and Y. Tassa. Safe exploration in continuous action spaces.
CoRR, 2018.

N. Fulton and A. Platzer. Safe reinforcement learning via
formal methods. In AAAI, 2018.

J. Garcia and F. Fernandez. A comprehensive survey on safe
reinforcement learning. JMLR, 16(1437–1480), 2015.

P. Geibel and F. Wysotzky. Risk-sensitive reinforcement
learning applied to control under constraints. JAIR, 24:
81–108, 2005.

R. Jin. Deep learning at Alibaba. In IJCAI, 2017. ISBN
978-0-9992411-0-3. doi: 10.24963/ijcai.2017/2.

R. Koenker. Quantile Regression. Cambridge university
press, 2005.

Y. Liu, J. Ding, and X. Liu. IPO: Interior-point policy
optimization under constraints. AAAI, 2020.

S. Miryoosefi, K. Brantley, H. Daume III, M. Dudik, and
R. Schapire. Reinforcement learning with convex con-
straints. In NeurIPS, 2019.

V. Mnih, K. Kavukcuoglu, and D. Silver et al. Human-level
control through deep reinforcement learning. Nature,
2015.

M. Pirotta, M. Restelli, A. Pecorino, and D. Calandriello.
Safe policy iteration. In ICML, 2013.

L. Prashanth and M. Ghavamzadeh. Variance-constrained
actor-critic algorithms for discounted and average reward
MDPs. Machine Learning, 2016.

A. Ray, J. Achiam, and D. Amodei. Benchmarking Safe
Exploration in Deep Reinforcement Learning. 2019.

J. Schulman, S. Levine, P. Abbeel, M.I. Jordan, and
P. Moritz. Trust region policy optimization. In ICML,
2015.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov. Proximal policy optimization algorithms.
CoRR, 2017. URL http://arxiv.org/abs/1707.06347.

D. Silver, J. Schrittwieser, and K. Simonyan et al. Mastering
the game of go without human knowledge. Nature, 2017.

R. Sutton and A. G. Barto. Reinforcement learning: An
introduction. MIT press, 2018.

Richard S. Sutton, David McAllester, Satinder Singh, and
Yishay Mansour. Policy gradient methods for reinforce-
ment learning with function approximation. In NeurIPS,
2000.

C. Tessler, D. Mankowitz, and S. Mannor. Reward con-
strained policy optimization. ICLR, 2019.

M. Turchetta, F. Berkenkamp, and A. Krause. Safe explo-
ration in finite Markov decision processes with gaussian
processes. In NeurIPS, 2016.

9

http://arxiv.org/abs/1707.06347

A. Wachi, Y. Sui, Y. Yue, and M. Ono. Safe exploration
and optimization of constrained MDPs using gaussian
processes. In AAAI, 2018.

D. Yang, L. Zhao, Z. Lin, T. Qin, J. Bian, and T. Liu. Fully
parameterized quantile function for distributional rein-
forcement learning. In NeurIPS. 2019.

T. Yang, J. Rosca, K. Narasimhan, and P. Ramadge.
Projection-based constrained policy optimization. In
ICLR, 2020.

M. Yu, Z. Yang, M. Kolar, and Z. Wang. Convergent policy
optimization for safe reinforcement learning. In NeurIPS,
2019.

10

Figure 7: Evaluation of ZZZπθθθ of trained policy over 1000 runs.

A MORE DETAILS ON EXPERIMENTS

A.1 RANDOM CMDP

In the random CMDP domain, we constructed it with N = 1000 states and 10 actions. The number of randomly-chosen
possible successor states is dlnNe= 7. An episode in this CMDP is terminated after 100 time-steps. To achieve the results
in Figures 2 and 3, we trained the agents 5 times for both random seeds 5 and 10. The ADAM optimizer is used. The
hyper-parameters are listed in Table 3.

PPO SDPO PD-CVaR PD-VAR

discount factor γ 0.99 0.99 0.99 0.99
batch size 1000 1000 1000 1000

learning rate (actor) 1e-4 1e-4 1e-4 1e-4
learning rate (critic) 1e-3 1e-3 / /

hidden sizes (64,64) (64,64) (64,64) (64,64)
GAE factor λ 0.9 0.9 / /
clip range ε 0.2 0.2 / /

η / 20 / /
quantile atoms N / 128 / /
quantile dimension1 / 256 / /

Table 3: Hyperparameters for experiments on random CMDP.

To evaluate the converged policies in 2(a) with CVaR constraint, we run them for 1000 episodes each. Figure 7 indicates that
PPO without constraint can reach the highest result but suffers from the risk of getting the lowest reward. Both SDPO and
PD-CVaR receives a lower mean reward but much higher CVaR values, which indicates lower risk.

A.2 STOCK TRANSACTION

For the experiment on stock market, we use Quandl1 in Python to load all market data. The trading agent is assumed to
have zero market impact and zero transaction cost. When conducting this experiment, We choose 9 stocks in SP500 (AAPL,
CSCO, DOW, GE, GS, JNJ, JPM, MMM, MSFT). The agents are initialized with a safe policy that always holding cash, and
then trained in a rolling bias in year 2019 to evaluate the offline performance, i.e., at time step t, prices from t−15 to t are
used for training. The shared part of the actor and critic network is implemented as an LSTM network. The hyper-parameters
are listed in Table 4.

A.3 MUJOCO SIMULATOR

For the parameters and other settings of the Point-Goal2 domain we used the default values set in the source code of
Safety-Gym (see line 108 in safety-gym/safety_gym/envs/suite.py). The hyper-parameters are listed in Table 5.

1https://quandl.com
1refer to Equation (4) in [Dabney et al., 2018]

11

https://github.com/openai/safety-gym
https://quandl.com

PPO SDPO

discount factor γ 0.99 0.99
batch size 1280 1280

learning rate (actor) 1e-4 1e-4
learning rate (critic) 1e-3 1e-3

hidden sizes (64,64) (64,64)
GAE factor λ 0.9 0.9
clip range ε 0.1 0.1

η / 60
quantile atoms N / 128
quantile dimension / 256

Table 4: Hyperparameters for experiments on stock transaction.

PPO SDPO IPO

discount factor γ 0.99 0.99 0.99
discount factor for constraints γ1, γ2 1 1 1

batch size 30000 30000 30000
learning rate (actor) 1e-4 1e-4 1e-4
learning rate (critic) 1e-3 1e-3 1e-3
hidden sizes (actor) (256,256) (256,256) (256,256)
hidden sizes (critic) (256,256) (256,256) (256,256)

GAE factor λ 0.9 0.9 0.9
clip range ε 0.1 0.1 0.1

η1 / 40 60
η2 / 60 60

quantile atoms N / 128 /
quantile dimension / 256 /

Table 5: Hyperparameters for experiments on Point-Goal2.

B ADDITIONAL EXPERIMENTS

We further compare our method to Constrained Policy Optimization (CPO) [Achiam et al., 2017] and Projection-based
Constrained Policy Optimization (PCPO) [Yang et al., 2020]. PCPO is a two-step approach. In the first step, the policy
is updated in the direction to improve the objective function in the trust region. In the second step, PCPO projects the
potentially infeasible policy back to the constraint set.

To demonstrate the performance of SDPO, compared with PCPO, IPO and CPO, we conduct the experiment in the safety
gym environment with constraint ρ1. Three tasks, Goal, Button and Push with two levels of difficulties are tested in the
experiments with agent point, car and dpggo. Task Goal is to move the agent to a series of goal positions, while task button
is to press a series of goal buttons, and task push is to move a box to a series of goal positions. For detailed explanation
of these tasks, please refer to [Ray et al., 2019]. The hyper-parameters in the experiment are the same as Table 5, except
η = 30 for SDPO and IPO.

From the results in Figures 8 to 10, SDPO, IPO and PCPO can explore the environment safely, but CPO may failed to learn
a safe policy as the tasks go harder (i.e., with the car agent). In experiments, when the CPO agents violate the constraints,
Equation (14) in [Achiam et al., 2017] failed to purely decrease the constraint value, and thus learn an unsafe policy. For the
other three agents, SDPO converges faster to a slightly better policy than IPO and PCPO. An interesting future work would
be to extend PCPO to the distributional setting as well.

12

(a) rewards, PointGoal-1 (b) constraint, PointGoal-1 (c) rewards, PointGoal-2 (d) constraint, PointGoal-2

(e) rewards, PointButton-1 (f) constraint, PointButton-1 (g) rewards, PointButton-2 (h) constraint, PointButton-2

(i) rewards, PointPush-1 (j) constraint, PointPush-1 (k) rewards, PointPush-2 (l) constraint, PointPush-2

Figure 8: Average performance of the point agent over 10 runs of PPO, SDPO, PCPO and IPO under Safety-Gym. Both
SDPO, PCPO and IPO converge to the level indicated by the dashed line.

13

(a) rewards, CarGoal-1 (b) constraint, CarGoal-1 (c) rewards, CarGoal-2 (d) constraint, CarGoal-2

(e) rewards, CarButton-1 (f) constraint, CarButton-1 (g) rewards, CarButton-2 (h) constraint, CarButton-2

(i) rewards, CarPush-1 (j) constraint, CarPush-1 (k) rewards, CarPush-2 (l) constraint, CarPush-2

Figure 9: Average performance of the car agent over 10 runs of PPO, SDPO, PCPO and IPO under Safety-Gym. Both SDPO,
PCPO and IPO converge to the level indicated by the dashed line.

14

(a) rewards, DoggoGoal-1 (b) constraint, DoggoGoal-1 (c) rewards, DoggoGoal-2 (d) constraint, DoggoGoal-2

(e) rewards, DoggoButton-1 (f) constraint, DoggoButton-1 (g) rewards, DoggoButton-2 (h) constraint, DoggoButton-2

(i) rewards, DoggoPush-1 (j) constraint, DoggoPush-1 (k) rewards, DoggoPush-2 (l) constraint, DoggoPush-2

Figure 10: Average performance of the doggo agent over 10 runs of PPO, SDPO, PCPO and IPO under Safety-Gym. Both
SDPO, PCPO and IPO converge to the level indicated by the dashed line.

15

	1 Introduction
	2 Related Work
	3 Background
	4 Problem Formulation
	5 Proposed Method
	5.1 General Principle
	5.2 Techniques for Efficient Implementation
	5.3 Performance Guarantee Bound

	6 Experimental Results
	7 Conclusion
	A More details on Experiments
	A.1 Random CMDP
	A.2 Stock Transaction
	A.3 Mujoco Simulator

	B Additional Experiments

