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Abstract

Babaio� et al. [BIKK18] introduced the matroid secretary problem in 2007, a natural extension of
the classic single-choice secretary problem to matroids, and conjectured that a constant-competitive
online algorithm exists. �e conjecture still remains open despite substantial partial progress, includ-
ing constant-competitive algorithms for numerous special cases of matroids, and an O(log log rank)-
competitive algorithm in the general case.

Many of these algorithms follow principled frameworks. �e limits of these frameworks are previ-
ously unstudied, and prior work establishes only that a handful of particular algorithms cannot resolve
the matroid secretary conjecture. We initiate the study of impossibility results for frameworks to re-
solve this conjecture. We establish impossibility results for a natural class of greedy algorithms and for
randomized partition algorithms, both of which contain known algorithms that resolve special cases.

1 Introduction

�e problem of �nding a max-weight basis of a matroidM = (V, I)1 is central in the �eld of combinatorial
optimization (see books [Oxl06, Sch03, KV08]). More speci�cally, each element e ∈ V has a weightw(e) ≥
0, and the goal is to �nd the set S ∈ I maximizing w(S) :=

∑
e∈S w(e). Seminal works of Rado, Gale,

and Edmonds establish that the following simple greedy algorithm �nds a max-weight basis of a matroid
(V, I): Initialize A = ∅, then process the elements of V in decreasing order of w(e), adding to A any
element such that A∪ {e} ∈ I [Rad57, Gal68, Edm71]. In fact, if for some (V, I) this algorithm is optimal
for all w(·), then (V, I) must be a matroid.

While simple, this algorithm still requires knowledge of all weights up front. Motivated by applications
to mechanism design and other online problems [HKP04, BIKK08], recent work considered the problem in
an online se�ing: elements are still processed one at a time and are immediately and irrevocably accepted
or rejected upon processing, but an element’s weight remains unknown until the element is processed. In
particular, the algorithm does not have control over the order of elements and therefore cannot run the
simple greedy algorithm.

For a fully adversarial order, it’s folklore that the best algorithm can do no be�er than simply selecting
a random element. Babaio� et al. [BIKK18]2 therefore introduced the Matroid Secretary Problem (MSP),
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1Given a �nite set V and a family of subsets of V called I , we say M = (V, I) is a matroid if it satis�es (i) ∅ ∈ I , (ii)

Hereditary Property (downwards closed): ∀T ⊆ S ⊆ V , set S ∈ I implies T ∈ I , and (iii) Exchange Property: For any S, T ∈ I
where |S| > |T |, there exists some x ∈ S such that T ∪ {x} ∈ I .

2Conference version [BIK07] appeared in 2007.
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where elements arrive in a uniformly random order (while the weight function is still adversarial). �is
formulation extends the classic single-item secretary problem [Dyn63].

Consider an algorithmA for the matroid secretary problem on matroidM. LetOPT be the max-weight
basis ofM under w(·), and let ALG be the set of elements chosen byA (under w(·)). �e following notion
of utility-competitiveness for a matroid secretary algorithm was studied in Babaio� et al. [BIKK18].
De�nition 1 (Utility-Competitive). An algorithm A is α-utility-competitive if E[w(ALG)]/w(OPT) ≥ α,
where the expectation is over the randomness of the arrivals and any internal randomness of algorithm
A.

In the same paper that introduced the matroid secretary problem, Babaio� et al. [BIKK18] conjecture
that there is a constant-utility-competitive algorithm. �e stronger form of the conjecture is that this
constant is 1/e.
Conjecture 2 (Matroid Secretary). �ere is an Ω(1)-utility-competitive algorithm for the matroid secretary
problem.

Despite extensive follow-up work, this conjecture still remains open. Many constant-utility-competitive
algorithms have been proposed for speci�c classes of matroid (see related work in Section 1.3). For gen-
eral matroids, however, the best known algorithms are 1/O(loglog r)-competitive [Lac14, FSZ15] (here, r
denotes the rank of the matroid, which is the size of the largest set in I).

As the only known lower bound, even for general matroids, is the same 1/e from the classic single-
item se�ing, and because Dynkin’s algorithm guarantees a stronger property that the heaviest element is
selected with probability 1/e, the following stronger notion of probability-competitive algorithms has been
also studied [HK17, STV18].
De�nition 3 (Probability-Competitive). An algorithm A is α-probability-competitive if for all i ∈ OPT it
satis�es that P[i ∈ ALG] ≥ α.
Note that probability-competitiveness is a stronger notion than utility-competitiveness, since the former
implies the la�er with the same competitive ratio. Soto et al. [STV18] showed that many (but not all)
existing utility-competitive algorithms can be extended to obtain probability-competitive algorithms. �is
results in the following more ambitious conjecture. Again, the stronger version conjectures that this con-
stant is 1/e.
Conjecture 4. �ere is an Ω(1)-probability-competitive algorithm for the matroid secretary problem.

Progress on both conjectures has been slow. Indeed, even the strong version of Conjecture 4 remains
plausible, while the best utility-competitive algorithms have stalled at 1/O(log log r) [Lac14, FSZ15]. One
thesis motivating our work is that the community currently lacks structure for narrowing a search among
numerous promising approaches. Existing algorithms for special cases indeed follow principled frame-
works, but these frameworks are quite �exible and it remains unknown which (if any) of them might
produce a resolution to either conjecture.

One particularly enticing possibility is that a simple “greedy-like” algorithm might even work. Note
that such algorithms indeed work in the Free-Order model [JSZ13], or for the related Matroid Prophet
Inequality [KW12], or for special cases of the Matroid Secretary Problem [Dyn63, BIKK07]. �ere are
numerous variants of “greedy” algorithms, though. While many particular variants are known to fail on
the same “hat graph” [BIKK18], there is previously no approach to quickly tell whether a novel greedy
variant is already known to fail.

In this work, we rigorously consider two general classes of algorithms, and prove super-constant lower
bounds on what they can achieve for the matroid secretary problem. �is both helps explain why these
types of algorithms have faced di�culty extending beyond the special cases for which they were originally
designed, and helps guide future work towards precisely the variants that merit further exploration.
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1.1 Greedy Algorithms

Since �nding the max-weight basis of matroids without requiring irrevocable commitments can be done
exactly by the simple greedy algorithm, the class of greedy algorithms is a very natural candidate for
solving the Matroid Secretary Problem. We consider a large family of “greedy-like” algorithms. We de�ne
three natural properties that a greedy algorithm might have, and establish that any algorithm satisfying
these properties cannot be constant-utility-competitive (�eorem 6). We postpone formal statements of
the properties until Section 3, but overview them here: (i) the algorithm should reject the �rst T fraction
of elements, (ii) the algorithm at all times stores an independent set I containing all accepted elements
and no elements rejected a�er T , (iii) an element is accepted if and only if it improves the max-weight
basis of I a�er contracting the accepted elements.3 Note that this a general framework rather than a fully-
speci�ed algorithm, since it allows for the algorithm to choose I (it need not be the max-weight basis a�er
contracting the accepted elements, just some independent set).

In Section 3 we overview several existing algorithms that �t this framework, and �eorem 6 uni�es
a proof that none of these algorithms (or many hypothetical ones) can be constant-utility-competitive. Our
lower bound construction is a variant of the well-known “hat graph”, which has been known since [BIKK18]
to be problematic for greedy-like algorithms. So our main contribution is not this construction itself, but
rather a formalization of precisely the class of greedy algorithms for which this graph is problematic.

Main Result 1 (Informal, see �eorem 6). No Greedy algorithm (as per Algorithm 1) is constant-utility-
competitive.

We emphasize that while the hat graph itself is not a novel construction, our proof is quite distinct (and
more involved) from prior work as it must rule out a broad class of algorithms rather than just a single
one.

1.2 Randomized Partition Algorithms

Another class of particularly simple algorithms are randomized partition algorithms:

1. Before looking at any weights, (perhaps randomly) partition all the elements4 into parts Si.
2. Within each part, run Dynkin’s algorithm.
3. Output the union of the selected elements.

Note that these algorithms are allowed to use any randomized partition. �e elegant 1/(2e)-approximation
of Korula and Pal for graphic matroids5 is a randomized partition algorithm [KP09]. �eir algorithm is
utility-competitive, but not probability-competitive. Soto et al. [STV18] recently designed a di�erent con-
stant probability-competitive algorithm for graphic matroids. While their algorithm is still quite elegant, it
is perhaps not quite as simple as randomized partition algorithms. It is also worth noting that algorithms
such as [Lac14, FSZ15] follow a more general framework, where the algorithm in step one looks at the
weights before partitioning and step two is not necessarily Dynkin’s single-choice algorithm (but perhaps
some simple greedy algorithm). �is raises the question whether the novel development beyond [KP09] is
necessary to achieve probability-competitive algorithms? Our second main result answers this question:
no randomized partition algorithm can be constant-probability-competitive (or evenω(n−1/8)-probability-
competitive).

3To rephrase (iii), an element e is accepted i� a�er contracting the accepted elements (not including e), the max-weight basis
of the restricted matroid to I ∪ {e} is heavier than the max-weight basis of the restricted matroid to I (the la�er being exactly
the weight of I since I is independent).

4We consider the known matroid se�ing where the matroid is known but the weights are revealed one-by-one.
5Given a graph with edges E, a graphic matroid (E, I) is de�ned with I consisting of all subsets of edges that do not contain

a cycle.
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Main Result 2 (Informal, see �eorem 18). No Randomized Partition algorithm is constant-probability-
competitive.

Our construction witnessing �eorem 18 is also a graphic matroid, although it is unrelated to the
hat graph (and to the best of our knowledge, novel). Note that our proof cannot be extended to utility-
competitive algorithms since we know [KP09] is a constant-utility-competitive randomized partition al-
gorithm for graphic matroids.

1.3 Related Work and Brief Summary

�ere is a substantial body of work on random-order problems for matroids (the Matroid Secretary Prob-
lem [BIKK18]) and for several other discrete optimization problems; we will not a�empt to overview it
(e.g., see [GS20, Din13]). Here, we will brie�y repeat the most related works.

Our work takes �rst steps towards characterizing classes of algorithms which might resolve the Ma-
troid Secretary Problem. We focus on the simplest classes of algorithms which previously succeeded in
special cases or for related problems, Greedy [JSZ13, KW12] or Randomized Partition [KP09], and study
the limits of these classes.

First, we consider extremely simple greedy algorithms. A speci�c instantiation of this class of algo-
rithms was shown to fail on a now-canonical “hat graph” in [BIKK18], but related algorithms known to
succeed in the Free-Order Model [JSZ13, AKW14], and in the related Matroid Prophet Inequality [KW12].
In addition, Dynkin’s algorithm and the Optimistic algorithm for k-uniform matroids of [BIKK07] �t this
model. Our �eorem 6 shows that no Greedy algorithm is constant-utility-competitive for all matroids.

Second, we consider probability-competitive algorithms, formally considered in [STV18], and related
to the ordinal model considered in [HK17]. Soto et al. [STV18], in particular, develop several probability-
competitive algorithms for core se�ings such as graphic, transversal, and laminar matroids. Our work
asks whether the extremely simple algorithms previously developed in [KP09] can match these stronger
probability-competitive guarantees, and we show in �eorem 18 that the answer is no.

2 Preliminaries

�e Matroid Secretary Problem (MSP) is de�ned as:

1. �ere is a matroidM = (V, I), and weight function w(·) : V → R≥0. MatroidM is fully-known
to the algorithm in advance.6 Function w(·) is initially completely unknown to the algorithm.

2. Initially, the set of accepted elements,A, is empty. Elements of V arrive in a uniformly random order.
When an element i ∈ V arrives, the algorithm learns its weight w(i), and must make an immediate
and irrevocable decision whether or not to accept it (adding it to A). �e algorithm must maintain
A ∈ I at all times.

3. If set A is selected, the algorithm achieves payo�
∑

i∈Aw(i).

We will abuse notation and use w(S) :=
∑

i∈S w(i). Because w(·) is �xed, the o�ine optimum is the
max-weight basis: MWB(M) := arg maxS∈I{w(S)}.7 We will also use standard matroid notation such
as restriction: the matroidM|S is the matroidM restricted to S, and has ground set S and independent

6We are not concerned with computational e�ciency of our algorithms in this work (our lower bounds are unconditional), so
we will not stress about the precise format in which access to the matroid is given. To be concrete, one access model is that the
algorithm has oracle access to I (query a set S and learn whether or not S ∈ I). To the best of our knowledge, most algorithms
previously considered for MSP are polytime given oracle access to I .

7In this work, we assume for simplicity that the max-weight basis is unique. In case of ties, we tie-break by choosing the
lexicographically-earlier basis.
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sets I|S := {T ∩ S | T ∈ I}. We also discuss matroid contractions: the matroidM\ S is the matroidM
contracted by S, and has ground set V \ S and independent sets I \ S := {T | T ∪ S ∈ I}. WhenM is
clear from context, we will also (slightly) abuse notation and write MWB(T ) := MWB(M|T ).

We will later reference Dynkin’s 1/e-probability-competitive algorithm for selecting a single item, i.e.,
a 1-uniform matroid: (1) Reject the �rst T = Binom(n, 1/e) elements and call this the sampling stage. (2)
A�erwards, accept an element i i� it is the heaviest element seen so far.

�eorem 5 ([Dyn63]). Dynkin’s algorithm is 1/e-probability-competitive for 1-uniform matroids, this is
optimal.

3 Greedy Algorithms

Because matroids are exactly the constraints for which the simple greedy algorithm is optimal, greedy-
like algorithms are a natural family to consider as candidates for resolving the Matroid Secretary Problem.
Indeed greedy-like algorithms solve the related Matroid Prophet Inequality [KW12], Matroid Secretary in
the free-order model [JSZ13, AKW14], and special cases of Matroid Secretary [Dyn63, BIKK07]. In this
section, we give an impossibility result for certain greedy algorithms. �is helps unify counterexamples
for related algorithms, and also helps narrow future research towards algorithms which have hope of
resolving the Matroid Secretary Problem.

3.1 A Class of Greedy Algorithms

We now de�ne a natural framework of greedy algorithms for the Matroid Secretary Problem (Algorithm 1).
Without loss of generality, we consider the continuous arrival se�ing, where each element e ∈ V arrives
at a time t(e) independently and uniformly drawn from [0, 1]. We refer by Vt to the set of elements that
arrive (strictly) before t, and by At to the set of elements accepted by the algorithm (strictly) before time t.

Algorithm 1 Greedy Algorithm for the matroid secretary problem
We de�ne a greedy algorithm as one that satis�es the following properties:

(i) Reject (but store) elements that arrive before T (sampling stage). Denote S := VT to emphasize this.
(ii) At all times t, maintain an independent set It such that:

• It contains all accepted elements and no elements which were rejected a�er T , i.e. At ⊆ It ⊆
At ∪ S.

• At all times t, It spans Vt.

(iii) Accept e if and only if e ∈ MWB((M\ At(e))|It(e)∪{e}) (and t(e) > T ). �at is, accept e if and only
if it is in the max-weight basis of It(e) ∪ {e} a�er contracting by At(e).

Before ge�ing into our results, it is helpful to understand why Algorithm 1 is a class of algorithms
(rather than a fully-speci�ed algorithm). �e reason is that the algorithm has �exibility in which subset of
S to include in It (but it must include At, and must span Vt). �e restriction is that the algorithm does not
know which element might arrive at time t, nor its weight, when se�ing It. Furthermore, the algorithm
can choose the length of the sampling stage T .

It is also helpful to see how this framework captures (or doesn’t capture) existing greedy-like algo-
rithms:
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• Dynkin’s algorithm (with T = 1/e) �ts this framework. But so do suboptimal algorithms (e.g.,
accept the �rst element a�er T which exceeds the 5th-highest sample. Or even accept an element
which arrives at time t > T i� it exceeds the (b5t/T c)th-highest sample).

• �e Optimistic Algorithm for k-uniform matroids of [BIKK07] �ts this framework. �e algorithm
maintains a list U , initially the k heaviest elements of S. If e exceeds the lightest element in U , it
is accepted, and the lightest element of U is removed. In our language, this has It := At ∪ U at all
times.

• �ere is a natural extension of the Optimistic Algorithm to all matroids, which was previously con-
sidered in [BIKK18], that we de�ne as the supergreedy algorithm shortly and analyze as a warmup
in Section 3.3.

• A related Pessimistic Algorithm (similar to the rehearsal algorithm for the related k-uniform prophet
inequality of [AKW14]) for k-uniform matroids �ts this framework. �e algorithm also maintains
a list U , initially the k heaviest elements of S. If e exceeds the lightest element in U , it is accepted,
but the heaviest element of U lighter than e is removed. In our language, this again has It := At ∪U
at all times (but U is updated di�erently to the previous bullet).

• �e Virtual Algorithm for k-uniform matroids of [BIKK07] does not �t this framework. �e algo-
rithm accepts an element e if and only if e is one of the heaviest k elements so far and the kth-heaviest
element of Vt(e) is in S (i.e., e is accepted if and only if it “kicks out a sample” from the top k so far).
�is is because the algorithm needs to remember rejected elements in order to properly keep track
of the kth-heaviest element so far, and whether it was a sample.

Observe �nally that all of the algorithms above (which �t the framework) further have the following.
First, if an element is rejected (a�er T ), it is forgo�en forever, and the algorithm proceeds as if the element
had never existed in the �rst place.8 Similarly, once an element e is accepted, the algorithm updatesM
by contracting by e, and then proceeds identically as if the true matroid had been M \ {e} the whole
time.9 �ese a�ributes are shared by the matroid prophet inequality of [KW12], and initially drove our
formulation.

With an understanding of Greedy algorithms in hand, we now state our main result.

�eorem 6. Any algorithm satisfying the 3 properties of Algorithm 1 cannot be constant-utility-competitive.

3.2 Hard Instance: �e Hat

In this section, we will study a hat graph which drives our impossibility result. �e hat has a special
element which is signi�cantly heavier than the sum of all others, and thus any algorithm with a good
utility-competitive ratio must accept it. Furthermore, this special element appears in many small circuits,
so the algorithm must not accept the remaining elements of any of these circuits prior to the arrival of the
heavy element (otherwise, the heavy element cannot be accepted when it arrives). �e hat was used in
[BIKK18] as a counterexample against a particular greedy algorithm (discussed in Section 3.3), and variants
of the graph have been informally known to be problematic for “greedy-like” algorithms. However, prior
to our work there was no formal classi�cation of “greedy-like”.

�e hat on n + 2 vertices is a collection of n triangles, all sharing the same edge. Formally, an undi-
rected graph (V,E) is a hat if V = {a, b, v1, . . . , vn} for some n > 0, and E = {{a, b}} ∪

{
ei = {a, vi} :

8But, the framework is rich enough to also allow for algorithms which update It as they reject an element. �is makes
impossibility results stronger.

9�e framework is rich enough to allow for algorithms which update It based on At, rather than justM\{At}, which again
just makes impossibility results stronger.
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e2<latexit sha1_base64="/22SE28SdGNz09BXfP6xmrJaYEk=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoOQ0zK7iSbeAl48RjQPSJYwO5lNhsw+mJkVQsgnePGgiFe/yJt/42wSQUULGoqqbrq7/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5CrzO/dMKh5Hd3qaMC8ko4gHnBJtpFs2cAfFErYrDj6vYIRtt+q69YzUcO2yeoEcGy9QghWag+J7fxjTNGSRpoIo1XNwor0ZkZpTweaFfqpYQuiEjFjP0IiETHmzxalzdGaUIQpiaSrSaKF+n5iRUKlp6JvOkOix+u1l4l9eL9VB3ZvxKEk1i+hyUZAKpGOU/Y2GXDKqxdQQQiU3tyI6JpJQbdIpmBC+PkX/k7ZrO4bfVEuN8iqOPJzAKZTBgRo04Bqa0AIKI3iAJ3i2hPVovVivy9actZo5hh+w3j4BQt+Nsw==</latexit><latexit sha1_base64="/22SE28SdGNz09BXfP6xmrJaYEk=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoOQ0zK7iSbeAl48RjQPSJYwO5lNhsw+mJkVQsgnePGgiFe/yJt/42wSQUULGoqqbrq7/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5CrzO/dMKh5Hd3qaMC8ko4gHnBJtpFs2cAfFErYrDj6vYIRtt+q69YzUcO2yeoEcGy9QghWag+J7fxjTNGSRpoIo1XNwor0ZkZpTweaFfqpYQuiEjFjP0IiETHmzxalzdGaUIQpiaSrSaKF+n5iRUKlp6JvOkOix+u1l4l9eL9VB3ZvxKEk1i+hyUZAKpGOU/Y2GXDKqxdQQQiU3tyI6JpJQbdIpmBC+PkX/k7ZrO4bfVEuN8iqOPJzAKZTBgRo04Bqa0AIKI3iAJ3i2hPVovVivy9actZo5hh+w3j4BQt+Nsw==</latexit><latexit sha1_base64="/22SE28SdGNz09BXfP6xmrJaYEk=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoOQ0zK7iSbeAl48RjQPSJYwO5lNhsw+mJkVQsgnePGgiFe/yJt/42wSQUULGoqqbrq7/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5CrzO/dMKh5Hd3qaMC8ko4gHnBJtpFs2cAfFErYrDj6vYIRtt+q69YzUcO2yeoEcGy9QghWag+J7fxjTNGSRpoIo1XNwor0ZkZpTweaFfqpYQuiEjFjP0IiETHmzxalzdGaUIQpiaSrSaKF+n5iRUKlp6JvOkOix+u1l4l9eL9VB3ZvxKEk1i+hyUZAKpGOU/Y2GXDKqxdQQQiU3tyI6JpJQbdIpmBC+PkX/k7ZrO4bfVEuN8iqOPJzAKZTBgRo04Bqa0AIKI3iAJ3i2hPVovVivy9actZo5hh+w3j4BQt+Nsw==</latexit><latexit sha1_base64="/22SE28SdGNz09BXfP6xmrJaYEk=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoOQ0zK7iSbeAl48RjQPSJYwO5lNhsw+mJkVQsgnePGgiFe/yJt/42wSQUULGoqqbrq7/ERwpTH+sHJr6xubW/ntws7u3v5B8fCoreJUUtaisYhl1yeKCR6xluZasG4iGQl9wTr+5CrzO/dMKh5Hd3qaMC8ko4gHnBJtpFs2cAfFErYrDj6vYIRtt+q69YzUcO2yeoEcGy9QghWag+J7fxjTNGSRpoIo1XNwor0ZkZpTweaFfqpYQuiEjFjP0IiETHmzxalzdGaUIQpiaSrSaKF+n5iRUKlp6JvOkOix+u1l4l9eL9VB3ZvxKEk1i+hyUZAKpGOU/Y2GXDKqxdQQQiU3tyI6JpJQbdIpmBC+PkX/k7ZrO4bfVEuN8iqOPJzAKZTBgRo04Bqa0AIKI3iAJ3i2hPVovVivy9actZo5hh+w3j4BQt+Nsw==</latexit>

e3
<latexit sha1_base64="jTyQI2aFXVDjGVj0DyK6GrEkFsc=">AAAB6nicdVDLSgNBEJyNrxhfUY9eBoOQ0zKbRBNvAS8eI5oHJEuYnfQmQ2YfzMwKYcknePGgiFe/yJt/42wSQUULGoqqbrq7vFhwpQn5sHJr6xubW/ntws7u3v5B8fCoo6JEMmizSESy51EFgofQ1lwL6MUSaOAJ6HrTq8zv3oNUPArv9CwGN6DjkPucUW2kWxhWh8USsasOOa8STOxKrVJpZKRO6pe1C+zYZIESWqE1LL4PRhFLAgg1E1SpvkNi7aZUas4EzAuDREFM2ZSOoW9oSANQbro4dY7PjDLCfiRNhRov1O8TKQ2UmgWe6QyonqjfXib+5fUT7TfclIdxoiFky0V+IrCOcPY3HnEJTIuZIZRJbm7FbEIlZdqkUzAhfH2K/yediu0YflMrNcurOPLoBJ2iMnJQHTXRNWqhNmJojB7QE3q2hPVovVivy9actZo5Rj9gvX0CRGONtA==</latexit><latexit sha1_base64="jTyQI2aFXVDjGVj0DyK6GrEkFsc=">AAAB6nicdVDLSgNBEJyNrxhfUY9eBoOQ0zKbRBNvAS8eI5oHJEuYnfQmQ2YfzMwKYcknePGgiFe/yJt/42wSQUULGoqqbrq7vFhwpQn5sHJr6xubW/ntws7u3v5B8fCoo6JEMmizSESy51EFgofQ1lwL6MUSaOAJ6HrTq8zv3oNUPArv9CwGN6DjkPucUW2kWxhWh8USsasOOa8STOxKrVJpZKRO6pe1C+zYZIESWqE1LL4PRhFLAgg1E1SpvkNi7aZUas4EzAuDREFM2ZSOoW9oSANQbro4dY7PjDLCfiRNhRov1O8TKQ2UmgWe6QyonqjfXib+5fUT7TfclIdxoiFky0V+IrCOcPY3HnEJTIuZIZRJbm7FbEIlZdqkUzAhfH2K/yediu0YflMrNcurOPLoBJ2iMnJQHTXRNWqhNmJojB7QE3q2hPVovVivy9actZo5Rj9gvX0CRGONtA==</latexit><latexit sha1_base64="jTyQI2aFXVDjGVj0DyK6GrEkFsc=">AAAB6nicdVDLSgNBEJyNrxhfUY9eBoOQ0zKbRBNvAS8eI5oHJEuYnfQmQ2YfzMwKYcknePGgiFe/yJt/42wSQUULGoqqbrq7vFhwpQn5sHJr6xubW/ntws7u3v5B8fCoo6JEMmizSESy51EFgofQ1lwL6MUSaOAJ6HrTq8zv3oNUPArv9CwGN6DjkPucUW2kWxhWh8USsasOOa8STOxKrVJpZKRO6pe1C+zYZIESWqE1LL4PRhFLAgg1E1SpvkNi7aZUas4EzAuDREFM2ZSOoW9oSANQbro4dY7PjDLCfiRNhRov1O8TKQ2UmgWe6QyonqjfXib+5fUT7TfclIdxoiFky0V+IrCOcPY3HnEJTIuZIZRJbm7FbEIlZdqkUzAhfH2K/yediu0YflMrNcurOPLoBJ2iMnJQHTXRNWqhNmJojB7QE3q2hPVovVivy9actZo5Rj9gvX0CRGONtA==</latexit><latexit sha1_base64="jTyQI2aFXVDjGVj0DyK6GrEkFsc=">AAAB6nicdVDLSgNBEJyNrxhfUY9eBoOQ0zKbRBNvAS8eI5oHJEuYnfQmQ2YfzMwKYcknePGgiFe/yJt/42wSQUULGoqqbrq7vFhwpQn5sHJr6xubW/ntws7u3v5B8fCoo6JEMmizSESy51EFgofQ1lwL6MUSaOAJ6HrTq8zv3oNUPArv9CwGN6DjkPucUW2kWxhWh8USsasOOa8STOxKrVJpZKRO6pe1C+zYZIESWqE1LL4PRhFLAgg1E1SpvkNi7aZUas4EzAuDREFM2ZSOoW9oSANQbro4dY7PjDLCfiRNhRov1O8TKQ2UmgWe6QyonqjfXib+5fUT7TfclIdxoiFky0V+IrCOcPY3HnEJTIuZIZRJbm7FbEIlZdqkUzAhfH2K/yediu0YflMrNcurOPLoBJ2iMnJQHTXRNWqhNmJojB7QE3q2hPVovVivy9actZo5Rj9gvX0CRGONtA==</latexit>

e4<latexit sha1_base64="0Oo0mm4PKnwr6KTQNPhBrg7WvNA=">AAAB6nicdVDLSsNAFJ3UV62vqks3g0XoKkzSaOuu4MZlRfuANpTJdNIOnUzCzEQooZ/gxoUibv0id/6Nk7aCih64cDjnXu69J0g4UxqhD6uwtr6xuVXcLu3s7u0flA+POipOJaFtEvNY9gKsKGeCtjXTnPYSSXEUcNoNple5372nUrFY3OlZQv0IjwULGcHaSLd06A3LFWTXHHReQxDZrue6jZzUUf3Su4COjRaogBVaw/L7YBSTNKJCE46V6jso0X6GpWaE03lpkCqaYDLFY9o3VOCIKj9bnDqHZ0YZwTCWpoSGC/X7RIYjpWZRYDojrCfqt5eLf3n9VIcNP2MiSTUVZLkoTDnUMcz/hiMmKdF8ZggmkplbIZlgiYk26ZRMCF+fwv9Jx7Udw2+8SrO6iqMITsApqAIH1EETXIMWaAMCxuABPIFni1uP1ov1umwtWKuZY/AD1tsnReeNtQ==</latexit><latexit sha1_base64="0Oo0mm4PKnwr6KTQNPhBrg7WvNA=">AAAB6nicdVDLSsNAFJ3UV62vqks3g0XoKkzSaOuu4MZlRfuANpTJdNIOnUzCzEQooZ/gxoUibv0id/6Nk7aCih64cDjnXu69J0g4UxqhD6uwtr6xuVXcLu3s7u0flA+POipOJaFtEvNY9gKsKGeCtjXTnPYSSXEUcNoNple5372nUrFY3OlZQv0IjwULGcHaSLd06A3LFWTXHHReQxDZrue6jZzUUf3Su4COjRaogBVaw/L7YBSTNKJCE46V6jso0X6GpWaE03lpkCqaYDLFY9o3VOCIKj9bnDqHZ0YZwTCWpoSGC/X7RIYjpWZRYDojrCfqt5eLf3n9VIcNP2MiSTUVZLkoTDnUMcz/hiMmKdF8ZggmkplbIZlgiYk26ZRMCF+fwv9Jx7Udw2+8SrO6iqMITsApqAIH1EETXIMWaAMCxuABPIFni1uP1ov1umwtWKuZY/AD1tsnReeNtQ==</latexit><latexit sha1_base64="0Oo0mm4PKnwr6KTQNPhBrg7WvNA=">AAAB6nicdVDLSsNAFJ3UV62vqks3g0XoKkzSaOuu4MZlRfuANpTJdNIOnUzCzEQooZ/gxoUibv0id/6Nk7aCih64cDjnXu69J0g4UxqhD6uwtr6xuVXcLu3s7u0flA+POipOJaFtEvNY9gKsKGeCtjXTnPYSSXEUcNoNple5372nUrFY3OlZQv0IjwULGcHaSLd06A3LFWTXHHReQxDZrue6jZzUUf3Su4COjRaogBVaw/L7YBSTNKJCE46V6jso0X6GpWaE03lpkCqaYDLFY9o3VOCIKj9bnDqHZ0YZwTCWpoSGC/X7RIYjpWZRYDojrCfqt5eLf3n9VIcNP2MiSTUVZLkoTDnUMcz/hiMmKdF8ZggmkplbIZlgiYk26ZRMCF+fwv9Jx7Udw2+8SrO6iqMITsApqAIH1EETXIMWaAMCxuABPIFni1uP1ov1umwtWKuZY/AD1tsnReeNtQ==</latexit><latexit sha1_base64="0Oo0mm4PKnwr6KTQNPhBrg7WvNA=">AAAB6nicdVDLSsNAFJ3UV62vqks3g0XoKkzSaOuu4MZlRfuANpTJdNIOnUzCzEQooZ/gxoUibv0id/6Nk7aCih64cDjnXu69J0g4UxqhD6uwtr6xuVXcLu3s7u0flA+POipOJaFtEvNY9gKsKGeCtjXTnPYSSXEUcNoNple5372nUrFY3OlZQv0IjwULGcHaSLd06A3LFWTXHHReQxDZrue6jZzUUf3Su4COjRaogBVaw/L7YBSTNKJCE46V6jso0X6GpWaE03lpkCqaYDLFY9o3VOCIKj9bnDqHZ0YZwTCWpoSGC/X7RIYjpWZRYDojrCfqt5eLf3n9VIcNP2MiSTUVZLkoTDnUMcz/hiMmKdF8ZggmkplbIZlgiYk26ZRMCF+fwv9Jx7Udw2+8SrO6iqMITsApqAIH1EETXIMWaAMCxuABPIFni1uP1ov1umwtWKuZY/AD1tsnReeNtQ==</latexit>

e5
<latexit sha1_base64="xuI5yFD5fjwggvokIF3N+wx4bDk=">AAAB6nicdVDLSgNBEJyNrxhfUY9eBoOQ0zK7SUy8Bbx4jGhMIFnC7KQ3GTL7YGZWCEs+wYsHRbz6Rd78GycPQUULGoqqbrq7/ERwpQn5sHJr6xubW/ntws7u3v5B8fDoTsWpZNBmsYhl16cKBI+grbkW0E0k0NAX0PEnl3O/cw9S8Ti61dMEvJCOIh5wRrWRbmBQGxRLxK44pFYhmNhu1XUbc1In9YvqOXZsskAJrdAaFN/7w5ilIUSaCapUzyGJ9jIqNWcCZoV+qiChbEJH0DM0oiEoL1ucOsNnRhniIJamIo0X6veJjIZKTUPfdIZUj9Vvby7+5fVSHTS8jEdJqiFiy0VBKrCO8fxvPOQSmBZTQyiT3NyK2ZhKyrRJp2BC+PoU/0/uXNsx/LpaapZXceTRCTpFZeSgOmqiK9RCbcTQCD2gJ/RsCevRerFel605azVzjH7AevsER2uNtg==</latexit><latexit sha1_base64="xuI5yFD5fjwggvokIF3N+wx4bDk=">AAAB6nicdVDLSgNBEJyNrxhfUY9eBoOQ0zK7SUy8Bbx4jGhMIFnC7KQ3GTL7YGZWCEs+wYsHRbz6Rd78GycPQUULGoqqbrq7/ERwpQn5sHJr6xubW/ntws7u3v5B8fDoTsWpZNBmsYhl16cKBI+grbkW0E0k0NAX0PEnl3O/cw9S8Ti61dMEvJCOIh5wRrWRbmBQGxRLxK44pFYhmNhu1XUbc1In9YvqOXZsskAJrdAaFN/7w5ilIUSaCapUzyGJ9jIqNWcCZoV+qiChbEJH0DM0oiEoL1ucOsNnRhniIJamIo0X6veJjIZKTUPfdIZUj9Vvby7+5fVSHTS8jEdJqiFiy0VBKrCO8fxvPOQSmBZTQyiT3NyK2ZhKyrRJp2BC+PoU/0/uXNsx/LpaapZXceTRCTpFZeSgOmqiK9RCbcTQCD2gJ/RsCevRerFel605azVzjH7AevsER2uNtg==</latexit><latexit sha1_base64="xuI5yFD5fjwggvokIF3N+wx4bDk=">AAAB6nicdVDLSgNBEJyNrxhfUY9eBoOQ0zK7SUy8Bbx4jGhMIFnC7KQ3GTL7YGZWCEs+wYsHRbz6Rd78GycPQUULGoqqbrq7/ERwpQn5sHJr6xubW/ntws7u3v5B8fDoTsWpZNBmsYhl16cKBI+grbkW0E0k0NAX0PEnl3O/cw9S8Ti61dMEvJCOIh5wRrWRbmBQGxRLxK44pFYhmNhu1XUbc1In9YvqOXZsskAJrdAaFN/7w5ilIUSaCapUzyGJ9jIqNWcCZoV+qiChbEJH0DM0oiEoL1ucOsNnRhniIJamIo0X6veJjIZKTUPfdIZUj9Vvby7+5fVSHTS8jEdJqiFiy0VBKrCO8fxvPOQSmBZTQyiT3NyK2ZhKyrRJp2BC+PoU/0/uXNsx/LpaapZXceTRCTpFZeSgOmqiK9RCbcTQCD2gJ/RsCevRerFel605azVzjH7AevsER2uNtg==</latexit><latexit sha1_base64="xuI5yFD5fjwggvokIF3N+wx4bDk=">AAAB6nicdVDLSgNBEJyNrxhfUY9eBoOQ0zK7SUy8Bbx4jGhMIFnC7KQ3GTL7YGZWCEs+wYsHRbz6Rd78GycPQUULGoqqbrq7/ERwpQn5sHJr6xubW/ntws7u3v5B8fDoTsWpZNBmsYhl16cKBI+grbkW0E0k0NAX0PEnl3O/cw9S8Ti61dMEvJCOIh5wRrWRbmBQGxRLxK44pFYhmNhu1XUbc1In9YvqOXZsskAJrdAaFN/7w5ilIUSaCapUzyGJ9jIqNWcCZoV+qiChbEJH0DM0oiEoL1ucOsNnRhniIJamIo0X6veJjIZKTUPfdIZUj9Vvby7+5fVSHTS8jEdJqiFiy0VBKrCO8fxvPOQSmBZTQyiT3NyK2ZhKyrRJp2BC+PoU/0/uXNsx/LpaapZXceTRCTpFZeSgOmqiK9RCbcTQCD2gJ/RsCevRerFel605azVzjH7AevsER2uNtg==</latexit>

e01
<latexit sha1_base64="rgbNQPJXkHNIUCknoWpcm+4eH9I=">AAAB63icdVDLSgMxFM3UV62vqks3wSJ2VTK1aGdXcOOygn1AO5RMmmlDk8yQZIQy9BfcuFDErT/kzr8x046gogcuHM65l3vvCWLOtEHowymsrW9sbhW3Szu7e/sH5cOjro4SRWiHRDxS/QBrypmkHcMMp/1YUSwCTnvB7Drze/dUaRbJOzOPqS/wRLKQEWwyiZ6P3FG5gmpoCYhqF55X9zxLLj3UbCDo5lYF5GiPyu/DcUQSQaUhHGs9cFFs/BQrwwini9Iw0TTGZIYndGCpxIJqP13euoBnVhnDMFK2pIFL9ftEioXWcxHYToHNVP/2MvEvb5CYsOmnTMaJoZKsFoUJhyaC2eNwzBQlhs8twUQxeyskU6wwMTaekg3h61P4P+nWa67lt41Kq5rHUQQn4BRUgQuuQAvcgDboAAKm4AE8gWdHOI/Oi/O6ai04+cwx+AHn7ROpI43o</latexit><latexit sha1_base64="rgbNQPJXkHNIUCknoWpcm+4eH9I=">AAAB63icdVDLSgMxFM3UV62vqks3wSJ2VTK1aGdXcOOygn1AO5RMmmlDk8yQZIQy9BfcuFDErT/kzr8x046gogcuHM65l3vvCWLOtEHowymsrW9sbhW3Szu7e/sH5cOjro4SRWiHRDxS/QBrypmkHcMMp/1YUSwCTnvB7Drze/dUaRbJOzOPqS/wRLKQEWwyiZ6P3FG5gmpoCYhqF55X9zxLLj3UbCDo5lYF5GiPyu/DcUQSQaUhHGs9cFFs/BQrwwini9Iw0TTGZIYndGCpxIJqP13euoBnVhnDMFK2pIFL9ftEioXWcxHYToHNVP/2MvEvb5CYsOmnTMaJoZKsFoUJhyaC2eNwzBQlhs8twUQxeyskU6wwMTaekg3h61P4P+nWa67lt41Kq5rHUQQn4BRUgQuuQAvcgDboAAKm4AE8gWdHOI/Oi/O6ai04+cwx+AHn7ROpI43o</latexit><latexit sha1_base64="rgbNQPJXkHNIUCknoWpcm+4eH9I=">AAAB63icdVDLSgMxFM3UV62vqks3wSJ2VTK1aGdXcOOygn1AO5RMmmlDk8yQZIQy9BfcuFDErT/kzr8x046gogcuHM65l3vvCWLOtEHowymsrW9sbhW3Szu7e/sH5cOjro4SRWiHRDxS/QBrypmkHcMMp/1YUSwCTnvB7Drze/dUaRbJOzOPqS/wRLKQEWwyiZ6P3FG5gmpoCYhqF55X9zxLLj3UbCDo5lYF5GiPyu/DcUQSQaUhHGs9cFFs/BQrwwini9Iw0TTGZIYndGCpxIJqP13euoBnVhnDMFK2pIFL9ftEioXWcxHYToHNVP/2MvEvb5CYsOmnTMaJoZKsFoUJhyaC2eNwzBQlhs8twUQxeyskU6wwMTaekg3h61P4P+nWa67lt41Kq5rHUQQn4BRUgQuuQAvcgDboAAKm4AE8gWdHOI/Oi/O6ai04+cwx+AHn7ROpI43o</latexit><latexit sha1_base64="rgbNQPJXkHNIUCknoWpcm+4eH9I=">AAAB63icdVDLSgMxFM3UV62vqks3wSJ2VTK1aGdXcOOygn1AO5RMmmlDk8yQZIQy9BfcuFDErT/kzr8x046gogcuHM65l3vvCWLOtEHowymsrW9sbhW3Szu7e/sH5cOjro4SRWiHRDxS/QBrypmkHcMMp/1YUSwCTnvB7Drze/dUaRbJOzOPqS/wRLKQEWwyiZ6P3FG5gmpoCYhqF55X9zxLLj3UbCDo5lYF5GiPyu/DcUQSQaUhHGs9cFFs/BQrwwini9Iw0TTGZIYndGCpxIJqP13euoBnVhnDMFK2pIFL9ftEioXWcxHYToHNVP/2MvEvb5CYsOmnTMaJoZKsFoUJhyaC2eNwzBQlhs8twUQxeyskU6wwMTaekg3h61P4P+nWa67lt41Kq5rHUQQn4BRUgQuuQAvcgDboAAKm4AE8gWdHOI/Oi/O6ai04+cwx+AHn7ROpI43o</latexit>

e02
<latexit sha1_base64="ZwRPjY9k0wwsoXlzy1MUx818Xc4=">AAAB63icdVDLSgMxFM3UV62vqks3wSJ2VTK1aGdXcOOygn1AO5RMmmlDk8yQZIQy9BfcuFDErT/kzr8x046gogcuHM65l3vvCWLOtEHowymsrW9sbhW3Szu7e/sH5cOjro4SRWiHRDxS/QBrypmkHcMMp/1YUSwCTnvB7Drze/dUaRbJOzOPqS/wRLKQEWwyiZ6P6qNyBdXQEhDVLjyv7nmWXHqo2UDQza0KyNEeld+H44gkgkpDONZ64KLY+ClWhhFOF6VhommMyQxP6MBSiQXVfrq8dQHPrDKGYaRsSQOX6veJFAut5yKwnQKbqf7tZeJf3iAxYdNPmYwTQyVZLQoTDk0Es8fhmClKDJ9bgoli9lZIplhhYmw8JRvC16fwf9Kt11zLbxuVVjWPowhOwCmoAhdcgRa4AW3QAQRMwQN4As+OcB6dF+d11Vpw8plj8APO2yeqp43p</latexit><latexit sha1_base64="ZwRPjY9k0wwsoXlzy1MUx818Xc4=">AAAB63icdVDLSgMxFM3UV62vqks3wSJ2VTK1aGdXcOOygn1AO5RMmmlDk8yQZIQy9BfcuFDErT/kzr8x046gogcuHM65l3vvCWLOtEHowymsrW9sbhW3Szu7e/sH5cOjro4SRWiHRDxS/QBrypmkHcMMp/1YUSwCTnvB7Drze/dUaRbJOzOPqS/wRLKQEWwyiZ6P6qNyBdXQEhDVLjyv7nmWXHqo2UDQza0KyNEeld+H44gkgkpDONZ64KLY+ClWhhFOF6VhommMyQxP6MBSiQXVfrq8dQHPrDKGYaRsSQOX6veJFAut5yKwnQKbqf7tZeJf3iAxYdNPmYwTQyVZLQoTDk0Es8fhmClKDJ9bgoli9lZIplhhYmw8JRvC16fwf9Kt11zLbxuVVjWPowhOwCmoAhdcgRa4AW3QAQRMwQN4As+OcB6dF+d11Vpw8plj8APO2yeqp43p</latexit><latexit sha1_base64="ZwRPjY9k0wwsoXlzy1MUx818Xc4=">AAAB63icdVDLSgMxFM3UV62vqks3wSJ2VTK1aGdXcOOygn1AO5RMmmlDk8yQZIQy9BfcuFDErT/kzr8x046gogcuHM65l3vvCWLOtEHowymsrW9sbhW3Szu7e/sH5cOjro4SRWiHRDxS/QBrypmkHcMMp/1YUSwCTnvB7Drze/dUaRbJOzOPqS/wRLKQEWwyiZ6P6qNyBdXQEhDVLjyv7nmWXHqo2UDQza0KyNEeld+H44gkgkpDONZ64KLY+ClWhhFOF6VhommMyQxP6MBSiQXVfrq8dQHPrDKGYaRsSQOX6veJFAut5yKwnQKbqf7tZeJf3iAxYdNPmYwTQyVZLQoTDk0Es8fhmClKDJ9bgoli9lZIplhhYmw8JRvC16fwf9Kt11zLbxuVVjWPowhOwCmoAhdcgRa4AW3QAQRMwQN4As+OcB6dF+d11Vpw8plj8APO2yeqp43p</latexit><latexit sha1_base64="ZwRPjY9k0wwsoXlzy1MUx818Xc4=">AAAB63icdVDLSgMxFM3UV62vqks3wSJ2VTK1aGdXcOOygn1AO5RMmmlDk8yQZIQy9BfcuFDErT/kzr8x046gogcuHM65l3vvCWLOtEHowymsrW9sbhW3Szu7e/sH5cOjro4SRWiHRDxS/QBrypmkHcMMp/1YUSwCTnvB7Drze/dUaRbJOzOPqS/wRLKQEWwyiZ6P6qNyBdXQEhDVLjyv7nmWXHqo2UDQza0KyNEeld+H44gkgkpDONZ64KLY+ClWhhFOF6VhommMyQxP6MBSiQXVfrq8dQHPrDKGYaRsSQOX6veJFAut5yKwnQKbqf7tZeJf3iAxYdNPmYwTQyVZLQoTDk0Es8fhmClKDJ9bgoli9lZIplhhYmw8JRvC16fwf9Kt11zLbxuVVjWPowhOwCmoAhdcgRa4AW3QAQRMwQN4As+OcB6dF+d11Vpw8plj8APO2yeqp43p</latexit>

e03
<latexit sha1_base64="4KAaJm/aNau72DOpa+EchAGmhwE=">AAAB63icdVDLSgMxFM34rPVVdekmWMSuSqYt2tkV3LisYB/QDiWTZtrQJDMkGaEM/QU3LhRx6w+582/MtCOo6IELh3Pu5d57gpgzbRD6cNbWNza3tgs7xd29/YPD0tFxV0eJIrRDIh6pfoA15UzSjmGG036sKBYBp71gdp35vXuqNIvknZnH1Bd4IlnICDaZRC9G9VGpjKpoCYiqdc+reZ4llx5qNhB0c6sMcrRHpffhOCKJoNIQjrUeuCg2foqVYYTTRXGYaBpjMsMTOrBUYkG1ny5vXcBzq4xhGClb0sCl+n0ixULruQhsp8Bmqn97mfiXN0hM2PRTJuPEUElWi8KEQxPB7HE4ZooSw+eWYKKYvRWSKVaYGBtP0Ybw9Sn8n3RrVdfy20a5VcnjKIBTcAYqwAVXoAVuQBt0AAFT8ACewLMjnEfnxXldta45+cwJ+AHn7ROsK43q</latexit><latexit sha1_base64="4KAaJm/aNau72DOpa+EchAGmhwE=">AAAB63icdVDLSgMxFM34rPVVdekmWMSuSqYt2tkV3LisYB/QDiWTZtrQJDMkGaEM/QU3LhRx6w+582/MtCOo6IELh3Pu5d57gpgzbRD6cNbWNza3tgs7xd29/YPD0tFxV0eJIrRDIh6pfoA15UzSjmGG036sKBYBp71gdp35vXuqNIvknZnH1Bd4IlnICDaZRC9G9VGpjKpoCYiqdc+reZ4llx5qNhB0c6sMcrRHpffhOCKJoNIQjrUeuCg2foqVYYTTRXGYaBpjMsMTOrBUYkG1ny5vXcBzq4xhGClb0sCl+n0ixULruQhsp8Bmqn97mfiXN0hM2PRTJuPEUElWi8KEQxPB7HE4ZooSw+eWYKKYvRWSKVaYGBtP0Ybw9Sn8n3RrVdfy20a5VcnjKIBTcAYqwAVXoAVuQBt0AAFT8ACewLMjnEfnxXldta45+cwJ+AHn7ROsK43q</latexit><latexit sha1_base64="4KAaJm/aNau72DOpa+EchAGmhwE=">AAAB63icdVDLSgMxFM34rPVVdekmWMSuSqYt2tkV3LisYB/QDiWTZtrQJDMkGaEM/QU3LhRx6w+582/MtCOo6IELh3Pu5d57gpgzbRD6cNbWNza3tgs7xd29/YPD0tFxV0eJIrRDIh6pfoA15UzSjmGG036sKBYBp71gdp35vXuqNIvknZnH1Bd4IlnICDaZRC9G9VGpjKpoCYiqdc+reZ4llx5qNhB0c6sMcrRHpffhOCKJoNIQjrUeuCg2foqVYYTTRXGYaBpjMsMTOrBUYkG1ny5vXcBzq4xhGClb0sCl+n0ixULruQhsp8Bmqn97mfiXN0hM2PRTJuPEUElWi8KEQxPB7HE4ZooSw+eWYKKYvRWSKVaYGBtP0Ybw9Sn8n3RrVdfy20a5VcnjKIBTcAYqwAVXoAVuQBt0AAFT8ACewLMjnEfnxXldta45+cwJ+AHn7ROsK43q</latexit><latexit sha1_base64="4KAaJm/aNau72DOpa+EchAGmhwE=">AAAB63icdVDLSgMxFM34rPVVdekmWMSuSqYt2tkV3LisYB/QDiWTZtrQJDMkGaEM/QU3LhRx6w+582/MtCOo6IELh3Pu5d57gpgzbRD6cNbWNza3tgs7xd29/YPD0tFxV0eJIrRDIh6pfoA15UzSjmGG036sKBYBp71gdp35vXuqNIvknZnH1Bd4IlnICDaZRC9G9VGpjKpoCYiqdc+reZ4llx5qNhB0c6sMcrRHpffhOCKJoNIQjrUeuCg2foqVYYTTRXGYaBpjMsMTOrBUYkG1ny5vXcBzq4xhGClb0sCl+n0ixULruQhsp8Bmqn97mfiXN0hM2PRTJuPEUElWi8KEQxPB7HE4ZooSw+eWYKKYvRWSKVaYGBtP0Ybw9Sn8n3RrVdfy20a5VcnjKIBTcAYqwAVXoAVuQBt0AAFT8ACewLMjnEfnxXldta45+cwJ+AHn7ROsK43q</latexit>

e04
<latexit sha1_base64="3umlXlXQaP4iuexhgkfywwsY1dw=">AAAB63icdVDLSgMxFM3UV62vqks3wSJ2VTK1aGdXcOOygn1AO5RMmmlDk8yQZIQy9BfcuFDErT/kzr8x046gogcuHM65l3vvCWLOtEHowymsrW9sbhW3Szu7e/sH5cOjro4SRWiHRDxS/QBrypmkHcMMp/1YUSwCTnvB7Drze/dUaRbJOzOPqS/wRLKQEWwyiZ6PGqNyBdXQEhDVLjyv7nmWXHqo2UDQza0KyNEeld+H44gkgkpDONZ64KLY+ClWhhFOF6VhommMyQxP6MBSiQXVfrq8dQHPrDKGYaRsSQOX6veJFAut5yKwnQKbqf7tZeJf3iAxYdNPmYwTQyVZLQoTDk0Es8fhmClKDJ9bgoli9lZIplhhYmw8JRvC16fwf9Kt11zLbxuVVjWPowhOwCmoAhdcgRa4AW3QAQRMwQN4As+OcB6dF+d11Vpw8plj8APO2yetr43r</latexit><latexit sha1_base64="3umlXlXQaP4iuexhgkfywwsY1dw=">AAAB63icdVDLSgMxFM3UV62vqks3wSJ2VTK1aGdXcOOygn1AO5RMmmlDk8yQZIQy9BfcuFDErT/kzr8x046gogcuHM65l3vvCWLOtEHowymsrW9sbhW3Szu7e/sH5cOjro4SRWiHRDxS/QBrypmkHcMMp/1YUSwCTnvB7Drze/dUaRbJOzOPqS/wRLKQEWwyiZ6PGqNyBdXQEhDVLjyv7nmWXHqo2UDQza0KyNEeld+H44gkgkpDONZ64KLY+ClWhhFOF6VhommMyQxP6MBSiQXVfrq8dQHPrDKGYaRsSQOX6veJFAut5yKwnQKbqf7tZeJf3iAxYdNPmYwTQyVZLQoTDk0Es8fhmClKDJ9bgoli9lZIplhhYmw8JRvC16fwf9Kt11zLbxuVVjWPowhOwCmoAhdcgRa4AW3QAQRMwQN4As+OcB6dF+d11Vpw8plj8APO2yetr43r</latexit><latexit sha1_base64="3umlXlXQaP4iuexhgkfywwsY1dw=">AAAB63icdVDLSgMxFM3UV62vqks3wSJ2VTK1aGdXcOOygn1AO5RMmmlDk8yQZIQy9BfcuFDErT/kzr8x046gogcuHM65l3vvCWLOtEHowymsrW9sbhW3Szu7e/sH5cOjro4SRWiHRDxS/QBrypmkHcMMp/1YUSwCTnvB7Drze/dUaRbJOzOPqS/wRLKQEWwyiZ6PGqNyBdXQEhDVLjyv7nmWXHqo2UDQza0KyNEeld+H44gkgkpDONZ64KLY+ClWhhFOF6VhommMyQxP6MBSiQXVfrq8dQHPrDKGYaRsSQOX6veJFAut5yKwnQKbqf7tZeJf3iAxYdNPmYwTQyVZLQoTDk0Es8fhmClKDJ9bgoli9lZIplhhYmw8JRvC16fwf9Kt11zLbxuVVjWPowhOwCmoAhdcgRa4AW3QAQRMwQN4As+OcB6dF+d11Vpw8plj8APO2yetr43r</latexit><latexit sha1_base64="3umlXlXQaP4iuexhgkfywwsY1dw=">AAAB63icdVDLSgMxFM3UV62vqks3wSJ2VTK1aGdXcOOygn1AO5RMmmlDk8yQZIQy9BfcuFDErT/kzr8x046gogcuHM65l3vvCWLOtEHowymsrW9sbhW3Szu7e/sH5cOjro4SRWiHRDxS/QBrypmkHcMMp/1YUSwCTnvB7Drze/dUaRbJOzOPqS/wRLKQEWwyiZ6PGqNyBdXQEhDVLjyv7nmWXHqo2UDQza0KyNEeld+H44gkgkpDONZ64KLY+ClWhhFOF6VhommMyQxP6MBSiQXVfrq8dQHPrDKGYaRsSQOX6veJFAut5yKwnQKbqf7tZeJf3iAxYdNPmYwTQyVZLQoTDk0Es8fhmClKDJ9bgoli9lZIplhhYmw8JRvC16fwf9Kt11zLbxuVVjWPowhOwCmoAhdcgRa4AW3QAQRMwQN4As+OcB6dF+d11Vpw8plj8APO2yetr43r</latexit>

e05
<latexit sha1_base64="T7Ecm1gqLvvWFMq1/C+yny9OUcg=">AAAB63icdVDLSgMxFM34rPVVdekmWMSuSqZW7ewKblxWsA9oh5JJM21okhmSjFCG/oIbF4q49Yfc+Tdm2hFU9MCFwzn3cu89QcyZNgh9OCura+sbm4Wt4vbO7t5+6eCwo6NEEdomEY9UL8CaciZp2zDDaS9WFIuA024wvc787j1VmkXyzsxi6gs8lixkBJtMomfDi2GpjKpoAYiq555X8zxLLj3UqCPo5lYZ5GgNS++DUUQSQaUhHGvdd1Fs/BQrwwin8+Ig0TTGZIrHtG+pxIJqP13cOoenVhnBMFK2pIEL9ftEioXWMxHYToHNRP/2MvEvr5+YsOGnTMaJoZIsF4UJhyaC2eNwxBQlhs8swUQxeyskE6wwMTaeog3h61P4P+nUqq7lt/Vys5LHUQDH4ARUgAuuQBPcgBZoAwIm4AE8gWdHOI/Oi/O6bF1x8pkj8APO2yevM43s</latexit><latexit sha1_base64="T7Ecm1gqLvvWFMq1/C+yny9OUcg=">AAAB63icdVDLSgMxFM34rPVVdekmWMSuSqZW7ewKblxWsA9oh5JJM21okhmSjFCG/oIbF4q49Yfc+Tdm2hFU9MCFwzn3cu89QcyZNgh9OCura+sbm4Wt4vbO7t5+6eCwo6NEEdomEY9UL8CaciZp2zDDaS9WFIuA024wvc787j1VmkXyzsxi6gs8lixkBJtMomfDi2GpjKpoAYiq555X8zxLLj3UqCPo5lYZ5GgNS++DUUQSQaUhHGvdd1Fs/BQrwwin8+Ig0TTGZIrHtG+pxIJqP13cOoenVhnBMFK2pIEL9ftEioXWMxHYToHNRP/2MvEvr5+YsOGnTMaJoZIsF4UJhyaC2eNwxBQlhs8swUQxeyskE6wwMTaeog3h61P4P+nUqq7lt/Vys5LHUQDH4ARUgAuuQBPcgBZoAwIm4AE8gWdHOI/Oi/O6bF1x8pkj8APO2yevM43s</latexit><latexit sha1_base64="T7Ecm1gqLvvWFMq1/C+yny9OUcg=">AAAB63icdVDLSgMxFM34rPVVdekmWMSuSqZW7ewKblxWsA9oh5JJM21okhmSjFCG/oIbF4q49Yfc+Tdm2hFU9MCFwzn3cu89QcyZNgh9OCura+sbm4Wt4vbO7t5+6eCwo6NEEdomEY9UL8CaciZp2zDDaS9WFIuA024wvc787j1VmkXyzsxi6gs8lixkBJtMomfDi2GpjKpoAYiq555X8zxLLj3UqCPo5lYZ5GgNS++DUUQSQaUhHGvdd1Fs/BQrwwin8+Ig0TTGZIrHtG+pxIJqP13cOoenVhnBMFK2pIEL9ftEioXWMxHYToHNRP/2MvEvr5+YsOGnTMaJoZIsF4UJhyaC2eNwxBQlhs8swUQxeyskE6wwMTaeog3h61P4P+nUqq7lt/Vys5LHUQDH4ARUgAuuQBPcgBZoAwIm4AE8gWdHOI/Oi/O6bF1x8pkj8APO2yevM43s</latexit><latexit sha1_base64="T7Ecm1gqLvvWFMq1/C+yny9OUcg=">AAAB63icdVDLSgMxFM34rPVVdekmWMSuSqZW7ewKblxWsA9oh5JJM21okhmSjFCG/oIbF4q49Yfc+Tdm2hFU9MCFwzn3cu89QcyZNgh9OCura+sbm4Wt4vbO7t5+6eCwo6NEEdomEY9UL8CaciZp2zDDaS9WFIuA024wvc787j1VmkXyzsxi6gs8lixkBJtMomfDi2GpjKpoAYiq555X8zxLLj3UqCPo5lYZ5GgNS++DUUQSQaUhHGvdd1Fs/BQrwwin8+Ig0TTGZIrHtG+pxIJqP13cOoenVhnBMFK2pIEL9ftEioXWMxHYToHNRP/2MvEvr5+YsOGnTMaJoZIsF4UJhyaC2eNwxBQlhs8swUQxeyskE6wwMTaeog3h61P4P+nUqq7lt/Vys5LHUQDH4ARUgAuuQBPcgBZoAwIm4AE8gWdHOI/Oi/O6bF1x8pkj8APO2yevM43s</latexit>

e 1 <latexit sha1_base64="xAObsIM7s6UQzZ3UjG37eSLq+kM=">AAAB8HicdVDLSsNAFJ3UV62vqks3g0XoKiSp2iwLblxWsA9pQ5lMJ+3QmUmYmQgh9CvcuFDErZ/jzr9x0lZQ0QMXDufcy733hAmjSjvOh1VaW9/Y3CpvV3Z29/YPqodHXRWnEpMOjlks+yFShFFBOppqRvqJJIiHjPTC2VXh9+6JVDQWtzpLSMDRRNCIYqSNdEdGQyoinVVG1ZpjN33fbXjQsRvOpeO5BbnwXL8BXdtZoAZWaI+q78NxjFNOhMYMKTVwnUQHOZKaYkbmlWGqSILwDE3IwFCBOFFBvjh4Ds+MMoZRLE0JDRfq94kccaUyHppOjvRU/fYK8S9vkOrID3IqklQTgZeLopRBHcPiezimkmDNMkMQltTcCvEUSYS1yagI4etT+D/perZr+M15rVVfxVEGJ+AU1IELmqAFrkEbdAAGHDyAJ/BsSevRerFel60lazVzDH7AevsExVGQTQ==</latexit><latexit sha1_base64="xAObsIM7s6UQzZ3UjG37eSLq+kM=">AAAB8HicdVDLSsNAFJ3UV62vqks3g0XoKiSp2iwLblxWsA9pQ5lMJ+3QmUmYmQgh9CvcuFDErZ/jzr9x0lZQ0QMXDufcy733hAmjSjvOh1VaW9/Y3CpvV3Z29/YPqodHXRWnEpMOjlks+yFShFFBOppqRvqJJIiHjPTC2VXh9+6JVDQWtzpLSMDRRNCIYqSNdEdGQyoinVVG1ZpjN33fbXjQsRvOpeO5BbnwXL8BXdtZoAZWaI+q78NxjFNOhMYMKTVwnUQHOZKaYkbmlWGqSILwDE3IwFCBOFFBvjh4Ds+MMoZRLE0JDRfq94kccaUyHppOjvRU/fYK8S9vkOrID3IqklQTgZeLopRBHcPiezimkmDNMkMQltTcCvEUSYS1yagI4etT+D/perZr+M15rVVfxVEGJ+AU1IELmqAFrkEbdAAGHDyAJ/BsSevRerFel60lazVzDH7AevsExVGQTQ==</latexit><latexit sha1_base64="xAObsIM7s6UQzZ3UjG37eSLq+kM=">AAAB8HicdVDLSsNAFJ3UV62vqks3g0XoKiSp2iwLblxWsA9pQ5lMJ+3QmUmYmQgh9CvcuFDErZ/jzr9x0lZQ0QMXDufcy733hAmjSjvOh1VaW9/Y3CpvV3Z29/YPqodHXRWnEpMOjlks+yFShFFBOppqRvqJJIiHjPTC2VXh9+6JVDQWtzpLSMDRRNCIYqSNdEdGQyoinVVG1ZpjN33fbXjQsRvOpeO5BbnwXL8BXdtZoAZWaI+q78NxjFNOhMYMKTVwnUQHOZKaYkbmlWGqSILwDE3IwFCBOFFBvjh4Ds+MMoZRLE0JDRfq94kccaUyHppOjvRU/fYK8S9vkOrID3IqklQTgZeLopRBHcPiezimkmDNMkMQltTcCvEUSYS1yagI4etT+D/perZr+M15rVVfxVEGJ+AU1IELmqAFrkEbdAAGHDyAJ/BsSevRerFel60lazVzDH7AevsExVGQTQ==</latexit><latexit sha1_base64="xAObsIM7s6UQzZ3UjG37eSLq+kM=">AAAB8HicdVDLSsNAFJ3UV62vqks3g0XoKiSp2iwLblxWsA9pQ5lMJ+3QmUmYmQgh9CvcuFDErZ/jzr9x0lZQ0QMXDufcy733hAmjSjvOh1VaW9/Y3CpvV3Z29/YPqodHXRWnEpMOjlks+yFShFFBOppqRvqJJIiHjPTC2VXh9+6JVDQWtzpLSMDRRNCIYqSNdEdGQyoinVVG1ZpjN33fbXjQsRvOpeO5BbnwXL8BXdtZoAZWaI+q78NxjFNOhMYMKTVwnUQHOZKaYkbmlWGqSILwDE3IwFCBOFFBvjh4Ds+MMoZRLE0JDRfq94kccaUyHppOjvRU/fYK8S9vkOrID3IqklQTgZeLopRBHcPiezimkmDNMkMQltTcCvEUSYS1yagI4etT+D/perZr+M15rVVfxVEGJ+AU1IELmqAFrkEbdAAGHDyAJ/BsSevRerFel60lazVzDH7AevsExVGQTQ==</latexit>

Figure 1: A hat on seven vertices. All purple edges (e1, . . . , e5) are heavier than all blue edges (e′1, . . . , e′5),
and e∞ is signi�cantly heavier than all other edges. Within each color, darker edges are heavier.

(AA)
<latexit sha1_base64="vFNx/Y5z06GFonHxLaIue5qfXAQ=">AAAB63icdVDLSgMxFL3xWeur6tJNsAh1U2akoMsWNy4r2Ae0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/BszbQWfB0IO59zLvfeEieDGet47WlldW9/YLGwVt3d29/ZLB4dtE6eashaNRay7ITFMcMVallvBuolmRIaCdcLJVe537pg2PFa3dpqwQJKR4hGnxOZSpdE4G5TKXrXm5cC/iV+d/14ZlmgOSm/9YUxTyZSlghjT873EBhnRllPBZsV+alhC6ISMWM9RRSQzQTbfdYZPnTLEUazdUxbP1a8dGZHGTGXoKiWxY/PTy8W/vF5qo8sg4ypJLVN0MShKBbYxzg/HQ64ZtWLqCKGau10xHRNNqHXxFF0In5fi/0n7vOo7flMr1yvLOApwDCdQAR8uoA7X0IQWUBjDPTzCE5LoAT2jl0XpClr2HME3oNcP6c2NZw==</latexit><latexit sha1_base64="vFNx/Y5z06GFonHxLaIue5qfXAQ=">AAAB63icdVDLSgMxFL3xWeur6tJNsAh1U2akoMsWNy4r2Ae0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/BszbQWfB0IO59zLvfeEieDGet47WlldW9/YLGwVt3d29/ZLB4dtE6eashaNRay7ITFMcMVallvBuolmRIaCdcLJVe537pg2PFa3dpqwQJKR4hGnxOZSpdE4G5TKXrXm5cC/iV+d/14ZlmgOSm/9YUxTyZSlghjT873EBhnRllPBZsV+alhC6ISMWM9RRSQzQTbfdYZPnTLEUazdUxbP1a8dGZHGTGXoKiWxY/PTy8W/vF5qo8sg4ypJLVN0MShKBbYxzg/HQ64ZtWLqCKGau10xHRNNqHXxFF0In5fi/0n7vOo7flMr1yvLOApwDCdQAR8uoA7X0IQWUBjDPTzCE5LoAT2jl0XpClr2HME3oNcP6c2NZw==</latexit><latexit sha1_base64="vFNx/Y5z06GFonHxLaIue5qfXAQ=">AAAB63icdVDLSgMxFL3xWeur6tJNsAh1U2akoMsWNy4r2Ae0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/BszbQWfB0IO59zLvfeEieDGet47WlldW9/YLGwVt3d29/ZLB4dtE6eashaNRay7ITFMcMVallvBuolmRIaCdcLJVe537pg2PFa3dpqwQJKR4hGnxOZSpdE4G5TKXrXm5cC/iV+d/14ZlmgOSm/9YUxTyZSlghjT873EBhnRllPBZsV+alhC6ISMWM9RRSQzQTbfdYZPnTLEUazdUxbP1a8dGZHGTGXoKiWxY/PTy8W/vF5qo8sg4ypJLVN0MShKBbYxzg/HQ64ZtWLqCKGau10xHRNNqHXxFF0In5fi/0n7vOo7flMr1yvLOApwDCdQAR8uoA7X0IQWUBjDPTzCE5LoAT2jl0XpClr2HME3oNcP6c2NZw==</latexit><latexit sha1_base64="vFNx/Y5z06GFonHxLaIue5qfXAQ=">AAAB63icdVDLSgMxFL3xWeur6tJNsAh1U2akoMsWNy4r2Ae0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/BszbQWfB0IO59zLvfeEieDGet47WlldW9/YLGwVt3d29/ZLB4dtE6eashaNRay7ITFMcMVallvBuolmRIaCdcLJVe537pg2PFa3dpqwQJKR4hGnxOZSpdE4G5TKXrXm5cC/iV+d/14ZlmgOSm/9YUxTyZSlghjT873EBhnRllPBZsV+alhC6ISMWM9RRSQzQTbfdYZPnTLEUazdUxbP1a8dGZHGTGXoKiWxY/PTy8W/vF5qo8sg4ypJLVN0MShKBbYxzg/HQ64ZtWLqCKGau10xHRNNqHXxFF0In5fi/0n7vOo7flMr1yvLOApwDCdQAR8uoA7X0IQWUBjDPTzCE5LoAT2jl0XpClr2HME3oNcP6c2NZw==</latexit>

(A�)
<latexit sha1_base64="gbjVZCb5KZAGjrpnZo3h8SVQgW0=">AAAB7XicdVDLSgMxFL1TX7W+qi7dBItQQctMKeiy4sZlBfuAdiiZNNPGZpIhyQhl6D+4caGIW//HnX9jpq3g80DI4Zx7ufeeIOZMG9d9d3JLyyura/n1wsbm1vZOcXevpWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2MLzO/fUeVZlLcmElM/QgPBQsZwcZKrfJF7+T0uF8suZWamwH9Jl5l9rslWKDRL771BpIkERWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LBY6o9tPZtlN0ZJUBCqWyTxg0U792pDjSehIFtjLCZqR/epn4l9dNTHjup0zEiaGCzAeFCUdGoux0NGCKEsMnlmCimN0VkRFWmBgbUMGG8Hkp+p+0qhXP8utaqV5exJGHAziEMnhwBnW4ggY0gcAt3MMjPDnSeXCenZd5ac5Z9OzDNzivH+Wsje8=</latexit><latexit sha1_base64="gbjVZCb5KZAGjrpnZo3h8SVQgW0=">AAAB7XicdVDLSgMxFL1TX7W+qi7dBItQQctMKeiy4sZlBfuAdiiZNNPGZpIhyQhl6D+4caGIW//HnX9jpq3g80DI4Zx7ufeeIOZMG9d9d3JLyyura/n1wsbm1vZOcXevpWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2MLzO/fUeVZlLcmElM/QgPBQsZwcZKrfJF7+T0uF8suZWamwH9Jl5l9rslWKDRL771BpIkERWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LBY6o9tPZtlN0ZJUBCqWyTxg0U792pDjSehIFtjLCZqR/epn4l9dNTHjup0zEiaGCzAeFCUdGoux0NGCKEsMnlmCimN0VkRFWmBgbUMGG8Hkp+p+0qhXP8utaqV5exJGHAziEMnhwBnW4ggY0gcAt3MMjPDnSeXCenZd5ac5Z9OzDNzivH+Wsje8=</latexit><latexit sha1_base64="gbjVZCb5KZAGjrpnZo3h8SVQgW0=">AAAB7XicdVDLSgMxFL1TX7W+qi7dBItQQctMKeiy4sZlBfuAdiiZNNPGZpIhyQhl6D+4caGIW//HnX9jpq3g80DI4Zx7ufeeIOZMG9d9d3JLyyura/n1wsbm1vZOcXevpWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2MLzO/fUeVZlLcmElM/QgPBQsZwcZKrfJF7+T0uF8suZWamwH9Jl5l9rslWKDRL771BpIkERWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LBY6o9tPZtlN0ZJUBCqWyTxg0U792pDjSehIFtjLCZqR/epn4l9dNTHjup0zEiaGCzAeFCUdGoux0NGCKEsMnlmCimN0VkRFWmBgbUMGG8Hkp+p+0qhXP8utaqV5exJGHAziEMnhwBnW4ggY0gcAt3MMjPDnSeXCenZd5ac5Z9OzDNzivH+Wsje8=</latexit><latexit sha1_base64="gbjVZCb5KZAGjrpnZo3h8SVQgW0=">AAAB7XicdVDLSgMxFL1TX7W+qi7dBItQQctMKeiy4sZlBfuAdiiZNNPGZpIhyQhl6D+4caGIW//HnX9jpq3g80DI4Zx7ufeeIOZMG9d9d3JLyyura/n1wsbm1vZOcXevpWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2MLzO/fUeVZlLcmElM/QgPBQsZwcZKrfJF7+T0uF8suZWamwH9Jl5l9rslWKDRL771BpIkERWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LBY6o9tPZtlN0ZJUBCqWyTxg0U792pDjSehIFtjLCZqR/epn4l9dNTHjup0zEiaGCzAeFCUdGoux0NGCKEsMnlmCimN0VkRFWmBgbUMGG8Hkp+p+0qhXP8utaqV5exJGHAziEMnhwBnW4ggY0gcAt3MMjPDnSeXCenZd5ac5Z9OzDNzivH+Wsje8=</latexit>

(AS)
<latexit sha1_base64="08s8dbJc1n+g/zFhB9NFFQ8PCY4=">AAAB63icdVDLSgMxFL2pr1pfVZdugkWomzIjBV1W3LisaGuhHUomzbShSWZIMkIZ+gtuXCji1h9y59+YaSv4PBByOOde7r0nTAQ31vPeUWFpeWV1rbhe2tjc2t4p7+61TZxqylo0FrHuhMQwwRVrWW4F6ySaERkKdhuOL3L/9o5pw2N1YycJCyQZKh5xSmwuVc+vj/vlilereznwb+LXZr9XgQWa/fJbbxDTVDJlqSDGdH0vsUFGtOVUsGmplxqWEDomQ9Z1VBHJTJDNdp3iI6cMcBRr95TFM/VrR0akMRMZukpJ7Mj89HLxL6+b2ugsyLhKUssUnQ+KUoFtjPPD8YBrRq2YOEKo5m5XTEdEE2pdPCUXwuel+H/SPqn5jl/VK43qIo4iHMAhVMGHU2jAJTShBRRGcA+P8IQkekDP6GVeWkCLnn34BvT6AQU2jXk=</latexit><latexit sha1_base64="08s8dbJc1n+g/zFhB9NFFQ8PCY4=">AAAB63icdVDLSgMxFL2pr1pfVZdugkWomzIjBV1W3LisaGuhHUomzbShSWZIMkIZ+gtuXCji1h9y59+YaSv4PBByOOde7r0nTAQ31vPeUWFpeWV1rbhe2tjc2t4p7+61TZxqylo0FrHuhMQwwRVrWW4F6ySaERkKdhuOL3L/9o5pw2N1YycJCyQZKh5xSmwuVc+vj/vlilereznwb+LXZr9XgQWa/fJbbxDTVDJlqSDGdH0vsUFGtOVUsGmplxqWEDomQ9Z1VBHJTJDNdp3iI6cMcBRr95TFM/VrR0akMRMZukpJ7Mj89HLxL6+b2ugsyLhKUssUnQ+KUoFtjPPD8YBrRq2YOEKo5m5XTEdEE2pdPCUXwuel+H/SPqn5jl/VK43qIo4iHMAhVMGHU2jAJTShBRRGcA+P8IQkekDP6GVeWkCLnn34BvT6AQU2jXk=</latexit><latexit sha1_base64="08s8dbJc1n+g/zFhB9NFFQ8PCY4=">AAAB63icdVDLSgMxFL2pr1pfVZdugkWomzIjBV1W3LisaGuhHUomzbShSWZIMkIZ+gtuXCji1h9y59+YaSv4PBByOOde7r0nTAQ31vPeUWFpeWV1rbhe2tjc2t4p7+61TZxqylo0FrHuhMQwwRVrWW4F6ySaERkKdhuOL3L/9o5pw2N1YycJCyQZKh5xSmwuVc+vj/vlilereznwb+LXZr9XgQWa/fJbbxDTVDJlqSDGdH0vsUFGtOVUsGmplxqWEDomQ9Z1VBHJTJDNdp3iI6cMcBRr95TFM/VrR0akMRMZukpJ7Mj89HLxL6+b2ugsyLhKUssUnQ+KUoFtjPPD8YBrRq2YOEKo5m5XTEdEE2pdPCUXwuel+H/SPqn5jl/VK43qIo4iHMAhVMGHU2jAJTShBRRGcA+P8IQkekDP6GVeWkCLnn34BvT6AQU2jXk=</latexit><latexit sha1_base64="08s8dbJc1n+g/zFhB9NFFQ8PCY4=">AAAB63icdVDLSgMxFL2pr1pfVZdugkWomzIjBV1W3LisaGuhHUomzbShSWZIMkIZ+gtuXCji1h9y59+YaSv4PBByOOde7r0nTAQ31vPeUWFpeWV1rbhe2tjc2t4p7+61TZxqylo0FrHuhMQwwRVrWW4F6ySaERkKdhuOL3L/9o5pw2N1YycJCyQZKh5xSmwuVc+vj/vlilereznwb+LXZr9XgQWa/fJbbxDTVDJlqSDGdH0vsUFGtOVUsGmplxqWEDomQ9Z1VBHJTJDNdp3iI6cMcBRr95TFM/VrR0akMRMZukpJ7Mj89HLxL6+b2ugsyLhKUssUnQ+KUoFtjPPD8YBrRq2YOEKo5m5XTEdEE2pdPCUXwuel+H/SPqn5jl/VK43qIo4iHMAhVMGHU2jAJTShBRRGcA+P8IQkekDP6GVeWkCLnn34BvT6AQU2jXk=</latexit>

(�A)
<latexit sha1_base64="wGlvA+NQoacZ0TMaSSqDQOgFsoU=">AAAB7XicdVDLSgMxFL1TX7W+qi7dBItQQctMKeiy4sZlBfuAdiiZNNPGZpIhyQhl6D+4caGIW//HnX9jpq3g80DI4Zx7ufeeIOZMG9d9d3JLyyura/n1wsbm1vZOcXevpWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2MLzO/fUeVZlLcmElM/QgPBQsZwcZKrfJp7+TiuF8suZWamwH9Jl5l9rslWKDRL771BpIkERWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LBY6o9tPZtlN0ZJUBCqWyTxg0U792pDjSehIFtjLCZqR/epn4l9dNTHjup0zEiaGCzAeFCUdGoux0NGCKEsMnlmCimN0VkRFWmBgbUMGG8Hkp+p+0qhXP8utaqV5exJGHAziEMnhwBnW4ggY0gcAt3MMjPDnSeXCenZd5ac5Z9OzDNzivH+Vwje8=</latexit><latexit sha1_base64="wGlvA+NQoacZ0TMaSSqDQOgFsoU=">AAAB7XicdVDLSgMxFL1TX7W+qi7dBItQQctMKeiy4sZlBfuAdiiZNNPGZpIhyQhl6D+4caGIW//HnX9jpq3g80DI4Zx7ufeeIOZMG9d9d3JLyyura/n1wsbm1vZOcXevpWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2MLzO/fUeVZlLcmElM/QgPBQsZwcZKrfJp7+TiuF8suZWamwH9Jl5l9rslWKDRL771BpIkERWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LBY6o9tPZtlN0ZJUBCqWyTxg0U792pDjSehIFtjLCZqR/epn4l9dNTHjup0zEiaGCzAeFCUdGoux0NGCKEsMnlmCimN0VkRFWmBgbUMGG8Hkp+p+0qhXP8utaqV5exJGHAziEMnhwBnW4ggY0gcAt3MMjPDnSeXCenZd5ac5Z9OzDNzivH+Vwje8=</latexit><latexit sha1_base64="wGlvA+NQoacZ0TMaSSqDQOgFsoU=">AAAB7XicdVDLSgMxFL1TX7W+qi7dBItQQctMKeiy4sZlBfuAdiiZNNPGZpIhyQhl6D+4caGIW//HnX9jpq3g80DI4Zx7ufeeIOZMG9d9d3JLyyura/n1wsbm1vZOcXevpWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2MLzO/fUeVZlLcmElM/QgPBQsZwcZKrfJp7+TiuF8suZWamwH9Jl5l9rslWKDRL771BpIkERWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LBY6o9tPZtlN0ZJUBCqWyTxg0U792pDjSehIFtjLCZqR/epn4l9dNTHjup0zEiaGCzAeFCUdGoux0NGCKEsMnlmCimN0VkRFWmBgbUMGG8Hkp+p+0qhXP8utaqV5exJGHAziEMnhwBnW4ggY0gcAt3MMjPDnSeXCenZd5ac5Z9OzDNzivH+Vwje8=</latexit><latexit sha1_base64="wGlvA+NQoacZ0TMaSSqDQOgFsoU=">AAAB7XicdVDLSgMxFL1TX7W+qi7dBItQQctMKeiy4sZlBfuAdiiZNNPGZpIhyQhl6D+4caGIW//HnX9jpq3g80DI4Zx7ufeeIOZMG9d9d3JLyyura/n1wsbm1vZOcXevpWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2MLzO/fUeVZlLcmElM/QgPBQsZwcZKrfJp7+TiuF8suZWamwH9Jl5l9rslWKDRL771BpIkERWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LBY6o9tPZtlN0ZJUBCqWyTxg0U792pDjSehIFtjLCZqR/epn4l9dNTHjup0zEiaGCzAeFCUdGoux0NGCKEsMnlmCimN0VkRFWmBgbUMGG8Hkp+p+0qhXP8utaqV5exJGHAziEMnhwBnW4ggY0gcAt3MMjPDnSeXCenZd5ac5Z9OzDNzivH+Vwje8=</latexit>

(��)
<latexit sha1_base64="AxYwNKWjbatN0nNIvBosZwu0oMM=">AAAB7XicdVDLSgMxFL1TX7W+qi7dBItQwZaZUtBlwY3LCvYB7VAyaaaNzSRDkhHK0H9w40IRt/6PO//GTFvB54GQwzn3cu89QcyZNq777uRWVtfWN/Kbha3tnd294v5BW8tEEdoikkvVDbCmnAnaMsxw2o0VxVHAaSeYXGZ+544qzaS4MdOY+hEeCRYygo2V2uVK/6xyOiiW3GrdzYB+E686/90SLNEcFN/6Q0mSiApDONa657mx8VOsDCOczgr9RNMYkwke0Z6lAkdU++l82xk6scoQhVLZJwyaq187UhxpPY0CWxlhM9Y/vUz8y+slJrzwUybixFBBFoPChCMjUXY6GjJFieFTSzBRzO6KyBgrTIwNqGBD+LwU/U/atapn+XW91Cgv48jDERxDGTw4hwZcQRNaQOAW7uERnhzpPDjPzsuiNOcsew7hG5zXD8cMjds=</latexit><latexit sha1_base64="AxYwNKWjbatN0nNIvBosZwu0oMM=">AAAB7XicdVDLSgMxFL1TX7W+qi7dBItQwZaZUtBlwY3LCvYB7VAyaaaNzSRDkhHK0H9w40IRt/6PO//GTFvB54GQwzn3cu89QcyZNq777uRWVtfWN/Kbha3tnd294v5BW8tEEdoikkvVDbCmnAnaMsxw2o0VxVHAaSeYXGZ+544qzaS4MdOY+hEeCRYygo2V2uVK/6xyOiiW3GrdzYB+E686/90SLNEcFN/6Q0mSiApDONa657mx8VOsDCOczgr9RNMYkwke0Z6lAkdU++l82xk6scoQhVLZJwyaq187UhxpPY0CWxlhM9Y/vUz8y+slJrzwUybixFBBFoPChCMjUXY6GjJFieFTSzBRzO6KyBgrTIwNqGBD+LwU/U/atapn+XW91Cgv48jDERxDGTw4hwZcQRNaQOAW7uERnhzpPDjPzsuiNOcsew7hG5zXD8cMjds=</latexit><latexit sha1_base64="AxYwNKWjbatN0nNIvBosZwu0oMM=">AAAB7XicdVDLSgMxFL1TX7W+qi7dBItQwZaZUtBlwY3LCvYB7VAyaaaNzSRDkhHK0H9w40IRt/6PO//GTFvB54GQwzn3cu89QcyZNq777uRWVtfWN/Kbha3tnd294v5BW8tEEdoikkvVDbCmnAnaMsxw2o0VxVHAaSeYXGZ+544qzaS4MdOY+hEeCRYygo2V2uVK/6xyOiiW3GrdzYB+E686/90SLNEcFN/6Q0mSiApDONa657mx8VOsDCOczgr9RNMYkwke0Z6lAkdU++l82xk6scoQhVLZJwyaq187UhxpPY0CWxlhM9Y/vUz8y+slJrzwUybixFBBFoPChCMjUXY6GjJFieFTSzBRzO6KyBgrTIwNqGBD+LwU/U/atapn+XW91Cgv48jDERxDGTw4hwZcQRNaQOAW7uERnhzpPDjPzsuiNOcsew7hG5zXD8cMjds=</latexit><latexit sha1_base64="AxYwNKWjbatN0nNIvBosZwu0oMM=">AAAB7XicdVDLSgMxFL1TX7W+qi7dBItQwZaZUtBlwY3LCvYB7VAyaaaNzSRDkhHK0H9w40IRt/6PO//GTFvB54GQwzn3cu89QcyZNq777uRWVtfWN/Kbha3tnd294v5BW8tEEdoikkvVDbCmnAnaMsxw2o0VxVHAaSeYXGZ+544qzaS4MdOY+hEeCRYygo2V2uVK/6xyOiiW3GrdzYB+E686/90SLNEcFN/6Q0mSiApDONa657mx8VOsDCOczgr9RNMYkwke0Z6lAkdU++l82xk6scoQhVLZJwyaq187UhxpPY0CWxlhM9Y/vUz8y+slJrzwUybixFBBFoPChCMjUXY6GjJFieFTSzBRzO6KyBgrTIwNqGBD+LwU/U/atapn+XW91Cgv48jDERxDGTw4hwZcQRNaQOAW7uERnhzpPDjPzsuiNOcsew7hG5zXD8cMjds=</latexit>

(SS)
<latexit sha1_base64="aVMlf10/tz8mxzQQDsXWTKt8lEI=">AAAB63icdVDLSgMxFL3xWeur6tJNsAh1U2akoMuCG5eV2ge0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/BszbQWfB0IO59zLvfeEieDGet47WlldW9/YLGwVt3d29/ZLB4dtE6eashaNRay7ITFMcMVallvBuolmRIaCdcLJVe537pg2PFa3dpqwQJKR4hGnxOZSpdk8G5TKXrXm5cC/iV+d/14ZlmgMSm/9YUxTyZSlghjT873EBhnRllPBZsV+alhC6ISMWM9RRSQzQTbfdYZPnTLEUazdUxbP1a8dGZHGTGXoKiWxY/PTy8W/vF5qo8sg4ypJLVN0MShKBbYxzg/HQ64ZtWLqCKGau10xHRNNqHXxFF0In5fi/0n7vOo7flMr1yvLOApwDCdQAR8uoA7X0IAWUBjDPTzCE5LoAT2jl0XpClr2HME3oNcPIKKNiw==</latexit><latexit sha1_base64="aVMlf10/tz8mxzQQDsXWTKt8lEI=">AAAB63icdVDLSgMxFL3xWeur6tJNsAh1U2akoMuCG5eV2ge0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/BszbQWfB0IO59zLvfeEieDGet47WlldW9/YLGwVt3d29/ZLB4dtE6eashaNRay7ITFMcMVallvBuolmRIaCdcLJVe537pg2PFa3dpqwQJKR4hGnxOZSpdk8G5TKXrXm5cC/iV+d/14ZlmgMSm/9YUxTyZSlghjT873EBhnRllPBZsV+alhC6ISMWM9RRSQzQTbfdYZPnTLEUazdUxbP1a8dGZHGTGXoKiWxY/PTy8W/vF5qo8sg4ypJLVN0MShKBbYxzg/HQ64ZtWLqCKGau10xHRNNqHXxFF0In5fi/0n7vOo7flMr1yvLOApwDCdQAR8uoA7X0IAWUBjDPTzCE5LoAT2jl0XpClr2HME3oNcPIKKNiw==</latexit><latexit sha1_base64="aVMlf10/tz8mxzQQDsXWTKt8lEI=">AAAB63icdVDLSgMxFL3xWeur6tJNsAh1U2akoMuCG5eV2ge0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/BszbQWfB0IO59zLvfeEieDGet47WlldW9/YLGwVt3d29/ZLB4dtE6eashaNRay7ITFMcMVallvBuolmRIaCdcLJVe537pg2PFa3dpqwQJKR4hGnxOZSpdk8G5TKXrXm5cC/iV+d/14ZlmgMSm/9YUxTyZSlghjT873EBhnRllPBZsV+alhC6ISMWM9RRSQzQTbfdYZPnTLEUazdUxbP1a8dGZHGTGXoKiWxY/PTy8W/vF5qo8sg4ypJLVN0MShKBbYxzg/HQ64ZtWLqCKGau10xHRNNqHXxFF0In5fi/0n7vOo7flMr1yvLOApwDCdQAR8uoA7X0IAWUBjDPTzCE5LoAT2jl0XpClr2HME3oNcPIKKNiw==</latexit><latexit sha1_base64="aVMlf10/tz8mxzQQDsXWTKt8lEI=">AAAB63icdVDLSgMxFL3xWeur6tJNsAh1U2akoMuCG5eV2ge0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/BszbQWfB0IO59zLvfeEieDGet47WlldW9/YLGwVt3d29/ZLB4dtE6eashaNRay7ITFMcMVallvBuolmRIaCdcLJVe537pg2PFa3dpqwQJKR4hGnxOZSpdk8G5TKXrXm5cC/iV+d/14ZlmgMSm/9YUxTyZSlghjT873EBhnRllPBZsV+alhC6ISMWM9RRSQzQTbfdYZPnTLEUazdUxbP1a8dGZHGTGXoKiWxY/PTy8W/vF5qo8sg4ypJLVN0MShKBbYxzg/HQ64ZtWLqCKGau10xHRNNqHXxFF0In5fi/0n7vOo7flMr1yvLOApwDCdQAR8uoA7X0IAWUBjDPTzCE5LoAT2jl0XpClr2HME3oNcPIKKNiw==</latexit>

(S �)
<latexit sha1_base64="icxvdgEYXBllqR22DCJoUDuLTS8=">AAAB7XicdVDLSgMxFL1TX7W+qi7dBItQQctMKeiy4MZlRfuAdiiZNNPGZpIhyQhl6D+4caGIW//HnX9jpq3g80DI4Zx7ufeeIOZMG9d9d3JLyyura/n1wsbm1vZOcXevpWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2MLzK/fUeVZlLcmElM/QgPBQsZwcZKrfJ17+T0uF8suZWamwH9Jl5l9rslWKDRL771BpIkERWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LBY6o9tPZtlN0ZJUBCqWyTxg0U792pDjSehIFtjLCZqR/epn4l9dNTHjup0zEiaGCzAeFCUdGoux0NGCKEsMnlmCimN0VkRFWmBgbUMGG8Hkp+p+0qhXP8qtaqV5exJGHAziEMnhwBnW4hAY0gcAt3MMjPDnSeXCenZd5ac5Z9OzDNzivHwFLjgE=</latexit><latexit sha1_base64="icxvdgEYXBllqR22DCJoUDuLTS8=">AAAB7XicdVDLSgMxFL1TX7W+qi7dBItQQctMKeiy4MZlRfuAdiiZNNPGZpIhyQhl6D+4caGIW//HnX9jpq3g80DI4Zx7ufeeIOZMG9d9d3JLyyura/n1wsbm1vZOcXevpWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2MLzK/fUeVZlLcmElM/QgPBQsZwcZKrfJ17+T0uF8suZWamwH9Jl5l9rslWKDRL771BpIkERWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LBY6o9tPZtlN0ZJUBCqWyTxg0U792pDjSehIFtjLCZqR/epn4l9dNTHjup0zEiaGCzAeFCUdGoux0NGCKEsMnlmCimN0VkRFWmBgbUMGG8Hkp+p+0qhXP8qtaqV5exJGHAziEMnhwBnW4hAY0gcAt3MMjPDnSeXCenZd5ac5Z9OzDNzivHwFLjgE=</latexit><latexit sha1_base64="icxvdgEYXBllqR22DCJoUDuLTS8=">AAAB7XicdVDLSgMxFL1TX7W+qi7dBItQQctMKeiy4MZlRfuAdiiZNNPGZpIhyQhl6D+4caGIW//HnX9jpq3g80DI4Zx7ufeeIOZMG9d9d3JLyyura/n1wsbm1vZOcXevpWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2MLzK/fUeVZlLcmElM/QgPBQsZwcZKrfJ17+T0uF8suZWamwH9Jl5l9rslWKDRL771BpIkERWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LBY6o9tPZtlN0ZJUBCqWyTxg0U792pDjSehIFtjLCZqR/epn4l9dNTHjup0zEiaGCzAeFCUdGoux0NGCKEsMnlmCimN0VkRFWmBgbUMGG8Hkp+p+0qhXP8qtaqV5exJGHAziEMnhwBnW4hAY0gcAt3MMjPDnSeXCenZd5ac5Z9OzDNzivHwFLjgE=</latexit><latexit sha1_base64="icxvdgEYXBllqR22DCJoUDuLTS8=">AAAB7XicdVDLSgMxFL1TX7W+qi7dBItQQctMKeiy4MZlRfuAdiiZNNPGZpIhyQhl6D+4caGIW//HnX9jpq3g80DI4Zx7ufeeIOZMG9d9d3JLyyura/n1wsbm1vZOcXevpWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2MLzK/fUeVZlLcmElM/QgPBQsZwcZKrfJ17+T0uF8suZWamwH9Jl5l9rslWKDRL771BpIkERWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LBY6o9tPZtlN0ZJUBCqWyTxg0U792pDjSehIFtjLCZqR/epn4l9dNTHjup0zEiaGCzAeFCUdGoux0NGCKEsMnlmCimN0VkRFWmBgbUMGG8Hkp+p+0qhXP8qtaqV5exJGHAziEMnhwBnW4hAY0gcAt3MMjPDnSeXCenZd5ac5Z9OzDNzivHwFLjgE=</latexit>

(SA)
<latexit sha1_base64="K077EihMt8kUN/ggbKQTRWd0wr0=">AAAB63icdVDLSgMxFL2pr1pfVZdugkWomzIjBV1W3LisaGuhHUomzbShSWZIMkIZ+gtuXCji1h9y59+YaSv4PBByOOde7r0nTAQ31vPeUWFpeWV1rbhe2tjc2t4p7+61TZxqylo0FrHuhMQwwRVrWW4F6ySaERkKdhuOL3L/9o5pw2N1YycJCyQZKh5xSmwuVa/Pj/vlilereznwb+LXZr9XgQWa/fJbbxDTVDJlqSDGdH0vsUFGtOVUsGmplxqWEDomQ9Z1VBHJTJDNdp3iI6cMcBRr95TFM/VrR0akMRMZukpJ7Mj89HLxL6+b2ugsyLhKUssUnQ+KUoFtjPPD8YBrRq2YOEKo5m5XTEdEE2pdPCUXwuel+H/SPqn5jl/VK43qIo4iHMAhVMGHU2jAJTShBRRGcA+P8IQkekDP6GVeWkCLnn34BvT6AQVIjXk=</latexit><latexit sha1_base64="K077EihMt8kUN/ggbKQTRWd0wr0=">AAAB63icdVDLSgMxFL2pr1pfVZdugkWomzIjBV1W3LisaGuhHUomzbShSWZIMkIZ+gtuXCji1h9y59+YaSv4PBByOOde7r0nTAQ31vPeUWFpeWV1rbhe2tjc2t4p7+61TZxqylo0FrHuhMQwwRVrWW4F6ySaERkKdhuOL3L/9o5pw2N1YycJCyQZKh5xSmwuVa/Pj/vlilereznwb+LXZr9XgQWa/fJbbxDTVDJlqSDGdH0vsUFGtOVUsGmplxqWEDomQ9Z1VBHJTJDNdp3iI6cMcBRr95TFM/VrR0akMRMZukpJ7Mj89HLxL6+b2ugsyLhKUssUnQ+KUoFtjPPD8YBrRq2YOEKo5m5XTEdEE2pdPCUXwuel+H/SPqn5jl/VK43qIo4iHMAhVMGHU2jAJTShBRRGcA+P8IQkekDP6GVeWkCLnn34BvT6AQVIjXk=</latexit><latexit sha1_base64="K077EihMt8kUN/ggbKQTRWd0wr0=">AAAB63icdVDLSgMxFL2pr1pfVZdugkWomzIjBV1W3LisaGuhHUomzbShSWZIMkIZ+gtuXCji1h9y59+YaSv4PBByOOde7r0nTAQ31vPeUWFpeWV1rbhe2tjc2t4p7+61TZxqylo0FrHuhMQwwRVrWW4F6ySaERkKdhuOL3L/9o5pw2N1YycJCyQZKh5xSmwuVa/Pj/vlilereznwb+LXZr9XgQWa/fJbbxDTVDJlqSDGdH0vsUFGtOVUsGmplxqWEDomQ9Z1VBHJTJDNdp3iI6cMcBRr95TFM/VrR0akMRMZukpJ7Mj89HLxL6+b2ugsyLhKUssUnQ+KUoFtjPPD8YBrRq2YOEKo5m5XTEdEE2pdPCUXwuel+H/SPqn5jl/VK43qIo4iHMAhVMGHU2jAJTShBRRGcA+P8IQkekDP6GVeWkCLnn34BvT6AQVIjXk=</latexit><latexit sha1_base64="K077EihMt8kUN/ggbKQTRWd0wr0=">AAAB63icdVDLSgMxFL2pr1pfVZdugkWomzIjBV1W3LisaGuhHUomzbShSWZIMkIZ+gtuXCji1h9y59+YaSv4PBByOOde7r0nTAQ31vPeUWFpeWV1rbhe2tjc2t4p7+61TZxqylo0FrHuhMQwwRVrWW4F6ySaERkKdhuOL3L/9o5pw2N1YycJCyQZKh5xSmwuVa/Pj/vlilereznwb+LXZr9XgQWa/fJbbxDTVDJlqSDGdH0vsUFGtOVUsGmplxqWEDomQ9Z1VBHJTJDNdp3iI6cMcBRr95TFM/VrR0akMRMZukpJ7Mj89HLxL6+b2ugsyLhKUssUnQ+KUoFtjPPD8YBrRq2YOEKo5m5XTEdEE2pdPCUXwuel+H/SPqn5jl/VK43qIo4iHMAhVMGHU2jAJTShBRRGcA+P8IQkekDP6GVeWkCLnn34BvT6AQVIjXk=</latexit>

(�S)
<latexit sha1_base64="4Z8ZrhPpLdS3NqF81e8VxlEqSNA=">AAAB7XicdVDLSgMxFL1TX7W+qi7dBItQQctMKeiy4MZlRfuAdiiZNNPGZpIhyQhl6D+4caGIW//HnX9jpq3g80DI4Zx7ufeeIOZMG9d9d3JLyyura/n1wsbm1vZOcXevpWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2MLzK/fUeVZlLcmElM/QgPBQsZwcZKrfJp7+T6uF8suZWamwH9Jl5l9rslWKDRL771BpIkERWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LBY6o9tPZtlN0ZJUBCqWyTxg0U792pDjSehIFtjLCZqR/epn4l9dNTHjup0zEiaGCzAeFCUdGoux0NGCKEsMnlmCimN0VkRFWmBgbUMGG8Hkp+p+0qhXP8qtaqV5exJGHAziEMnhwBnW4hAY0gcAt3MMjPDnSeXCenZd5ac5Z9OzDNzivHwDZjgE=</latexit><latexit sha1_base64="4Z8ZrhPpLdS3NqF81e8VxlEqSNA=">AAAB7XicdVDLSgMxFL1TX7W+qi7dBItQQctMKeiy4MZlRfuAdiiZNNPGZpIhyQhl6D+4caGIW//HnX9jpq3g80DI4Zx7ufeeIOZMG9d9d3JLyyura/n1wsbm1vZOcXevpWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2MLzK/fUeVZlLcmElM/QgPBQsZwcZKrfJp7+T6uF8suZWamwH9Jl5l9rslWKDRL771BpIkERWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LBY6o9tPZtlN0ZJUBCqWyTxg0U792pDjSehIFtjLCZqR/epn4l9dNTHjup0zEiaGCzAeFCUdGoux0NGCKEsMnlmCimN0VkRFWmBgbUMGG8Hkp+p+0qhXP8qtaqV5exJGHAziEMnhwBnW4hAY0gcAt3MMjPDnSeXCenZd5ac5Z9OzDNzivHwDZjgE=</latexit><latexit sha1_base64="4Z8ZrhPpLdS3NqF81e8VxlEqSNA=">AAAB7XicdVDLSgMxFL1TX7W+qi7dBItQQctMKeiy4MZlRfuAdiiZNNPGZpIhyQhl6D+4caGIW//HnX9jpq3g80DI4Zx7ufeeIOZMG9d9d3JLyyura/n1wsbm1vZOcXevpWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2MLzK/fUeVZlLcmElM/QgPBQsZwcZKrfJp7+T6uF8suZWamwH9Jl5l9rslWKDRL771BpIkERWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LBY6o9tPZtlN0ZJUBCqWyTxg0U792pDjSehIFtjLCZqR/epn4l9dNTHjup0zEiaGCzAeFCUdGoux0NGCKEsMnlmCimN0VkRFWmBgbUMGG8Hkp+p+0qhXP8qtaqV5exJGHAziEMnhwBnW4hAY0gcAt3MMjPDnSeXCenZd5ac5Z9OzDNzivHwDZjgE=</latexit><latexit sha1_base64="4Z8ZrhPpLdS3NqF81e8VxlEqSNA=">AAAB7XicdVDLSgMxFL1TX7W+qi7dBItQQctMKeiy4MZlRfuAdiiZNNPGZpIhyQhl6D+4caGIW//HnX9jpq3g80DI4Zx7ufeeIOZMG9d9d3JLyyura/n1wsbm1vZOcXevpWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2MLzK/fUeVZlLcmElM/QgPBQsZwcZKrfJp7+T6uF8suZWamwH9Jl5l9rslWKDRL771BpIkERWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LBY6o9tPZtlN0ZJUBCqWyTxg0U792pDjSehIFtjLCZqR/epn4l9dNTHjup0zEiaGCzAeFCUdGoux0NGCKEsMnlmCimN0VkRFWmBgbUMGG8Hkp+p+0qhXP8qtaqV5exJGHAziEMnhwBnW4hAY0gcAt3MMjPDnSeXCenZd5ac5Z9OzDNzivHwDZjgE=</latexit>

Figure 2: All possible kinds of claws at any time t. S refers to sample edges in It (drawn in orange), A
refers to an accepted edge in It (drawn in green), and − refers to any other edge (drawn in gray).

i ∈ [n]
}
∪
{
e′i = {b, vi} : i ∈ [n]

}
. Several weight assignments to the edges of the hat can serve as coun-

terexamples to the algorithms considered in this section, but we consider a particular weight assignment
for ease of exposition (as we only need one counterexample). We de�ne this weight functionw : E → R≥0
to maintain the following ordering of the edge weights: w(e1) > . . . > w(en) > w(e′1) > . . . > w(e′n).
Furthermore, w({a, b}) is much larger than the sum of the weights of all other edges. We will refer to
{a, b} as the in�nity edge, and we refer to its arrival time as t∞ := t({a, b}) to emphasize this. Addition-
ally, we consider the drawing of the hat in the plane as shown in Figure 1, where ei is to the le� of ej for
i < j, and ei is above e′i for all i. Accordingly, we will sometimes refer to the relative position of edges to
imply a relation between their relative weights.

We call the pair of edges (ei, e
′
i) the i-th claw. Recall that any algorithm satisfying the 3 properties

listed in Section 3.1 has memory limited to an independent set It. At any time t, given the history of
arrivals and the algorithm’s past decisions, we can classify the claws into one of 9 kinds in {−, A, S}2.
�e �rst character in the pair describes the state of the top edge ei, and the second character describes the
state of the bo�om edge e′i. S refers to an edge that is in It and arrived in the sampling stage. A refers to
an edge that has been accepted by the algorithm (and is therefore in It). − refers to any edge that is not
in It. For example, if the i-th claw is of type (S−) at some time t, it means that t(ei) < T , ei ∈ It, and
e′i 6∈ It. Figure 2 illustrates these claws.

We next state a few lemmas about di�erent classes of claws and their implications about the perfor-
mance of the algorithm. Since the in�nity edge weighs signi�cantly more than other edges combined,
we say the algorithm “loses” (i.e., fails to have a constant utility-competitive ratio) if it fails to accept the
in�nity edge. Conversely, the algorithm “wins” if it accepts the in�nity edge. Our �rst observation char-
acterizes the exact scenarios in which the algorithm loses. All missing proofs in this section can be found
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in Appendix A.1.

Observation 7 (Loss condition). �e algorithm loses i� there is an (AA) claw before t∞.10

�e next lemma speci�es the unique blocking structure that would prevent the loss-inducing (AA)
claws from forming. Our analysis focuses on the case of a (−A) claw becoming a (AA) claw, as these
events are signi�cantly more likely than a (A−) claw turning into an (AA) claw, and su�ce for our
analysis.

Lemma 8 (Blockers and Protection). Suppose there is no (AA) claw yet. Consider a (−A) claw whose upper
edge is about to arrive. �e upper edge is accepted i� there is no (SA) claw to its le�. For this reason, we will
refer to (SA) as the blocker. We say that the algorithm is protected at time t if there is a blocker in It.

Importantly, note that there can be at most one blocker in It, as two blockers form a cycle. So we can
unambiguously refer to the blocker at any time t. A blocker’s e�ectiveness is a function of its location:
Blockers far to the le� “protect” more claws and are therefore more e�ective.

With this language in mind, we can reframe the algorithm’s objective, while working within the Greedy
framework. �e algorithm loses whenever the upper edge of a (−A) claw arrives without a blocker to
its le�. So the algorithm would like to maintain a blocker in It as far to the le� as possible.11 So the
remainder of this section studies decisions the algorithm can make (again, within the Greedy framework)
to include blockers far to the le�. Lemma 9, however, establishes that we cannot create a new blocker
without destroying our old one �rst (thereby going “unprotected” for some period).

Lemma 9. If the lower edge of an (S−) arrives at time t and It has a blocker, this edge will not be accepted.

Lemma 9 means that the algorithm faces a tradeo�. If It has a blocker, it is safe from accepting the
upper edge of a (−A) claw to its right at time t. But, the algorithm cannot move its blocker to the le�, even if
the lower edge of an (S−) arrives during this interval. Alternatively, the algorithm may not have a blocker
during It. In that case, the algorithm can possibly accept a good blocker, if one happens to arrive at time
t. But, the algorithm is at risk of accepting the upper edge of a (−A) claw that arrives at time t no ma�er
its location, because It has no blockers at all.

3.3 Warm Up: Ruling out the Supergreedy Algorithm

In the appendix of the same paper in which they introduced the general matroid secretary conjecture,
Babaio� et al. [BIKK18] also show that the following supergreedy algorithm cannot be constant-utility-
competitive. In Appendix A.2 we will restate their proof in the slightly di�erent language of claws and
blockers, in part for completeness, and in part as a warm-up for the more involved proof in the following
section. We �rst de�ne the supergreedy algorithm,12 which speci�es a particular choice of It:

(iv) At all t, It is the maximum-weight set subject to constraints (i), (ii), (iii) (It := MWB((M\At)|VT )∪
At).

Observation 10. �e unique algorithm that satis�es properties (i) to (iv) is Algorithm 2.

10Babaio� et al. [BIKK18] used the same graph as a counterexample to a special case of our greedy algorithm (see Section 3.3),
also relying on this observation. Our lemmas are otherwise new, and necessary since we rule out a much larger class of greedy-like
algorithms.

11Note that an arbitrary algorithm can simply decide to violate the properties de�ning Greedy. Our goal is to analyze Greedy
algorithms, which must �t this framework.

12We call this algorithm supergreedy, since in addition to the greedy property of always accepting elements according to the
Greedy rule, it makes greedy choices about what elements to kick out of It (in particular, ones that improve It the most).
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Algorithm 2 Supergreedy Algorithm
Accept an element e i�

1. e arrives a�er T (t(e) > T );
2. it is feasible to accept e (At(e) ∪ {e} ∈ I);
3. even a�er contracting by the accepted elements so far, e is still in the max-weight basis of elements

seen so far (e ∈ MWB((M\At(e))|Vt(e)∪{e})).

�eorem 11 ([BIKK18]). �e supergreedy algorithm is not α-utility-competitive for constant α.

A full proof (in our language) appears in Appendix A.2. But we overview the main idea here, as it will
help demonstrate the di�erence between this particular greedy algorithm and an arbitrary one. Observe
�rst that an (SS) claw in I prevents any blockers forming to its right.13 Observe also it is extremely likely
that the le�-most (SS) claw is very far to the le�, and IT must contain it. �erefore, in order to get a
blocker, that blocker must either be to the le� of the (SS) claw (and thus will take a long time to arrive),
or that (SS) claw must be discarded (i.e. one of its edges must be removed from I).

�e supergreedy algorithm does not discard the (SS) claw, except with an (AS) or (SA) claw to its
le� (both of which take a long time to arrive). �is means that until one of these claws arrive, we cannot
block an (AA) from occurring, and we are extremely likely to see an (AA) (in fact, we’re likely to see
Ω(n) of them) before this happens.

�e full proof just elaborates on the steps in this outline and makes calculations rigorous, but the
outline above su�ces to draw a distinction to arbitrary greedy algorithms. �e supergreedy algorithm
will only discard an (SS) claw when the lower S is no longer in the max-weight basis (contracted by A).
In order for this to happen, we must have a complete (AS) or (SA) claw to its le�, and this takes time to
arrive. An arbitrary greedy algorithm, however, can instead immediately replace this far-le� (SS) claw
with a far-right (SS) claw, because it is not constrained to maintain a max-weight basis in It. Indeed, this
�exibility allows the algorithm to actually engage in the tradeo� highlighted at the end of the previous
section, and turn blockers ‘on’ or ‘o�’.

3.4 Main Result: Ruling out all Greedy Algorithms

Armed with a be�er understanding of some properties of the hat structure and �eorem 11 as warmup,
we are ready to prove �eorem 6, which states that greedy algorithms fail to be α-utility-competitive for
any constant α.

We give a detailed proof sketch below, and defer calculations to Appendix A.3. We �rst repeat the
main intuition: �e algorithm’s goal is to not accept any (AA) claw before t∞ (Observation 7). To do so,
the algorithm must make sure It includes a blocker to the le� of every (−A) whose upper edge arrives at
time t < t∞ (Lemma 8). We can order potential blockers (S−) by the arrival times of their lower edges,
each of which is uniformly distributed in [T, 1]. �erefore, it is unlikely that a blocker far to the le� arrives
very early.

�e algorithm can try to start with a mediocre blocker and improve it over time by accepting blockers
further to the le� as they arrive. �e caveat is that due to Lemma 9, blocker improvements are only possible
in unprotected periods, during which any arriving upper edge of (−A) claws is accepted. �erefore, the
algorithm faces a trade-o�: Forming a more e�ective blocker costs more unprotected time. Importantly,

13�is is because when the lower edge arrives, it is lighter than both edges in the (SS) claw to its le�, as well as the S edge
above it.
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the algorithm does not know whether the next arriving edge will be part of a potential blocker, or part of
an (−A).

In order to show that the algorithm fails, we show that with high probability there will be a (AA)
claw before the arrival of the in�nity edge. Speci�cally, we show that with high probability, an (−A) claw
becomes (AA) in an interval of length ` = n−0.1 a�er T , which is with high probability before the arrival
of the in�nity edge.

We now get into details of our proof approach. We �rst choose a parameter x ∈ [n] (thinking of the
claws as labeled 1 through n from le� to right). We will undercount the algorithm’s failure, noting that it
fails whenever any of the following happens:

• �e upper edge of some (−A) to the le� of x arrives during [T, T + `], and It does not include any
blocker to the le� of x for any t ∈ [T, T + `].

• �e upper edge of some (−A) arrives at an unprotected t ∈ [T, T + `].

In other words, we are zeroing in on two potential sources of failure: the upper edge of any (−A)
claw could arrive during an unprotected time, or the upper edge of an (−A) claw to the le� of x could
arrive before the algorithm accepts a blocker to the le� of x. Note that these are very narrow possibilities
for failure, but they su�ce for our analysis.

So there are three probabilities to analyze. �e �rst part of the �rst bullet is independent of the algo-
rithm,14 and simply considers the probability that the upper edge of a (−A) to the le� of x arrives during
[T, T + `].

Lemma 12. With probability at least 1 − 2−`
2x/2, the upper edge of a (−A) claw to the le� of x arrives

between T and T + `.

�e next two probabilities are signi�cantly more involved, as they consider decisions made by the
algorithm. Note that the algorithm can decide adaptively when to go unprotected, based on the current
ratio of (−A)s (potential (AA)s) versus (S−)s (potential blockers) to the le� of x. To this end, we will
let the algorithm adaptively choose any (measurable) subset of [T, T + `] to go unprotected, and let y
denote the total measure of this interval.15 y captures the aforementioned tradeo�: small y means that the
algorithm is likely to fail bullet one, while large y means the algorithm is likely to fail bullet two. Lemma 13
quanti�es the cost of keeping y small, lowerbounding the probability of the second part of the �rst bullet.

Lemma 13. Conditioned on the upper edge of a (−A) claw to the le� of x arriving between T and T + ` (i.e.
Lemma 12 happening), any greedy algorithm which goes unprotected for a total measure of y during [T, T+`]
fails to accept a blocker to the le� of x with probability at least:

(1− 2x`e−
2x
3 )(1− y)4x.

Finally, we analyze the second bullet, lower bounding the probability that the upper edge of a (−A)
claw (anywhere) arrives during a period when the algorithm is unprotected (while the precise form is
complicated, recall the intuition that as y gets larger, the probability of this particular bad event goes up,
and y is at most `):

Lemma 14. Any greedy algorithm which goes unprotected for a total measure of y ≥ n−0.4/2 during [T, T+
`] has the upper edge of a (−A) claw arrive during an unprotected t with probability at least:

1−
(

1− 2y − n−0.4
2`

)n0.6(4`−n−0.4)

32`2

.

14Recall that the �rst edge of a (−−) claw to arrive must always be accepted since It must span Vt.
15�e algorithm does not need to commit to the value of y in advance or choose it deterministically.
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Finally, we just need to combine the three bounds in Lemmas 12, 13, 14. We will choose a value of
` and x for the analysis, and then the algorithm (knowing x) can adaptively allocate the unprotected
intervals within [T, T + `] for a total measure of y. More formally, we let f(y) = (1 − 2x`e−

2x
3 )(1 −

y)4x
(

1− (12)`
2x/2

)
denote the lowerbound on failure probability derived in Lemma 13. Furthermore, we

let

g(y) =

1−
(

1− 2y−n−0.4

2`

)n0.6(4`−n−0.4)

32`2 , y ≥ n−0.4

2 ;

0, y < n−0.4

2 .

�e �rst case follows from Lemma 14, and se�ing g to 0 elsewhere only strengthens our lower bound.
Overall, the algorithm fails with probability at least miny{max{f(y), g(y)}}. �e next lemma sets param-
eters to lower bound this expression.

Lemma 15. When x = n0.3 and ` = n−0.1, we have

lim
n→∞

min
y∈[0,`]

max{f(y), g(y)} = 1.

�e proof of �eorem 6 now follows from the four lemmas of this section.

4 Randomized Partition Algorithms

�is section is devoted to a class of algorithms based on partition matroids. �ese are generalizations of
an algorithm by Korula and Pal [KP09] for the secretary problem on graphic matroids. We begin by brie�y
describing their result in Section 4.1, proceeding to show in Section 4.3 and Section 4.4 that this algorithm
and several natural generalizations of it fail to provide good probability-competitive performance.

4.1 �e Korula-Pal [KP09] Algorithm for Graphic Matroids

Recall that for any undirected connected graphG = (E, V ), one can de�ne a graphic matroidM = (E, I),
where the ground set E is exactly the edge set of G and the independent set collection I is the set of all
acyclic subgraphs ofG. �e bases of a graphic matroid are exactly the set of spanning trees16 of the graph.

�e following algorithm due to Korula and Pal [KP09] achieves a utility-competitive ratio of 2e on
graphic matroids: Figure 3 shows an instance of such a random partitions.

Algorithm 3 Korula-Pal [KP09] Algorithm

1. Before any edges arrive, partition the edges of the graph o�ine as follows:

• Pick a random ordering σ : V → [n] of nodes.
• For each edge e = (u, v), with σ(u) < σ(v), put e in Eu (otherwise, put it in Ev).

2. Run Dynkin’s algorithm on all the Evs in parallel, and output the union of all selected edges.

�eorem 16 ([KP09]). Algorithm 3 is 1/(2e)-utility-competitive.

For completeness, we present the (short) proof of this theorem in Appendix A.4, and highlight why
the proof gives utility-competitiveness but not probability-competitiveness.

16Or spanning forests in the case of disconnected graphs.
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1
<latexit sha1_base64="u5Gwavyc9Y2rUxer7KamAQV8NBQ=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSKdRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi1vWK64VXcpsgleDhXI1RyWvwajmKURSsME1brvuYnxM6oMZwLnpUGqMaFsSsfYtyhphNrPlovOyZV1RiSMlX3SkKX7eyKjkdazKLCdETUTvV5bmP/V+qkJb/2MyyQ1KNnqozAVxMRkcTUZcYXMiJkFyhS3uxI2oYoyY7Mp2RC89ZM3oXNT9Sy3apVGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Y+czx92aYyn</latexit><latexit sha1_base64="u5Gwavyc9Y2rUxer7KamAQV8NBQ=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSKdRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi1vWK64VXcpsgleDhXI1RyWvwajmKURSsME1brvuYnxM6oMZwLnpUGqMaFsSsfYtyhphNrPlovOyZV1RiSMlX3SkKX7eyKjkdazKLCdETUTvV5bmP/V+qkJb/2MyyQ1KNnqozAVxMRkcTUZcYXMiJkFyhS3uxI2oYoyY7Mp2RC89ZM3oXNT9Sy3apVGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Y+czx92aYyn</latexit><latexit sha1_base64="u5Gwavyc9Y2rUxer7KamAQV8NBQ=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSKdRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi1vWK64VXcpsgleDhXI1RyWvwajmKURSsME1brvuYnxM6oMZwLnpUGqMaFsSsfYtyhphNrPlovOyZV1RiSMlX3SkKX7eyKjkdazKLCdETUTvV5bmP/V+qkJb/2MyyQ1KNnqozAVxMRkcTUZcYXMiJkFyhS3uxI2oYoyY7Mp2RC89ZM3oXNT9Sy3apVGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Y+czx92aYyn</latexit><latexit sha1_base64="u5Gwavyc9Y2rUxer7KamAQV8NBQ=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSKdRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWi1vWK64VXcpsgleDhXI1RyWvwajmKURSsME1brvuYnxM6oMZwLnpUGqMaFsSsfYtyhphNrPlovOyZV1RiSMlX3SkKX7eyKjkdazKLCdETUTvV5bmP/V+qkJb/2MyyQ1KNnqozAVxMRkcTUZcYXMiJkFyhS3uxI2oYoyY7Mp2RC89ZM3oXNT9Sy3apVGLY+jCBdwCdfgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Y+czx92aYyn</latexit>

2
<latexit sha1_base64="GyWB4myB6kTj+EAZlGx9XyDJVRU=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSUtBjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWq3asFxxq+5SZBO8HCqQqzksfw1GMUsjlIYJqnXfcxPjZ1QZzgTOS4NUY0LZlI6xb1HSCLWfLRedkyvrjEgYK/ukIUv390RGI61nUWA7I2omer22MP+r9VMT3voZl0lqULLVR2EqiInJ4moy4gqZETMLlCludyVsQhVlxmZTsiF46ydvQqdW9Sy36pVGPY+jCBdwCdfgwQ004B6a0AYGCM/wCm/Oo/PivDsfq9aCk8+cwx85nz937Yyo</latexit><latexit sha1_base64="GyWB4myB6kTj+EAZlGx9XyDJVRU=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSUtBjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWq3asFxxq+5SZBO8HCqQqzksfw1GMUsjlIYJqnXfcxPjZ1QZzgTOS4NUY0LZlI6xb1HSCLWfLRedkyvrjEgYK/ukIUv390RGI61nUWA7I2omer22MP+r9VMT3voZl0lqULLVR2EqiInJ4moy4gqZETMLlCludyVsQhVlxmZTsiF46ydvQqdW9Sy36pVGPY+jCBdwCdfgwQ004B6a0AYGCM/wCm/Oo/PivDsfq9aCk8+cwx85nz937Yyo</latexit><latexit sha1_base64="GyWB4myB6kTj+EAZlGx9XyDJVRU=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSUtBjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWq3asFxxq+5SZBO8HCqQqzksfw1GMUsjlIYJqnXfcxPjZ1QZzgTOS4NUY0LZlI6xb1HSCLWfLRedkyvrjEgYK/ukIUv390RGI61nUWA7I2omer22MP+r9VMT3voZl0lqULLVR2EqiInJ4moy4gqZETMLlCludyVsQhVlxmZTsiF46ydvQqdW9Sy36pVGPY+jCBdwCdfgwQ004B6a0AYGCM/wCm/Oo/PivDsfq9aCk8+cwx85nz937Yyo</latexit><latexit sha1_base64="GyWB4myB6kTj+EAZlGx9XyDJVRU=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FSSUtBjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWq3asFxxq+5SZBO8HCqQqzksfw1GMUsjlIYJqnXfcxPjZ1QZzgTOS4NUY0LZlI6xb1HSCLWfLRedkyvrjEgYK/ukIUv390RGI61nUWA7I2omer22MP+r9VMT3voZl0lqULLVR2EqiInJ4moy4gqZETMLlCludyVsQhVlxmZTsiF46ydvQqdW9Sy36pVGPY+jCBdwCdfgwQ004B6a0AYGCM/wCm/Oo/PivDsfq9aCk8+cwx85nz937Yyo</latexit>

3
<latexit sha1_base64="4+Sv6kUmumQT/Ty/bYRhZwssTRg=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix4MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjreb1oFxxq+5CZB28HCqQqzEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLRadkQvrDEkYK/ukIQv390RGI62nUWA7I2rGerU2N/+r9VIT3voZl0lqULLlR2EqiInJ/Goy5AqZEVMLlCludyVsTBVlxmZTsiF4qyevQ/uq6llu1ir1Wh5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9yPn8AeXGMqQ==</latexit><latexit sha1_base64="4+Sv6kUmumQT/Ty/bYRhZwssTRg=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix4MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjreb1oFxxq+5CZB28HCqQqzEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLRadkQvrDEkYK/ukIQv390RGI62nUWA7I2rGerU2N/+r9VIT3voZl0lqULLlR2EqiInJ/Goy5AqZEVMLlCludyVsTBVlxmZTsiF4qyevQ/uq6llu1ir1Wh5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9yPn8AeXGMqQ==</latexit><latexit sha1_base64="4+Sv6kUmumQT/Ty/bYRhZwssTRg=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix4MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjreb1oFxxq+5CZB28HCqQqzEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLRadkQvrDEkYK/ukIQv390RGI62nUWA7I2rGerU2N/+r9VIT3voZl0lqULLlR2EqiInJ/Goy5AqZEVMLlCludyVsTBVlxmZTsiF4qyevQ/uq6llu1ir1Wh5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9yPn8AeXGMqQ==</latexit><latexit sha1_base64="4+Sv6kUmumQT/Ty/bYRhZwssTRg=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSLeix4MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjreb1oFxxq+5CZB28HCqQqzEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLRadkQvrDEkYK/ukIQv390RGI62nUWA7I2rGerU2N/+r9VIT3voZl0lqULLlR2EqiInJ/Goy5AqZEVMLlCludyVsTBVlxmZTsiF4qyevQ/uq6llu1ir1Wh5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9yPn8AeXGMqQ==</latexit>

4
<latexit sha1_base64="QAl9z0O12pPkaTx5BZZoANJfFlw=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSKdRjwYvHFuwHtKFstpN27WYTdjdCCf0FXjwo4tWf5M1/47bNQVtfWHh4Z4adeYNEcG1c99spbG3v7O4V90sHh0fHJ+XTs46OU8WwzWIRq15ANQousW24EdhLFNIoENgNpneLevcJleaxfDCzBP2IjiUPOaPGWq3asFxxq+5SZBO8HCqQqzksfw1GMUsjlIYJqnXfcxPjZ1QZzgTOS4NUY0LZlI6xb1HSCLWfLRedkyvrjEgYK/ukIUv390RGI61nUWA7I2omer22MP+r9VMT3voZl0lqULLVR2EqiInJ4moy4gqZETMLlCludyVsQhVlxmZTsiF46ydvQuem6llu1SqNWh5HES7gEq7Bgzo04B6a0AYGCM/wCm/Oo/PivDsfq9aCk8+cwx85nz969Yyq</latexit><latexit sha1_base64="RCj+M5ritHN8Wos/aT2ImYJNIak=">AAAB5HicbZBNS8NAEIYn9avGr+rVy2IRPJVECnosePFYwbSFNpTNdtKu3WzC7kYoob/AiwfFq7/Jm//GbZuDtr6w8PDODDvzRpng2njet1PZ2t7Z3avuuweHR8cnNfe0o9NcMQxYKlLVi6hGwSUGhhuBvUwhTSKB3Wh6t6h3n1FpnspHM8swTOhY8pgzaqz10BzW6l7DW4psgl9CHUq1h7WvwShleYLSMEG17vteZsKCKsOZwLk7yDVmlE3pGPsWJU1Qh8Vy0Tm5tM6IxKmyTxqydH9PFDTRepZEtjOhZqLXawvzv1o/N/FtWHCZ5QYlW30U54KYlCyuJiOukBkxs0CZ4nZXwiZUUWZsNq4NwV8/eRM61w3fcr3VLMOowjlcwBX4cAMtuIc2BMAA4QXe4N15cl6dj1VjxSknzuCPnM8fELuLgA==</latexit><latexit sha1_base64="RCj+M5ritHN8Wos/aT2ImYJNIak=">AAAB5HicbZBNS8NAEIYn9avGr+rVy2IRPJVECnosePFYwbSFNpTNdtKu3WzC7kYoob/AiwfFq7/Jm//GbZuDtr6w8PDODDvzRpng2njet1PZ2t7Z3avuuweHR8cnNfe0o9NcMQxYKlLVi6hGwSUGhhuBvUwhTSKB3Wh6t6h3n1FpnspHM8swTOhY8pgzaqz10BzW6l7DW4psgl9CHUq1h7WvwShleYLSMEG17vteZsKCKsOZwLk7yDVmlE3pGPsWJU1Qh8Vy0Tm5tM6IxKmyTxqydH9PFDTRepZEtjOhZqLXawvzv1o/N/FtWHCZ5QYlW30U54KYlCyuJiOukBkxs0CZ4nZXwiZUUWZsNq4NwV8/eRM61w3fcr3VLMOowjlcwBX4cAMtuIc2BMAA4QXe4N15cl6dj1VjxSknzuCPnM8fELuLgA==</latexit><latexit sha1_base64="RCj+M5ritHN8Wos/aT2ImYJNIak=">AAAB5HicbZBNS8NAEIYn9avGr+rVy2IRPJVECnosePFYwbSFNpTNdtKu3WzC7kYoob/AiwfFq7/Jm//GbZuDtr6w8PDODDvzRpng2njet1PZ2t7Z3avuuweHR8cnNfe0o9NcMQxYKlLVi6hGwSUGhhuBvUwhTSKB3Wh6t6h3n1FpnspHM8swTOhY8pgzaqz10BzW6l7DW4psgl9CHUq1h7WvwShleYLSMEG17vteZsKCKsOZwLk7yDVmlE3pGPsWJU1Qh8Vy0Tm5tM6IxKmyTxqydH9PFDTRepZEtjOhZqLXawvzv1o/N/FtWHCZ5QYlW30U54KYlCyuJiOukBkxs0CZ4nZXwiZUUWZsNq4NwV8/eRM61w3fcr3VLMOowjlcwBX4cAMtuIc2BMAA4QXe4N15cl6dj1VjxSknzuCPnM8fELuLgA==</latexit>

5
<latexit sha1_base64="p4SttikC0FpmZgnpnWhmuqlEn58=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSqeix4MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjreb1oFxxq+5CZB28HCqQqzEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLRadkQvrDEkYK/ukIQv390RGI62nUWA7I2rGerU2N/+r9VIT3voZl0lqULLlR2EqiInJ/Goy5AqZEVMLlCludyVsTBVlxmZTsiF4qyevQ/uq6llu1ir1Wh5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9yPn8AfHmMqw==</latexit><latexit sha1_base64="p4SttikC0FpmZgnpnWhmuqlEn58=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSqeix4MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjreb1oFxxq+5CZB28HCqQqzEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLRadkQvrDEkYK/ukIQv390RGI62nUWA7I2rGerU2N/+r9VIT3voZl0lqULLlR2EqiInJ/Goy5AqZEVMLlCludyVsTBVlxmZTsiF4qyevQ/uq6llu1ir1Wh5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9yPn8AfHmMqw==</latexit><latexit sha1_base64="p4SttikC0FpmZgnpnWhmuqlEn58=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSqeix4MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjreb1oFxxq+5CZB28HCqQqzEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLRadkQvrDEkYK/ukIQv390RGI62nUWA7I2rGerU2N/+r9VIT3voZl0lqULLlR2EqiInJ/Goy5AqZEVMLlCludyVsTBVlxmZTsiF4qyevQ/uq6llu1ir1Wh5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9yPn8AfHmMqw==</latexit><latexit sha1_base64="p4SttikC0FpmZgnpnWhmuqlEn58=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSqeix4MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0UNja3tneKu6W9/YPDo/LxSVvHqWLYYrGIVTegGgWX2DLcCOwmCmkUCOwEk7t5vfOESvNYPphpgn5ER5KHnFFjreb1oFxxq+5CZB28HCqQqzEof/WHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ1HSCLWfLRadkQvrDEkYK/ukIQv390RGI62nUWA7I2rGerU2N/+r9VIT3voZl0lqULLlR2EqiInJ/Goy5AqZEVMLlCludyVsTBVlxmZTsiF4qyevQ/uq6llu1ir1Wh5HEc7gHC7Bgxuowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9yPn8AfHmMqw==</latexit>

6
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Figure 3: It shows a partition of edges of a complete graph where edges in the same part are drawn with
the same color. �e numbers next to each vertex denote the σ values.

4.2 De�ning Randomized Partition Algorithms

�e algorithm by Korula and Pal [KP09] was phrased in the language of graphs. Let us try to generalize it in
a language applicable to all matroids. Before seeing any weights, their algorithm restricts itself (randomly)
to accepting only a subset of independent sets. More speci�cally, the algorithm will restrict its a�ention
to the disjoint union17 of solutions to simpler subproblems. �e algorithm must ensure that for all feasible
solutions to the subproblems, their union is a feasible solution to the main problem. In the case of the
Korula-Pal algorithm, the smaller subproblems are instances of 1-uniform matroid secretary problems.
(Several other algorithms for the Matroid Secretary Problem use similar high-level techniques, where the
“simpler” matroids are not 1-uniform [FSZ15, HN16, Lac14, Sot11], and this idea is also used for the related
prophet inequality [FSZ16].)

More concretely, we say that a partition is valid if the union of what is accepted by the instances
of Dynkin’s algorithm is an independent set (regardless of the weights and order of arrivals). Now we
consider the following class of algorithms based on partition matroids:

Algorithm 4 Randomized Partition

1. Before looking at any weights, (perhaps randomly) validly partition the elements into parts Si.
2. Within each part, run Dynkin’s algorithm, and output the union of the selected elements.

One can ask whether any algorithm in this framework can be constant-probability-competitive. �eo-
rem 18 shows that the answer is ‘no’.

4.3 Warm Up: Deterministic Partitions

We show as a warm-up that no �xed deterministic partition can achieve a constant probability-competitive
ratio. Consider the following algorithm based on partition matroids.

Proposition 17. Algorithm 5 is not α-probability-competitive for α > 2
√
2√
n
.

Proof. We will give a counter-example for graphic matroids. Fix a partition {S1, . . . , Sk} of the edges of
the complete graph Kn. We will construct a weight function w for which the algorithm performs poorly.

17�is disjointness is why we refer to these generalizations as algorithms based on “partition matroids.”
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Algorithm 5 Deterministic Partition

1. Deterministically �x a valid partition {S1, . . . , Sk} of all elements of the ground set o�ine.
2. Run Dynkin’s algorithm on each part online, and output the union of the selected edges.

Without loss of generality, assume all the Si are non-empty. We claim that k ≤ n − 1. Otherwise,
there would be a setA of at least n edges, such that each edge comes from a distinct part. By validity of the
partition, this set of edges must be acyclic. However, any set of n edges on n vertices must have a cycle,
which is a contradiction.

Since there are
(
n
2

)
edges distributed into at most n−1 parts, there must be some part Si that contains

at least n/2 edges. Consider the graph Gi de�ned by the edges in Si and the vertices they touch. �en G
has at least

√
n
2 vertices, each of which has degree at least 1. �erefore, G has a spanning forest with at

least
√

n
2 /2 edges.

Consider a weight function w that assigns a weight of 1 to all edges in this forest, and a weight of 0 to
every other edge. Clearly, the forest is the max-weight basis of the graphic matroid. However, Dynkin’s
can only choose one out of at least

√
n
2 /2 edges from the max-weight basis, so each edge cannot be chosen

with probability higher than 2
√
2√
n

.

4.4 Randomized Partitions

In this section, we will rule out all algorithms based on partition matroids as candidates for achieving a
constant probability-competitive ratio for the matroid secretary problem. As opposed to the algorithm
ruled out in Proposition 17 (which used any deterministic partition), these algorithms are allowed to use
any randomized partition.

For the algorithm to always output a feasible solution, any partition it uses must be valid. Recall that
a valid partition is one for which the union of what is accepted by the instances of Dynkin’s algorithm is
always independent. We say a distribution over partitions is valid if every partition in its support is valid.

Without loss of generality, we can assume the input graph is always complete. Otherwise, one can
consider a modi�ed weight-function that assigns a weight of zero to every edge that is not present. Since
the algorithm cannot see the weights of the edges in advance, it will have to choose a partition of the
complete graph at the start.

�eorem 18. Any algorithm that draws a partition from a valid distribution D in Algorithm 4 is not α-
probability-competitive for any α = ω(n−1/8).

�e high-level plan in the proof of �eorem 18 is to plant a random broom, illustrated in Figure 4, and
show that with high probability, its handle is not accepted. We will refer to the lone neutral edge {u,w}
connecting the two stars as the handle of the broom. Note that the edges of non-zero weight in the broom
form an acyclic subgraph and are therefore the unique max-weight basis of this graphic matroid.

Before proving this theorem, we characterize valid partitions.

4.4.1 Characterizing Valid Partitions

In this section we give a few characterizations of what valid partitions look like, which serve to provide
intuition into why validity is a strong enough condition that prevents partition-based algorithms from
probability-competitiveness.

Similarly to the previous section, we de�ne a valid partition to be one where the union of what is
accepted by the instances of Dynkin’s algorithm is always an independent set, even for adversarial weights
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Figure 4: Two stars connected by an edge form a broom. We call the bridge between the two stars the
handle of the broom, and we the other edges of the broom as its legs.

and arrival orders. We �rst give several equivalent descriptions of what valid partitions should look like
in the case of graphic matroids, which provides certain structural properties enforced by validity. It will
be later used to prove our �eorem 18.

Lemma 19. Let {S1, . . . , Sk} partition the edges of a complete graph Kn, and let part(e) denote the Si
containing edge e. �e following are equivalent:

(a) Matroid condition: {S1, . . . , Sk} is valid.
(b) Graph condition (i): Every cycle has at least two edges in the same part.

(c) Graph condition (ii): Every triangle has at least two edges in the same part.

Proof. (a) ⇔ (b) holds trivially. If {S1, . . . , Sk} is valid, it should not be possible to construct a cycle by
taking each edge from distinct parts. Conversely, if all cycles have at least two edges from the same part,
no algorithm can accept a cyclic subgraph.

(b)⇔ (c): (b) =⇒ (c) holds by de�nition, so it su�ces to show (c) =⇒ (b). Let S = {S1, . . . , Sk}
be a partition satisfying (c). We say that a cycleC is sha�ered by S if each of its edges belongs to a di�erent
part in S . �en (c) implies that S sha�ers no cycles of size 3. Assume for contradiction, that S sha�ers
some cycle, and let C = {e1, · · · , e`} be the smallest cycle sha�ered by S , where ` > 3. Without loss of
generality, assume ei ∈ Si for i ∈ [`]. Let e1 = {u, v} and e2 = {v, w}. Consider the chord {u,w}. By (c),
the cycle on vertices {u, v, w} is not sha�ered by S , so we must have either {u,w} ∈ S1 or {u,w} ∈ S2.
In either case, the cycle C = {{u,w}, e3 · · · , e`} is sha�ered by S but has size smaller than `, which is a
contradiction.

4.4.2 Proof of �eorem 18

We provide a counterexample in the case of graphic matroids using the broom. Consider a partition S =
{S1, . . . , Sk} of the edges of the complete graph. We say an edge e ∈ Si is “high-degree” if the sum of the
degrees of its endpoints within the same part Si is large. More concretely, we de�ne the part-i degree of
a vertex v as degi(v) = |{e = {a, b} ∈ Si : v ∈ {a, b}}|. Given an edge e = {a, b} in part Si, its degree is
given by deg(e) = degi(a) + degi(b) − 1, which intuitively means that we are counting all the incident
edges in that part and the edge itself. An edge e is said to be high-degree if deg(e) ≥ C for some C that
we will choose later.

We will show that a 1− o(1) fraction of the edges are high-degree for super-constant C . �erefore, an
adversary can plant a random broom by assigning weights according to the following distribution: Pick
a random edge {u, v} in the graph, and randomly partition the vertices V \ {u, v} into two parts X and
Y of equal size (we assume |V | is even). Assign a weight of 1 to every edge {u, x} and {v, y} for all
x ∈ X, y ∈ Y , and a weight of zero to everything else. We will show that no ma�er what partition an
algorithm chooses, the random edge {u, v} will have a high-degree with high probability. �e algorithm
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must therefore choose at most one edge from at least C elements of OPT. Hence, it cannot be be�er than
1/C-probability-competitive.

It remains to show that a 1− o(1) fraction of the edges are high-degree for some super-constant C in
any valid partition S of the edges of the complete graph. A partition of the edges of Kn can be thought of
as a coloring of its adjacency matrixA ∈Mn×n (ignoring diagonal entries) in the obvious way (i.e., assign
a di�erent color to each Si, and the color part(e) to the entry of A corresponding to e). In this notation,
an entry of A is low-degree if there are fewer than C entries of the same color in its row or column. Note
that by Lemma 19, a partition is valid i� every triangle has at least two edges in the same part. In the
matrix language, a partition is valid i� for every three row indices u, v, w, at least two of A(u, v), A(u,w)
and A(v, w) are the same color. We will show using this interpretation of feasibility that each row and
column must mostly consist of high-degree entries. More speci�cally, we will �x a vertex v, and consider
any other two vertices u and w.

Proposition 20. Let C ≤ (n− 1)/2 and let T (n) be the maximum possible number of low-degree edges in
any valid coloring of the complete graph on n vertices. For any vertex v, let xi denote the number of edges
adjacent to v in partition i. �en:

T (n) ≤ max
~x∈Nn−1

≥0 ,
∑

i xi=n,
min

{∑
i

T (xi) + 2C(n− 1) , T (n− 1) + 2(n− 1−max
i
{xi})

}
.

Proof. �ere are two steps: for any ~x, we show that both the le� term and the right term are always upper
bounds (and therefore their minimum is a valid upper bound too).

Intuitively, the le� term is be�er when maxi{xi} is not too large. To see that the le� term is always
an upper bound, consider the following cases. Below, let Xi denote the set of nodes z such that (z, v) is in
partition i (and therefore xi := |Xi|).

• First, consider each Xi, and consider the induced subgraph on just these xi nodes. �e number of
low-degree edges just counting those between two nodes inXi is at most T (xi), by de�nition of T (·).
Clearly, a node must be low-degree in the induced subgraph to possibly be low-degree in the full
graph. �is means there are at most

∑
i T (xi) low-degree edges between two nodes in the sameXi.

• Next, consider an edge between two nodes x, y both 6= v which are not in the same Xi. �is means
that the edges (v, x) and (v, y) are not colored the same, and therefore the edge (x, y) must share a
color with one of them for A to be valid. Whichever edge shares its color, we will charge its non-v
endpoint (e.g. if (x, y) shares a color with (v, x), we charge x). Observe that once a vertex is charged
C times, this means there are C + 1 edges adjacent to it which share the color of (v, x). �is means
that none of these edges are low-degree. �erefore, an edge can be low-degree only if its non-v
endpoint is charged at most C times, and therefore there can be at most C(n− 1) such low-degree
edges.

• Finally, consider an edge adjacent to v. We will lazily upper bound the number of low-degree edges
by just the total number of edges, n− 1, and further upper bound it by C(n− 1) for cleanliness of
the expression.

�is establishes the le� term, which holds for any ~x. Now we establish the right term. Intuitively, the right
term is a be�er bound whenever maxi{xi} is large. Let j := arg maxi{xi}. If xi > C , then there can
be no low-degree edges adjacent to v in X1. �erefore, there are at most (n − 1 − xj) low-degree edges
adjacent to v. On the subgraph induced by the n−1 nodes other than v, there are clearly at most T (n−1)
low-degree edges by de�nition of T (·), and again any edge which is low-degree in the full graph must be
low-degree in every induced subgraph. On the other hand, if xj ≤ C , then perhaps all edges adjacent to v
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are low-degree, and we can only use this technique to give an upper bound of T (n− 1) + n− 1. In both
cases, our bound is at most T (n− 1) + 2(n− 1−maxi{xi}) as long as C ≤ (n− 1)/2.

We will show inductively in Lemma 21 that T (n) ≤ b ·C ·n1+a, where a is a constant, and b and C are
super-constant in n, as long as a few conditions hold. Corollary 22 lists values that satisfy these conditions,
concluding that for all 0 < ε < 1/2, there are valid assignments to the variables that achieve T (n) ≤
n3/2+ε.18 Furthermore, Corollary 22 ensures that C is super-constant (and in particular polynomial in
n), implying that with probability at least (n2)−n

3/2+ε

(n2)
, the handle of the randomly planted broom will be

high-degree for super-constant C . It can therefore only be selected with a sub-constant probability.

Lemma 21. Consider the following recurrence when C ≤ (n− 1)/2.

T (n) ≤ max
~x∈Nn−1

≥0 ,
∑

i xi=n,
min

{∑
i

T (xi) + 2C(n− 1) , T (n− 1) + 2(n− 1−max
i
{xi})

}
.

with a base case of T (n) = n(n− 1)/2 when (n− 1)/2 < C . For all N , T (N) ≤ b · C ·N1+a, as long as

1. a ∈ (0, 1) is a constant;

2. C is a super-constant function of N ;

3. b is a super-constant function of N such that b(N) ≥ 1 for all N ;

4. for all n < N , the following is satis�ed: 2(n−1)
abn1+a <

(1+a)bC
2n1−a .

As an immediate corollary, we get the following.

Corollary 22. Let T (n) be de�ned as in Lemma 21. �en for all 0 < ε < 1/2, T (n) ≤ n3/2+ε.

Proof. Fix an ε, and let a = ε/3, C = nε/3, and b = 4
a ·
(
n
C

)1/2+ε/3.

Now we can complete the proof of �eorem 18. Corollary 22 together with Proposition 20 establishes
that for any ε > 0, there are at most n3/2+ε edges with degree at most C := nε/3. �is means that
with probability 1 − n−1/2+ε, a randomly selected edge (u, v) of the complete graph has degree at least
nε/3. Conditioned on (u, v) having high-degree, we know that nε/3 edges of the max-weight spanning
tree are in the same partition as (u, v). �erefore, at least one of them is selected with probability at most
n−ε/3. Se�ing ε = 3/8, we conclude that except with probability n−1/8, there is some edge selected with
probability at most n−1/8, and therefore no randomized partition algorithm can be ω(n−1/8)-probability-
competitive.

5 Conclusion

We study the limitations of simple frameworks for the matroid secretary problem. We show that a class
of natural greedy algorithms cannot be constant-utility-competitive, and the class of randomized partition
algorithms cannot be constant-probability competitive. �is helps explain why such algorithms (especially
greedy ones) have faced barriers to resolving the matroid secretary conjecture, and also helps narrow future
work towards frameworks with potential.

�is agenda leaves open much future work. For example, our greedy framework did not incorporate the
virtual algorithm of [BIKK07]. Is there a natural generalized greedy framework which does? Do similar
lower bounds hold against that framework? Similarly, replacing I with a disjoint union of 1-uniform

18It can be shown that this is in fact tight.
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matroids is a very special case of a framework which replaces I with a disjoint union of arbitrary matroids
(and potentially runs a more complex greedy algorithm than Dynkin’s) [Lac14, FSZ15, HN16, FSZ16] . Do
similar lower bounds hold against this framework? �ere are also other frameworks not considered in this
paper (such as the “forbidden sets” approach of [STV18]) which should be investigated as well.
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A Missing Proofs

A.1 Proofs from Section 3.2

Proof of Observation 7. �e algorithm wins i� it accepts the in�nity edge. Each (AA) claw forms a cycle
with the in�nity edge, so it is infeasible to accept the in�nity edge a�er having formed an (AA) claw. By
property (ii), once an (AA) is formed, it will never get removed from It. �erefore, if there is an (AA)
claw before t∞, the algorithm de�nitely loses.

In the other direction, if there is no (AA) claw right before t∞, adding the in�nity edge to It∞ creates
at most one cycle, as otherwise It∞ would not be independent. �is cycle consists of the in�nity edge and
a claw with at least one S edge. �e algorithm can win by discarding this S edge from It∞ and accepting
the in�nity edge.

Proof of Lemma 8. Suppose the upper edge ei of a (−A) claw arrives at time t. By property (iii), ei is
accepted i� it is in the max-weight basis of It∪{ei} contracted byAt. If It contains at most one edge from
every other claw, it would be feasible to add ei so it is in the MWB and will be accepted. Suppose there
exists some claw j with both edges in It. Note that there can be at most one such claw by independence
of It (property (ii)), so there is a unique claw j with both edges in It.

We consider all four cases for claw j. First, note that j cannot be an (AA) claw by assumption. Assume
j is a (S S) claw. Claws i and j form a cycle in It ∪ {ei}, and the MWB of It ∪ {ei} contracted by At
contains the heaviest two of ej , e′j and ei, namely ei and ej . So ei will be accepted.

Next, assume j is a (AS) claw. Claws i and j form a cycle in It ∪ {ei}, and the MWB of It ∪ {ei}
contracted by At contains the heavier of e′j and ei, namely ei. So ei will be accepted.

Next, assume j is a (S A) claw. Claws i and j form a cycle in It ∪ {ei}, and the MWB of It ∪ {ei}
contracted byAt contains the heavier of ej and ei, namely ei i� i < j. In other words, we have shown that
the upper edge of a (−A) claw i is not accepted at time t i� It contains a (S A) claw to the le� of i.

Proof of Lemma 9. When the lower edge e′ of a (S−) claw arrives, its upper edge has to be in It for It to be
spanning (property (ii)). Adding e′ to It thus forms a cycle in It with the previous (SA). �e max-weight
basis of It∪{e′} contracted byAt will contain the two heaviest edges of this length-4 cycle other than the
already accepted edge, namely the two sample edges. Since the MWB does not contain e′, the algorithm
cannot accept it by property (iii).

A.2 Proofs from Section 3.3

Proof of �eorem 11. Let α > 1 be a constant. We will consider a hat with n+2 vertices, where the weight
function satis�es 1

2α < w(ei) <
1
α and 1

3α < w(e′i) <
1
2α for all i ∈ [n] in addition to e1 > . . . > en >

e′1 > . . . > e′n.19 Furthermore, we let the in�nity edge have weight n + 1. If the algorithm fails to select
the in�nity edge, it can accept a total weight smaller than (m + 1)/α, and thus its competitive ratio is
less than α. We will again use the algorithm “losing” interchangeably with its failing to accept the in�nity
edge.

If the in�nity edge arrives in the sample stage, the algorithm loses immediately. Suppose the in�nity
edge arrives a�er T for the rest of the proof. �e proof sketch is as follows. We would like to show that an
(AA) claw will be accepted with high probability before the in�nity edge arrives. To do so, we show with
high probability, no blocker is formed before the �rst time the upper edge of a (−A) claw arrives. �is is

19�e weight assignments in the proof provided by Babaio� et al. are slightly di�erent. �e proof does not need the property
that the heavier upper edges are paired with the heavier lower edges, so the proof would go through without the assumption
that e1 > . . . > en > e′1 > . . . > e′n. However, we will use this additional assumption for the convenience of talking about the
location of claws as a proxy for their relative weights.
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due to the fact that (SS) claws in I prevent blockers from forming to their right, and a�er the sampling
stage, IT will contain an (SS) claw that is very far to the le� with high probability. Furthermore, an (SS)
claw that is far to the le� is hard to discard and will last for a long enough time that an (AA) claw will
form with high probability.

More formally, we will consider the interval L = [T,min(T +n−1/3, 1)], and show that an (AA) claw
will already form during L with high probability, whereas the in�nity edge does not arrive during that
interval with high probability, i.e. t∞ 6∈ L.

Recall from Observation 7 that the algorithm wins i� no (AA) claws form before t∞. By Lemma 8, the
only way to protect against accepting certain (AA) claws (i.e. ones in which the upper edge arrives a�er the
lower edge) is by forming a blocker to their le�. We will show that with high probability, the algorithm does
not build a blocker during L. To see why, note that immediately a�er the sampling stage, IT contains the
max-weight-basis of the sample elements. IT will contain at most one claw by independence, namely the
le�-most (SS) claw, say claw i. Each claw has a 1/4 chance of being type (SS) atT , independently of every
other claw. �erefore, i is geometrically distributed with success probability 1/4, and thus i = O(log n)
with probability at least (1− 1/n2).

Since the algorithm can only kick out the lightest edge in a cycle, the only way for this (SS) claw to
get discarded is for the algorithm to accept an edge that forms a claw to its le�. �e reason is that among
the edges to the right of i, only upper edges are heavy enough to kick out an edge of claw iwhen accepted.
Consider any such upper edge in location j > i. For it to be possible to discard the (SS) claw i, claw j
must form a cycle with claw i. �erefore, the lower edge in location j must be either an A or an S. In the
former case, the algorithm has already lost, and in the la�er case, the algorithm kicks out the the lower
edge in location j over either edge of the (SS) claw in location i.

However, the probability that an edge to the le� of i arrives during L is no more than O(n−1/3 log n)
by union bound. �erefore, with high probability, the (SS) claw i will survive for the entire duration of
L. Conditioned on this event, no blocker can be form in It for t ∈ L: �e only potential blockers must be
to right of i (since we are conditioning on no edge to the le� of i arriving in L), and the lower edge of any
such potential blocker claw j is lighter than all the sample elements in It with which it forms a cycle (i.e.
both edges of claw i and the upper edge of claw j), and thus will not be accepted.

Let Ei refer to the event that t(e′i), t(ei) ∈ L and t(e′i) < t(ei), and note that conditioned on no blocker
forming during L, any Ei causes the algorithm to fail. �e expected number of Eis that happen is at least
n|L|2 = n1/3/2. Additionally, since the Eis only depend on the draws t(ei) and t(e′i) and are independent
of each other, the number of Eis that happen is concentrated around its expectation by a standard Cherno�
bound. �erefore, with high probability, some Ei happens and the algorithm loses.

A.3 Proofs from Section 3.4

Proof of Lemma 12. From the le�-most x claws, in expectation x`2 of them satisfy T < t(e′i) < T + ` and
T < t(ei) < T + `. With exponentially small probability fewer than x`2/2 such claws exist. We count
that small probability towards the algorithm’s success, and assume x`2/2 of those claws exist. Each of
them satis�es T < t(e′i) < t(ei) < T + ` with probability 1/2 independently of other claws. �erefore the
probability of existence of a claw satisfying T < t(e′i) < t(ei) < T + ` is at least 1− (1/2)`

2x/2.

Proof of Lemma 13. We �rst upperbound the number of claws that are candidates for becoming a blocker.
For a blocker to the le� of x to be accepted, there must be a (S−) claw to the le� of x at time T , with the
lower edge arriving during [T, T + `]. Conditioning on Lemma 12 (i.e. existence of a (−−) claw to the le�
of x at time T ) only decreases the number of possible (S−) claws, so we can remove the conditioning. For
a blocker to be accepted, its lower edge must arrive a�er T and during an unprotected period (Lemma 9).
From the x candidate lower edges, in expectation x` of them arrive in [T, T + `]. With exponentially
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small probability more than 2x` edges arrive during that time. We count that small probability towards
the algorithm’s success. We will call each such lower edge a nice edge.

Suppose the algorithm chooses to go unprotected during the windowW = [T +`−R, T +`−R+dy]
where R represents the remaining time till T + ` and dy is the length of the window. Suppose X ′ nice
edges (out of at most 2x` nice edges) are yet to arrive at T + `−R. Any nice edge arriving a�er T lands
in W with probability dy/R, so W fails to include any nice edges with probability at least (1− dy/R)X

′ .
Lemma 23 shows X ′(R)/R ≤ 4x with probability at least 1− 2x`e−

2x`
3 .

Lemma23. LetX ′(R) be the number of nice edges yet to arrive at timeT+`−R. �en supR∈[T,T+`]{X
′(R)
R } ≤

4x with probability at least 1− 2x`e−
2x`
3 .

Proof. Note that X ′ can only take values in {0, 1, . . . , 2x`}20, and let c1, . . . , c2x` be the set of nice edges
ordered arbitrarily (and not as a function of their arrival time). Let T + ` − Ri denote the arrival time
of ci. �e set of local maxima of X ′(R)/R is exactly {X ′(Ri)/Ri : i ∈ [2x`]}, and it su�ces to show
maxiX

′(Ri)/Ri ≤ 4x with high probability.
�e arrival times of nice edges are distributed uniformly in [T, T + `]. For every i, j ∈ [2x`], i 6= j,

the edge cj arrives in [T + `− Ri, T + `] with probability Ri/` and in [T, T + `− Ri] otherwise. So for
every i ∈ [2x`], X ′(Ri) is distributed according to Binom(2x`,Ri/`). By Cherno� bounds,

P
[
X ′(Ri)

Ri
≥ 4x

]
≤ e− 2x

3 .

Taking a union bound over all i ∈ [2x`] gives the desired result.

By Lemma 23, (1 − dy
R )X

′ with high probability is at least (1 − dy
R )R(4x), which is at least (1 − dy)4x

for dy ≤ R. Finally, recall that the algorithm is free to pick a set of total measure y of unprotected time
distributed however it pleases. Since (1− dy)4x is concave in dy, the total failure probability incurred by
the algorithm is at least (1− y)4x. Combining this with Lemma 23, algorithm’s overall failure probability
is at least

(1− 2x`e−
2x
3 )(1− y)4x.

Proof of Lemma 14. �e proof approach is as follows. �e algorithm has to allocate at least y total un-
protected time in the window [T, T + `]. Any unprotected time carries the risk of accepting the upper
edge of a (−A) claw anywhere. Given the history of arrivals, the algorithm can make adaptive decisions
about when to go unprotected, with the hope of being unprotected when upper edges of (−A) claws are
least likely to arrive. We will make the algorithm’s job easier by allowing it to go unprotected near the
beginning and end of the window [T, T + `] “for free”, that is we ignore the failure cases where the upper
edge of a (−A) claw arrives during those windows. �is modi�cation only undercounts the algorithm’s
failure probability, making our lower bound stronger.

In particular, we again focus on claws satisfying T < t(e′i) < t(ei) < T + `, noting that any such
claw that arrives in an unprotected period would result in the algorithm failing.21 Each claw i ∈ [n]
satis�es T < t(e′i) < t(ei) < T + ` independently with probability `2/2. �e expected number of
such claws is therefore `2n/2. Standard Cherno� bounds imply that except for an exponentially small
probability, the number of such claws does not drop below `2n/4. �erefore, even if the algorithm manages

20If there are fewer than 2x` nice edges, our result can only get stronger.
21While this is not an exhaustive list of ways the algorithm could fail, it su�ces to show that this particular failure case is

already likely.
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to accept the in�nity edge for all the arrival orders in which the number of such claws drops below `2n/4,
its competitive ratio increases by only an exponentially small amount. We count that small probability
towards the algorithm’s success and assume there are at least `2n/4 such claws. Uniformly at random
select `2n/4 of such claws and call them potential AA. We say that a potential AA (ei, e

′
i) arrives at time

t = t(ei).
Suppose the algorithm chooses to go unprotected during the windowW = [T+`−R, T +`−R+dy].

We say a potential AA is pending at time t if its lower edge arrives in [T, t] and its upper edge arrives in
[t, T + `]. Let A′(R) be the number of pending claws at time T + `−R. We claim that the probability of
the algorithm failing is lower bounded by 1− (1− dy/R)A

′(R). �is is because any potential AA pending
at time T + ` − R lands in W with probability dy/R. We show that for su�ciently large y, A′(R) is
concentrated around its expectation. �e expected value of A′(R) is n(`−R)R/`2.

By a Cherno� bound, P
[
A′(R) ≤ n(`−R)R

2`2

]
≤ e−

n(`−R)R

8`2 . Similar to Lemma 23 the local minima for
A′(R)
R occur when a potential AA arrives. Taking a union bound over all `2n/4 potential AA’s, we conclude

that A′(R) never exceeds n(`−R)R
2`2

with probability at least 1− `2n
4 e
−n(`−R)R

8`2 .
We will make the algorithm’s job easier by allowing it to go unprotected during both [T, T + ε] and

[T + ` − ε, T + `] without accepting any (AA) claws then. �e algorithm still has to allocate y − 2ε
unprotected time within [T +ε, T + `−ε]. Any such windowW = [T + `−R, T + `−R+dy] causes the
algorithm to fail with probability at least 1−(1−dy/R)A

′(R), which with probability at least 1−e−
n(`−R)R

8`2

is at least

1− (1− dy/R)
n(`−R)R

2`2 ≥ 1−
(

1− dy

`

)nε(`−ε)

2`2

,

where the inequality follows from 0 ≤ ε ≤ R ≤ `− ε ≤ `. For ` = n−0.1, the right-hand-side expression
is concave in dy, so the algorithm is best o� going unprotected in a consecutive interval of length y − 2ε,
incurring an overall failure probability of

(
1− (

n`2

4
)e−

n(`−ε)ε

8`2

)1−
(

1− y − 2ε

`

)nε(`−ε)

2`2

 .

Se�ing ε = n−0.4/4, the le� term vanishes for large n, so the failure probability of the algorithm is lower
bounded by

1−
(

1− 2y − n−0.4
2`

)n0.6(4`−n−0.4)

32`2

.

Proof of Lemma 15. Note that f(y) is decreasing and g(y) is increasing in y. Suppose that the optimum
value of y for the algorithm is y∗; i.e., y∗ = arg miny max{f(y), g(y)}. For any y0, we have:

min{g(y0), f(y0)} ≤ max
{

min{g(y∗), f(y0)}, min{g(y0), f(y∗)}
}

≤ max{g(y∗), f(y∗)} = min
y

{
max{g(y), f(y)}

}
.

�e �rst inequality holds because g is increasing and f is decreasing, so in the case that y0 < y∗, the �rst
term in the max is larger than the le�-hand-side, and when y0 > y∗, the second term in the max is larger
than the le�-hand-side. �e second inequality holds since dropping mins can only make the value larger,
and the last equality holds by de�nition of y∗. We will pick a value of y0 that gives a su�ciently good
lower bound to miny{max{g(y), f(y)}}.
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In particular, we set x = n0.3, y0 = n−0.4, and ` = n−0.1. �en, as n→∞, we have

f(y0) = (1− 2x`e−
2x
3 )(1− y0)4x

(
1− (

1

2
)`

2x/2

)

g(y0) = 1−
(

1− 2y0 − n−0.4
2`

)n0.6(4`−n−0.4)

32`2

.

By substituting x, y0, and `, for n→∞, (1− 2x`e−
2x
3 ) and (1− (1/2)`

2x/2) in f(y0) tend to 1. �erefore,
we only need to reason about (1 − y0)

4x and (1 − 2y0−n−0.4

2` )
n−0.6`

32 . Note that (1 − y0)
4x converges

to e−4xy0 which is e4n−0.1 and tends to 1. Similarly 1 − (1 − 2y0−n−0.4

2` )
n0.6(4`−n−0.4)

32`2 converges to 1 −
e−

(2y0−n−0.4)n0.6(4`−n−0.4)

64`3 which goes to 1 in the limit as n goes to in�nity.
Since both lower bounds converge to 1, for any constant 0 < α ≤ 1, there exists n0 such that for

n > n0, the algorithm will fail with probability 1 − α and cannot be constant utility-competitive, thus
completing the proof.

A.4 Proofs from Section 4

Proof of �eorem 16. For completeness, we show the feasibility and competitiveness of the Korula-Pal al-
gorithm.

Feasibility. Assume, for contradiction, that the algorithm accepts a cycle on nodes v1, . . . , vk. Con-
sider the node v that appears earliest in the o�ine ordering σ, i.e., v = arg minσ(vi). �en, two edges are
accepted within Ev , contradicting the feasibility of the output of Dynkin’s algorithm.

Competitiveness. Let ALGv denote the weight of the edge accepted in the instance of Dynkin’s
algorithm running on Ev . By the competitiveness of Dynkin’s algorithm, we know that E[ALGv] ≥
E[maxi∈Ev w(i)/e]. Let ALG be the total weight accepted by the algorithm. Since {Ev} forms a parti-
tion, we know that

E[ALG] = E

[∑
v

ALGv

]
≥ E

[∑
v

max
i∈Ev

{w(i)}
e

]
=
∑
v

E
[
max
i∈Ev

{w(i)}
e

]
,

so it su�ces to bound E [maxi∈Ev{w(i)}].
Fix a max-weight basis of G (a spanning forest of maximum total weight OPT), called T . Let v be a leaf in
T , and let i be the edge incident to it. �en, with probability 1/2, i ∈ Ev . So E[maxi∈Ev w(i)] ≥ 1

2 · wi/2
for all v that are leaves of T . We can iteratively remove the leaves of T , and repeat the above reasoning to
obtain a similar bound for all nodes v in T . Pu�ing everything together, we have

E[ALG] ≥
∑
v

E
[
max
i∈Ev

{w(i)}
e

]
≥
∑
i∈T

w(i)

2e
=

OPT

2e
.

In the above proof, importantly, note that it does not claim that any particular edge of the max-weight
spanning tree is selected with high probability. Each edge just serves as a witness that the expected max-
weight edge adjacent to each particular node is high (but in fact, it could be much higher, and this is why
the algorithm is not probability-competitive).
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A.5 Proof of Lemma 21

Proof of Lemma 21. We will proceed by induction on n.
Base Case. When (n − 1)/2 < C , we have T (n) = n(n − 1)/2 < C · n < C · n1+a ≤ b · C · n1+a,

where in the last equality we have used the assumption that b > 1.
Inductive Step. For simplicity of notation, permute the partitions so that x1 = arg maxi{xi}. We

consider two possibilities depending on how large x1 is compared to (1 − γ)n for some 0 < γ < 1 that
we will choose later.

1. x1 < (1− γ)n: In this case, we have

T (n) ≤
∑
i

T (xi) + 2C(n− 1)

≤
∑
i

bC(xi)
1+a + 2C(n− 1)

≤ bC
(
((1− γ)n)1+a + (γn)1+a

)
+ 2C(n− 1)

= bCn1+a
(
(1− γ)1+a + γ1+a

)
+ 2C(n− 1)

= bCn1+a
(
1− (a+ 1)γ +O(γ2) + γ1+a

)
+ 2C(n− 1)− 4 + 2γn

≤ bCn1+a − γabCn1+a +O(γ2) + 2C(n− 1)

where the �rst inequality uses the �rst term in the max in our recursive bound on T (n); the second
inequality uses the inductive hypothesis and the assumption that x1 is large; the third inequality
uses convexity of f(x) = x1+a for a > 1 as shown in Lemma 24; the equality on the fourth line
is simple algebraic manipulation; the equality on the ��h line follows from the Taylor Expansion
of (1 − γ)1+a; and the last equality follows from algebraic manipulation as well as the fact that
a > 0, γ < 1,⇒ γ > γ1+a.
It therefore su�ces to ensure that

0 ≥ −γabCn1+a +O(γ2) + 2C(n− 1),

Since the error term O(·) is non-negative, it is okay to drop it and ensure that γ ≥ 2(n−1)
abn1+a . We

instead enforce the stronger result γ ≥ 2
abna .

2. x1 ≥ (1− γ)n: In this case, we have

T (n) ≤ T (n− 1) + 2((n− 1)− 1− x1)
≤ bC(n− 1)1+a + 2(n− 2− x1 − n(1− γ))

= bCn1+a
(

1− 1

n

)1+a

− 4 + 2γn

= bCn1+a
(

1− 1 + a

n
+O

(
1

n2

))
− 4 + 2γn

= bCn1+a − (1 + a)bCna +O

(
bC

n1−a

)
− 4 + 2γn,

where the �rst inequality uses the second term in the max in our recursive bound on T (n); the
second inequality uses the inductive hypothesis and the assumption that x1 is large; the equality
on the third line is simple algebraic manipulation; the equality on the fourth line follows from the
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Taylor Expansion of (1− 1/n)1+a; and the last equality is simple algebraic manipulation.
To complete the inductive step, we need to make sure the RHS is at most bCn1+a, which holds as
long as

0 ≥ −bC(1 + a)na +O

(
bC

n1−a

)
− 4 + 2γn,

which is the same as

γ ≤ 1

2n
(4 + (1 + a)bCna) +O

(
bC

n2−a

)
=

2

n
+

(1 + a)bC

2n1−a
+O

(
bC

n2−a

)
.

Since both the error termO(·) and 2/n term are non-negative, it is enough to ensure γ ≤ (1+a)bC
2n1−a .

�e two cases above give a lower-bound and an upper-bound on γ, and the inductive step holds for any
assignment of a, b, C and γ that satis�es

2(n− 1)

abn1+a
≤ γ ≤ (1 + a)bC

2n1−a
.

Indeed, by the fourth assumption of this Lemma, the lower-bound is strictly smaller than the upper bound
for all n, and thus there exists some γ (perhaps one depending on n) that satis�es both inequalities, thus
completing the proof.

Lemma 24. Let γ ∈ (0, 1/2) and a ∈ (0, 1). Consider the following optimization problem

minimize
~x∈Nn

≥0

∑
i

x1+ai

subject to
∑
i

xi = n,

0 ≤ xi ≤ (1− γ)n, i = 1, . . . ,m.

�e optimum value of this program is ((1− γ)n)1+a + (γn)1+a.

Proof. Note that ~y =
(
(1 − γ)n, γn, 0, . . . , 0

)
is a feasible solution achieving the upper bound. Suppose

another feasible solution ~x achieves the optimum value that is higher than ((1− γ)n)1+a+(γn)1+a. Since
the order of the coordinates don’t a�ect the objective or the constraints, assume x1 ≥ . . . ≥ xn without
loss of generality.

We claim that x2 6= 0. Otherwise, the only non-zero coordinate of ~x is x1, so
∑
xi = x1 ≤ (1−γ)n <

n, violating the �rst constraint.
Suppose x1 6= y1. �en x1 < y1 by the second constraint. It is therefore possible to weakly improve

the value of ~x by changing it into ~x′ = (x1+δ, x2−δ, x3, . . . , xn) for some small enough δ. �is is because
f(x) = x1+a is strictly convex for a > 0, so its �rst derivative is non-decreasing, and by the fundamental
theorem of calculus, we have

f(x1 + δ)− f(x1) =

∫ x1+δ

x1

f ′(x)dx ≥
∫ x2

x2−δ
f ′(x)dx ≥ f(x2)− f(x2 − δ).
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Rearranging the terms gives f(x1 + δ) +f(x2− δ) ≥ f(x1) +f(x2) as desired. �erefore, we can assume
x1 = y1 for any candidate solution ~x that achieves a higher value than ~y. �e problem therefore reduces
to a new optimization problem with constraints

∑
xi = γn and 0 ≤ xi ≤ γn. By the same logic as above,

we can assume without loss that any optimal solution puts all the weight on the �rst coordinate and 0 on
the rest of the coordinates (making the second constraint tight on every coordinate). �erefore, we have
x2 = y2. Since x1 + x2 = n = y1 + y2, we must have xj = yj = 0 for all j 6∈ {0, 1}, implying ~x and ~y
achieve the same value, which is a contradiction.
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