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Computing envy-freeable allocations
with limited subsidies

loannis Caragiannis* Stavros Ioannidis’

Abstract

Fair division has emerged as a very hot topic in multiagent systems, and envy-freeness is
among the most compelling fairness concepts. An allocation of indivisible items to agents is
envy-free if no agent prefers the bundle of any other agent to his own in terms of value. As
envy-freeness is rarely a feasible goal, there is a recent focus on relaxations of its definition.
An approach in this direction is to complement allocations with payments (or subsidies) to the
agents. A feasible goal then is to achieve envy-freeness in terms of the total value an agent gets
from the allocation and the subsidies.

We consider the natural optimization problem of computing allocations that are envy-freeable
using the minimum amount of subsidies. As the problem is NP-hard, we focus on the design of
approximation algorithms. On the positive side, we present an algorithm which, for a constant
number of agents, approximates the minimum amount of subsidies within any required accuracy,
at the expense of a graceful increase in the running time. On the negative side, we show that,
for a superconstant number of agents, the problem of minimizing subsidies for envy-freeness is
not only hard to compute exactly (as a folklore argument shows) but also, more importantly,
hard to approximate.

1 Introduction

Fairly dividing goods among people is an extremely important quest since antiquity. Today, fair
division is a flourishing area of research in computer science, economics, and political science and
envy-freeness is considered as the ultimate fairness concept [Procaccia, [2020]. Following a research
trend that is very popular in Al recently, we consider allocation problems with indivisible items.
An allocation of items to agents is envy-free if no agent prefers the bundle of items allocated to
some other agent to her own. Traditionally, agents’ preferences are based on cardinal valuations
they have for the items.

Unfortunately, with indivisible items, envy-freeness is rarely a feasible goal. For example, no
such allocation exists in the embarrassingly simple case with a single item and two agents with
some value for it. Recently proposed relaxations of envy-freeness aim to serve as useful alternative
fairness notions. In a line of research that emerged very recently, allocations are complemented
with payments (or subsidies) to the agents |[Halpern and Shah, 2019; Brustle et all, 2020]. Now,
envy-freeness dictates that no agent prefers the allocation and payment of another agent to hers,

*Department of Computer Science, Aarhus University, Aabogade 34, 8200 Aarhus N, Denmark. FEmail:
iannis@cs.au.dk

fDepartment of Informatics, King’s College London, Bush House, Strand Campus, 30 Aldwych, London WC2B
4BG, United Kingdom. Email: stavros.ioannidis@kcl.ac.uk


http://arxiv.org/abs/2002.02789v2

and becomes a feasible goal. However, important questions arise related to the sparing use of
money.

In this paper, we follow an optimization approach. We define and study the optimization prob-
lem SMEF (standing for Subsidy Minimization for Envy-Freeness). Given an allocation problem
consisting of items and agents with valuations for the items, SMEF asks for an allocation that is
envy-freeable using the minimum total amount of subsidies.

SMEF is NP-hard; this follows by the NP-hardness of deciding whether a given allocation
problem has an envy-free allocation or not. Thus, we resort to approximation algorithms for SMEF.
As multiplicative approximation guarantees are hopeless, our aim is to design algorithms that run
in polynomial-time and compute an allocation that is envy-freeable with an amount of subsidies
that does not exceed the minimum possible amount of subsidies (denoted x) by much. In particular,
we use the total valuation of all agents for all goods (denoted by sumv) as a benchmark and seek
allocations that are envy-freeable with an amount of at most x + p - sumw as subsidies. The goal
for the approximation guarantee p of an algorithm is to be as small as possible.

We initiate the study of SMEF and present two results. On the positive side, we design an
algorithm that achieves an arbitrary low approximation guarantee of ¢ > 0. When applied to
allocation instances with a constant number of agents, the algorithm uses dynamic programming
and runs in time that is polynomial in the number of items and 1/e. On the negative side, we
show that, in general, SMEF is not only hard to solve exactly, but also hard to approximate
within a small constant. Unlike the folklore reductiorl] for proving hardness of envy-freeness, our
proof uses a novel approzimation-preserving reduction. Besides separating the general case from
that with constantly many agents, our negative result indicates that achieving good approximation
guarantees will be a challenging goal.

1.1 Related work

The concept of envy-freeness was formally introduced by [Foley [1967] and [Varian [1974]. As envy-
freeness may not be achievable when goods are indivisible, recent research has focused on defin-
ing approximations of envy-freeness. These include envy-freeness up to one good |[Budish, 2011],
envy-freeness up to any good |[Caragiannis et al.,2019b], epistemic envy-freeness [Aziz et al.,2018],
and more. Still, achieving even them in polynomial time can be challenging, and recent work
has focused on approximation algorithms; see, e.g., [Lipton et al., 2004; IChevaleyre et al., 2007;
Plaut and Roughgarden, 12020; [Barman et al), 2018; |Caragiannis et all, 2019a; |(Chaudhury et al.,
2020; |Amanatidis et al., 12020].

The approach of mixing allocations with payments either from or to the agents has been ex-
tensively considered in the economics literature. A typical example is the rent division problem,
where n items (rooms) and a fixed rent have to be divided among n agents in an envy-free manner
[Su, [1999; |Svensson, 1983]. Compensations to the agents were first considered by Maskin |1987].
Subsequent papers consider unit-demand allocation problems, where each agent can get at most
one item; see, e.g., |[Alkan et al), [1991]. |Aragones [1995] and [Klijn [2000] give polynomial-time al-
gorithms that compute allocations and payments. More general models are studied by [Haake et al.
[2002] and Meertens et al. [2002].

In the AT literature, (Chevaleyre et all [2017] consider allocation problems and monetary trans-

'Notice that deciding whether an envy-free allocation exists for two agents with identical item valuations requires
solving PARTITION, a well-known NP-hard problem |Garey and Johnsorl, 1979].



fers between the agents. In a model that is the closest to ours, [Halpern and Shahl [2019] aim to
bound the amount of external subsidies assuming that all agent valuations for goods are in [0, 1].
Among several results, they conjectured that subsidies of n — 1 suffice; an even stronger version of
the conjecture was proved very recently by [Brustle et al. [2020].

1.2 Roadmap

The rest of the paper is structured as follows. We begin with preliminary definitions in Section 21
Our approximation algorithm is presented in Section [B] and our result on the hardness of approxi-
mation for SMEF is presented in Section [4l We conclude in Section Bl

2 Preliminaries

We consider allocation instances with a set M of m items and a set N of n agents. Each agent
i € N has a valuation function v; : M — R>( over the itemsE With some abuse of notation, we
use v;(B) to denote the valuation of agent ¢ for the set (or bundle) of items B. Valuations are
additive, i.e., v;(B) = > c5vi(9). An allocation is simply a partition X = (X1, X3, ..., X,) of the
items of M into n disjoint bundles, where agent ¢ € N is supposed to get the bundle X;. We use
the abbreviations sumv = ),y v;(M) and maxv = max;ey vi(M).

As usual, we define the social welfare of an allocation X = (Xi,...,X,) to be SW(X,v) =
Y ien vi(X;). An allocation X = (X1, Xs, ..., X,,) is envy-free if v;(X;) > v;(X;) for every pair of
agents ¢ and j. Informally, envy-freeness requires that no agent envies the bundle allocated to any
other agent compared to her own.

For an allocation X = (X1,...,X,) in an instance with agent valuations v, the envy graph
EG(X,v), introduced by [Lipton et al. [2004], is an edge-weighted complete directed graph that has
a node for each agent and the weight of the directed edge (7, ) represents the “envy” of agent i
for agent j. Using G = EG(X,v) and wgt(4,j) for the weight of the directed edge from node i to
node j in the envy graph EG(X,v), we define wgt; (i, j) = v;(X;) — v;(X;).

Following the modelling assumptions of Halpern and Shah [2019], we also consider payments
(or subsidies) to the agents, represented by a payment vector @ = (my,...,m,) with non-negative
entries, i.e., m; > 0 for every agent i € N. Below, we use the terms “payment” and “subsidy”
interchangeably. Now, we say that the pair (X,7) of the allocation X and payment vector 7 is
envy-free if v;(X;) + m > v;(X;) + 7; for every pair of agents 4,j € N. Informally, this extended
version of envy-freeness requires that no agent envies the bundle and the payment of any other
agent compared to the bundle and payment she gets.

We say that allocation X is envy-freeable if there is a payment vector 7 so that the pair (X, )
is envy-free. Although the use of payments makes envy-freeness a feasible goal, not all allocations
are envy-freeable. The following theorem, due to Halpern and Shahl [2019], gives sufficient and
necessary conditions so that an allocation is envy-freeable.

Theorem 1 (Halpern and Shah [2019]). The following statements are equivalent:

e The allocation X = (X1, Xo, ..., X},) is envy-freeable.

2In our exposition, we assume that valuations are non-negative, even though our positive result can be extended
to work without this assumption, in the model of |Aziz et all [2019] where items can be goods or chores.



o The allocation X maximizes social welfare among all redistributions of its bundles to the
agents.

e The envy graph EG(X,v) contains no directed cycles of positive total weight.

Detecting whether a given allocation X is envy-freeable can be done using the following linear
program LP(X,v):

minimize Z T (1)
1EN
subject to: m; — w5 > v;(X;) —vi(X;),Vi,j € N
>0

LP(X,v) aims to find a payment vector 7 so that the envy-freeness constraints between pairs
of agents are satisfied. In addition, it minimizes the total amount of payments. As it is observed
by Halpern and Shall [2019], the payment 7; of agent i obtained in this way is equal to the maximum
total weight in any simple path that originates from node ¢ in the envy graph EG(X,v).

We study the optimization problem SMEF (standing for Subsidy Minimization for Envy-
Freeness). Given an allocation instance, SMEF aims to compute an allocation that is envy-freeable
with the minimum amount of subsidies. Since the problem of computing an envy-free allocation is
NP-hard, SMEF is NP-hard as well.

We are interested in the design of approximation algorithms for SMEF. As algorithms with
finite multiplicative approximation ratio are hopeless (since it is NP-hard to decide whether the
minimum amount of subsidies is zero or not), we seek polynomial-time algorithms that compute
an allocation that is envy-freeable with subsidies x + p - sum v, with the approximation guarantee
p being as low as possible.

As a warmup, consider the algorithm that allocates all items to the agent * who has maximum
value for M and paying a subsidy of v+ (M) to every other agent i. Clearly, this is a polynomial-
time algorithm. The allocation obtained is envy-freeable since no redistribution of the bundles (i.e.,
giving all items to another agent) results in higher social welfare. And the particular payments
are right: agent 7* is indifferent between the bundle M and the payment to any other agent, while
the other agents are indifferent between the (equal) payments, and prefer their payment to getting
the whole bundle M. It can be easily verified that the algorithm guarantees an amount of at most
X+ (n—1)maxv < x + (n — 1)sumwv as subsidies; this is the best guarantee of this form for this
algorithm in the worst-case.

3 An approximation algorithm

We now present an algorithm that does much better. The algorithm exploits ideas that have led to
polynomial-time approximation schemes for combinatorial optimization problems like KNAPSACK;
e.g., see Vazirani [2001]. Tt first discretizes all valuations to multiples of a discretization parameter.
In this way, the different discretized valuations an agent can have for bundles of items in the new
instance is small. This allows to classify all allocations into a relatively small number of classes,
each defined by specific discretized valuation levels of each agent for all bundles. Dynamic pro-
gramming is used to decide the classes that are non-empty and to select a representative allocation
from each class. The final allocation is selected among all representative allocations, possibly after



redistributing the bundles so that social welfare (with respect to the original valuations) is maxi-
mized (in order to get envy-freeability). This requires a call to linear program ([II) to compute the
minimum amount of subsidies for each representative allocation.

The classification of allocations guarantees that the algorithm will consider a representative
allocation from the class that also contains the optimal one (i.e., the allocation that is envy-
freeable with the minimum amount of subsidies overall). Our analysis shows that the amount of
subsidies for making the representative allocation envy-free is close to optimal. Polynomial running
time for the case of a constant number of agents follows by setting the discretization parameter
appropriately.

We now present our algorithm in detail. It uses an accuracy parameter ¢ > 0 and initially
decides the value of the discretization parameter § as follows:

_ emaxv

dmn?
First, the algorithm implicitly discretizes all agent valuations by defining new valuations v as
follows: for an agent ¢ with valuation v;(g) for item g, the discretized valuation 7;(g) is equal to
Lvi(g)/6] 0.

The algorithm uses an arbitrary ordering of the items in M; let M = {g1, g2, ..., gm }, where the
item indices are those in this ordering. The algorithm builds a table T which classifies all possible
allocations of subsets of M. Consider an (n?+ 1)-dimensional tuple 7 = (¢, P;;,1 < 4,5 < n), where
t is an integer from 1 to m and P;; is an integer from 0 to |[maxwv/d], for every pair of agents i and
j. The entry T(7) of the table indicates whether an allocation A = (A% AL, ..., Al) of the first ¢
items g1, ..., g+ of M to the n agents, satisfying f)i(A;) = P;;6 for every pair of agents 7 and j, exists
(T(r) =1) or not (T(7) =0).

The entries of T are computed using the following recursive relation:

e For a tuple 7 = (¢, Pi;,1 < 4,5 < n) with ¢t = 1, the algorithm sets T(7) = 1 if there exists
k € [n] such that, for every i € [n], 0;(91) = Pix6 and P;; = 0 for every j # k. Otherwise, the
algorithm sets T'(7) = 0.

e For a tuple 7 = (¢, Pj;,1 < 4,5 < n) with ¢ > 1, the algorithm sets T(7) = 1 if there exists
k € [n] and tuple 7" = (t — 1, P/;,1 <14, j < n) such that, for every i € [n], Py, = Py, +0;(g:)/9
and P;; = Pz’j for every j # k. Otherwise, the algorithm sets T(7) = 0.

Essentially, each non-zero entry of T (e.g., T(7) = 1) indicates a non-empty class A, of (possi-
bly partial, when the first argument of 7 is an integer smaller than m) allocations. To compute a
representative complete allocation A, € A, among those implied by the non-zero entry correspond-
ing to the tuple (m, PZT, 1 <4,j < n), the algorithm does the following for ¢ = m downto 2. Let
k € [n] be such that T(7') = 1 for a tuple 7/ = (t — 1, Pfj_l, 1 <i,j <n)with Pt = P4 —;(g:) /0
and Pitj_1 = Pitj for every pair of agents ¢ and j # k. The algorithm assigns item g; to agent k& and
proceeds to considering the next item. The first item g; is assigned to agent k such that T(7') =1
for a tuple 7/ = (1,PZ§-, 1 <i,j <n) with P, = 9;(g1)/ and Pilj = 0 for every pair of agents ¢ and
J# k.

Next, the algorithm redistributes the bundles of each allocation A, that represents a non-
empty class A; so that an allocation A. of maximum social welfare (among those that distribute
the particular bundles to the agents) is obtained (in terms of the original valuations). It solves
LP(A”, v) (for the original valuations) to compute the minimum amount of subsidies that make A/



envy-free. Among all allocations A/, it outputs the one with the minimum amount of subsidies.

The approximation guarantee of the algorithm is given by the next lemma.

Lemma 2. Given an instance of SMEF that has an allocation that is envy-freeable with an amount
of x as total subsidies, the algorithm computes an allocation that is envy-freeable with total subsidies
of at most x + 4mn?s.

Proof. Let 7 be a full tuple such that A, contains an allocation O = (O4q,...,0,,) that is envy-
freeable with subsidies of y. Since A; is non-empty, it is T(7) = 1. Let A be the allocation
computed by the algorithm as representative of A, and A’ the allocation that is obtained after
redistributing the bundles of A. By Theorem [, A’ is clearly envy-freeable; we will show that
the corresponding subsidies are at most y + 4mn2§. Clearly, the output of the algorithm will be
envy-freeable with at most this amount of subsidies.

Let o € L(n) be the permutation over [n] such that A; = A, ;) for every j € [n]. Let G and H
be the envy graphs EG(O,v) and EG(A’,v), respectively.

We now present the most crucial component of our analysis. It exploits the fact that both O
and A belong to class A, and uses the third statement of Theorem [II

Lemma 3. For every pair of agents i and j, there exists a (not necessarily simple) path p(i,j)
from node o(i) to node o(j) such that

wgty (i,7) < Z wgtg(e) + 4mé.
e€p(i,j)

Proof. In the proof, we will use the following simple claim.

Claim 4. For every agent i and every two bundles By and Bs such that v;(By) = v;(Bz2), it holds
that

—[Ba|0 < vi(B1) — vi(Bz2) < |B1l6. (2)

Proof. First observe that, by the definition of ¥ and its relation to v, for every agent ¢ and item
g € M, it holds that 7;(g9) < v;(g9) < ¥;(g) + 6. Hence, for every bundle B,

The claim follows by applying this inequality for bundles B; and By and using the fact that
0;(B1) = v;(B2). O

We use the notation o~ to refer to the inverse permutation of o, i.e., 01 (k) = j when k = o(j).
Consider the set C' that contains edge (k,c~'(k)) for every agent k such that k # o~ '(k). C is
either empty (if k = o=1(k) for every agent k) or consists of disjoint directed cycles. For an agent
i, if 071(i) # i, we denote by C; the set of nodes that are spanned by the cycle of C that includes
node i. Otherwise, we define C; to contain only node .

Define the (not necessarily simple) path p(i,7) from node o(i) to node o(j) to contain edge
(k,o(k)) for every node k in the set C; besides node i and, if i # o(j), the directed edge (i,0(j)).

For every pair of agents ¢ and j, we have that the weight of the directed edge (i,j) in H is

wety(i,7) < wety(i,7) — Z wety (k0" (k)
keC;



= 0i(A45) = 0i(A45) = Y (or(A] 1) — vi(4}))

kec;

= vi(Ag) — vilAa@) — Y (vk(Ar) — ve(Aogry))
kec;

< 0i(O05() = vi(Oa()) — Y (vk(Ok) — vk(Oury))
kec;

+ [ Ao + 106 1+ D 106+ D 1Asum| | 6

keC; keC;
< 0i(O0p() = vi(Oa()) = Y (0k(Ok) — 0k(Opr))) + 4md
keC;
= vi(0g(j)) —vi(0) + > (0k(O(ry) — vk(Or)) + 4md
keCi\{i}
=wgtg(i,0() + > watg(k,o(k)) + 4mé
keCi\{i}
= Z wgtg(e) + 4md.
e€p(i,j)

The first inequality follows since C; consists of node i only (when i = o(i)) or the edges (k,o'(k))
for k € C; form a directed cycle of non-positive total weight in H. The second inequality follows
by applying Claim [ (recall that both allocations A and O belong to the class A, and, hence,
0e(Aq) = 94(Oq) for every pair of agents £ and ¢). The third inequality follows since the bundles
Ag(k) (respectively, O) for k € C; are disjoint. The equalities are obvious or follow by the definition
of the weights. O

Now, let 7' and 7 be the solutions of LP(A’,v) and LP(O,v), respectively. Hence, y =
Sub(0,v) =" . We will use Lemma [3] to argue that

T < To(i) + 4mnd. (3)
This will yield

n n
Sub(A4’,v) = Z < Z (7o) + 4mnd) = x + 4mn?s,
i=1 i=1
completing the proof.

Recall from Theorem [I that the payment 7, (respectively, m) is equal to the maximum path
weight over all simple paths that originate from node ¢ in graph H (respectively, graph G). Let
Q¢ be the corresponding simple path that is destined for some node s (and originates from node
0), e, m = > .co, Wety(e). We construct the (not necessarily simple) path P, from node o(¢)
to node o(s) of G that consists of path p(i,j) for every directed edge (7,7) in the path Q. Using
Lemma 3] we get

) = Z wgt(e) < Z Z wgte(e') + 4md

ecQy e€Qy \e'ep(e)



< Z Z wgta(e) + 4mnd = Z wgt(e) + 4mné. (4)

e€Qqe’ep(e) eePy

The second inequality follows since path @ is simple (and, hence, contains at most n — 1 edges).
Now, create the simple path P; from node o(f) to node o(s) by removing the cycles in Pp. Since
graph G does not have any directed cycles of positive total weight (by Theorem [), we have
wgte(Pr) < wgtg(Py). Now, () yields

my < Z wgtg(e) + 4mnd,
ecP;

which implies (@) since P is a simple path that originates from node o (i). O

The running time of the algorithm depends on the number of table entries, the number of steps
required for computing each table entry using the recursive relation, the number of steps required
to compute a representative allocation for a non-empty allocation class, the redistribution time,
and the time required to solve the linear programs.

The dimensions of the table T are m for the first one that enumerates over all items, and at

most 1+ |maxv/d] =1+ 4””;"2 for each of the other dimensions. Overall, the size of the table is

2
@) <(%)n +l>. The computation of each table entry using the recursive relation needs the values

in n? table entries that have previously computed. In a representative allocation, the agent in
which each of the m items is allocated requires time n? as well, i.e., time O(m) in total. The
redistribution of the bundles can be implemented using a matching computation in a complete
edge-weighted bipartite graph that has a node for each agent and for each bundle and the weight
of an edge indicates the valuation of an agent for a bundle. As n is constant, this takes constant
time. Also, the linear programs have constant size. In general, since n is a constant, it is ignored
in the O notation unless it appears in the exponent. The above discussion is summarized in the
next statement.

Theorem 5. Let € > 0 be the accuracy parameter used by the algorithm. Given an instance of
SMEF consisting of a constant number n of agents with valuations v over a set M of m items
that has an envy-freeable allocation using an amount x of subsidies, the algorithm runs in time
(@) ((m/e)"2+2) and computes an allocation that is envy-freeable using a total subsidy of at most
X + €emaxv.

4 Hardness of approximating SMEF

In this section, we show that approximation guarantees like the one in the statement of Theorem
are not possible when the number of agents is part of the input.

Theorem 6. Approzimating SMEF within an additive term of 3 -10~*sumv is NP-hard.

We prove Theorem [6] by presenting a reduction from Maximum 3-Dimensional Matching (MAX-
3DM). An instance of MAX-3DM consists of three disjoint sets of elements A = {a1,as, ..., a,},
B = {by,ba,....,b,}, and C = {e¢1,ca,...,cn}, each of size n, and a set T of m triplets of the form
(@i, bj,cx) with a; € A, b; € B, and ¢, € C. The objective is to compute a disjoint subset of 7" (or,



simply, a 3D matching) of maximum size. The problem is well-known to be NP-hard not only to
solve exactly [Garey and Johnson, [1979] but also to approximate [Kannl, [1991].

We will use the inapproximability result of |Chlebik and Chlebikova [2006], which applies to
bounded instances of MAX-3DM in which each element appears in exactly two triplets (i.e., m =
2n); we will refer to this restriction of MAX-3DM as MAX-3DM-2. In particular,|Chlebik and Chlebikova
[2006] show that it is NP-hard to distinguish between instances of MAX-3DM-2 with a 3D match-
ing of size ﬁt least K and instances of MAX-3DM-2 in which any 3D matching has size at most
K —0.01n

4.1 The reduction

We present our reduction and full proof for the case x > 0. We omit the case x = 0, which requires a
minor modification of the reduction. On input an instance of MAX-3DM-2, our reduction constructs
in polynomial time an instance of SMEF, in which the minimum amount of susbsidies that can
make some allocation envy-free is exactly x(1+max{K —L,0}), where L is the size of the maximum
3D matching in the MAX-3DM-2 instance. Using the result of I(Chlebik and Chlebikovd [2006], we
will get that it is NP-hard to distinguish between SMEF instances in which the minimum amount of
subsidies is at most y and instances in which it is at least x(1+0.01n). Hence, SMEF will be proved
to be NP-hard to approximate within 0.01ny. Our construction will be such that sumwv < 30ny.
In this way, we will obtain a hardness of approximating SMEF within an additive term of (at least)
3-10"*sumw, as desired.

Our reduction is as follows. Given an instance of MAX-3DM-2 consisting of sets of elements A,
B, and C, each of size n, and a set of 2n triplets 7', the instance of SMEF has

e three agents 1, 2, and 3,

three agents Jy(t), Ja(t), and J3(t) for every triplet t € T,
e an item A; for every element a; € A,

e an item B; for every element b; € B,

e an item I'; for every element ¢; € C,

e three items Ay, Z;, and O, for every triplet t € T, and

e an additional item A.

The agents Ji(t), Ja2(t), and J3(t) that correspond to the triplet ¢t = (a4, bj, ¢;) have valuations
0 for all items besides the items A;, Bj, I'y, Ay, Z;, and ©;. Agents 1, 2 have valuation 0 for all
items besides item A and agent 3 has valuation zero for all items besides item A and items ©; for
t € T. Their remaining valuations are as follows:

3This statement is actually weaker than the one proved by [Chlebik and Chlebfkovd [2006]. However, it suffices
for our purpose to prove hardness of approximation. Note that we have made no particular attempt to optimize our
inapproximabity threshold.



A, B Ty A Z, © A
110 0 0 0 0 0 x
20 0 0 0 0 0 xK
3]0 0 0 0 0 x xK

Jt) | x x x 3x 3x 0 0

Jbt)f 0 0 0 x x x 0

Js)l0 0 0 0 x 0 0

Recall that each element belongs to exactly two triplets. Hence, two agents have positive value for
item A; (similarly for items B; and I'y): agents Ja(t1) and Ja(t2) such that the triplets ¢; and ¢
contains element a; (similarly for elements b; and c). It is easy to see that either two or three
agents have positive value for each item. For every triplet ¢, the agents Ji(t), Ja(t), and J3(¢)
have total valuation 9y, 3x, and x, respectively. Taking into account that K < n, we obtain that
sumv < 30ny.

4.2 Lower bound on subsidies

Consider an instance of SMEF constructed by our reduction and let X be an envy-freeable allocation
in it. We will first lower-bound the minimum amount of subsidies that make X envy-free. First
observe that X cannot give item A to agent 1; in that case, exchanging the bundles of agents 1 and
2 would result to an increase of the social welfare and, hence, X would not be envy-freeable. If X
gives item A to agent 3, agents 1 and 2 would need subsidies of at least y and y K, respectively, so
that they do not envy agent 3. Hence, Sub(A,v) > x(1 4+ K) in this case.

In the following, we will lower-bound the minimum total subsidies that make X envy-free
assuming that item A is given to agent 2. Let 6 be the number of items ©, for ¢ € [2n] agent 3
gets. Then, agent 3 should be given a subsidy of at least y max{K — 6,0} so that she does not envy
agent 2. Agent 1 needs a subsidy of y max{K — 6,1} so that she does not envy agents 1 and 2.

For a triplet t = (a;,b;,cx) in the original instance of MAX-3DM-2, we call it full if all items
A;, Bj, and I'j, (which correspond to the elements of the triplet) have been allocated to the agents
Ji(t), Jo(t), or J3(t). Otherwise, we call it partial. We call ¢ supported if item ©; has been allocated
to agent Jy(t); otherwise, we call t unsupported.

In the next four claims, we lower-bound the total amount of subsidies the agents Ji(t), Ja(t),
and Js(t) of a triplet ¢ need, depending of the type of t.

Claim 7. The agents Jy(t), Jo(t), and J3(t) of a full and supported triplet t need subsidies of at
least x max{K — 6 — 2,0}.

Proof. Consider a full and supported triplet t. If agent Jy(t) has value at most 2x (i.e., getting Oy
and at most one of the items A; and Z;), then she needs a subsidy of at least y max{K — 6 — 2,0}
so that she does not envy agent 3. If agent Jy(t) has value 3x by getting both items A; and Z; in
addition to Oy, she needs a subsidy of at least y max{K — 6 — 3,0}, while then agents J;(¢) and
J3(t) need subsidies of at least 3y + x max{K — 60 — 3,0} and x + x max{K — 6 — 3,0}, respectively,
so that they do not envy agent J(t). In both cases, the total amount of subsidies of the agents
J1(t), Jo(t), and J3(t) is at least y max{K — 6 — 2,0}. O

Claim 8. The agents Ji(t), Jao(t), and J3(t) of a full and unsupported triplet t need subsidies of at
least x max{K — 6 —1,0}.

10



Proof. Consider a full and unsupported triplet ¢. If agent Jo(t) has value at most x (i.e., getting
at most one of the items A; and Z;), then she needs a subsidy of at least x max{K — 6 — 1,0} so
that she does not envy agent 3. If agent J(t) has value 2x by getting both items A; and Z;, she
needs a subsidy of at least y max{K — 6 — 2,0}, while then agents J;(t) and J3(t) need subsidies
of at least 3x + y max{K — 6 — 2,0} and x + xy max{K — 6 — 2,0}, respectively, so that they do not
envy agent Jo(t). In both cases, the total amount of subsidies of agents Ji(t), Jo(t), and J3(t) is
at least x max{K — 6 — 1,0}. O

Claim 9. The agents Ji(t), Jao(t), and J5(t) of a partial and supported triplet t need subsidies of
at least x max{K — 6 —1,0}.

Proof. Let t be a partial and supported triplet. If agent Jo(t) does not get items A; and Z;, then
she gets only a value of x from item ©; and needs a subsidy of at least y max{K — 6 — 1,0} so that
she does not envy agent 3.

If agent Ja(t) gets item A; but not item Z;, she needs a subsidy of y max{K — 6 — 2,0} so that
she does not envy agent 3. Then, if agent J;(¢) does not get item Z;, her value is at most 2y (from
at most two of the items A;, B;, and I';) and needs a subsidy of x + x max{K — 6 — 2,0} so that
she does not envy agent Jo(t). If agent J5(t) does not get item Z;, she needs a subsidy of at least
X + xmax{K — 6 — 2,0} so that she does not envy agent Jo(t).

If agent Jo(t) gets item Z; but not A, she needs a subsidy of y max{K — 6 — 2,0} so that she
does not envy agent 3 and agent J3(t) needs a subsidy of at least x + x max{K — 6 — 2,0} so that
she does not envy agent Ja(t).

Finally, if agent Jo(t) gets items A; and Z;, her value is 3x and needs a subsidy of at least
xmax{K — 6 — 3,0} so that she does not envy agent 3. Then, each of agents J;(t) and J3(¢) need
a subsidy of at least x + y max{K — 0 — 3,0} so that they do not envy agent J,(t).

In all cases, the total amount of subsidies the agents Ji(t), Jo(t), and J3(¢) need is at least
xmax{K — 6 —1,0}. O

Claim 10. The agents Ji(t), Jo(t), and J3(t) of a partial and unsupported triplet t need subsidies
of at least x max{K — 6,1}.

Proof. Let t be a partial and unsupported triplet. If agent J(t) gets both items A; and Z;, she
needs a subsidy of x max{K — 6 — 2,0} so that she does not envy agent 3, while agents J;(¢) and
J3(t) would then need subsidies of at least 4x + x max{K — 6 — 2,0} and x + x max{K — 6 — 2,0},
respectively, so that they do not envy agent Jo(t).

If agent Jo(t) gets only item Ay, she needs a subsidy of y max{K — 6 — 1,0} so that she does
not envy agent 3. Then, the agent who does not get item Z; among Ji(¢) and J3(t) would need a
subsidy of at least y + y max{K — 6 — 1,0} so that she does not envy agent Js(t).

If agent Jo(t) gets only item Z;, she needs a subsidy of x max{K — 6 — 1,0} so that she does
not envy agent 3, while agent J3(t) needs a subsidy of at least x + x max{K — 6 — 1,0} so that she
does not envy agent Jo(t).

Finally, if agent Jo(t) gets no item (among A; and Z;), she needs a subsidy of at least x so that
she does not envy the agents who get items A; and Z; and a subsidy of at least x max{K — 6,0}
so that she does not envy agent 3.

In all cases, the total amount of subsidies the agents Ji(t), Ja(t), and J3(t) need is at least
xmax{K —0,1}. O
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We now denote by Ly, Ly, P, and P, the number of full and supported, full and unsupported,
partial and supported, and partial and unsupported triplets defined by X, respectively. Notice
that the full triplets form a 3D matching. Denoting by L the maximum size over all 3D matchings
of the MAX-3DM-2 instance, we have L > L; + Lo. Using Claims [{HI0], and our observations for
agents 1 and 3, we have that the total amount of subsidies X needs to become envy-free is

Sub(X,v) > x (L1 max{K — 0 — 2,0} + Lo max{K — 0 — 1,0}
+P max{K — 6 — 1,0} + P,max{K — 6,1}
+max{K — 6,0} + max{K —6,1}). (5)

We will distinguish between two cases for K — 0. If K — 60 > 2, (@) yields
Sub(X,v) > x(La+ Py +2P,+4)=x2n— L1 + P, +4) > x(1 + max{K — L,0}).

Now, notice that 6, the number of items ©; agent 3 gets in X is upper-bounded by the number of
unsupported triplets, i.e., 8 < Ly + P,. Thus, if K — 6§ < 1, (@) yields

Sub(X,v) > x (P + K —0+1) > x(K — Ly +1) > x(1 + max{K — L,0}).

We conclude that the minimum amount of subsidies necessary to make X envy-free is at least
X(1 + max{K — L,0}).

4.3 Upper bound on minimum subsidies

We now present our upper bound on the minimum amount of subsidies for envy-freeness. Given a
3D matching M of maximum size L in the MAX-3DM-2 instance, we will construct an allocation
for the SMEF instance and will show that it is envy-freeable with an amount of subsidies equal to
X(1 + max{K — L,0}).

For defining the allocation, we partition 7"\ M in two disjoint sets of triplets 7 and T5 of size
2n —max{K, L} and max{K — L, 0}, respectively.

e For every triplet t = (a;,bj,c;) € M, agent Jy(t) gets items A;, B;, and I'y, agent Jo(t) gets
item A; and agent J3(t) gets item Z;.

e For every triplet ¢t = (a;,bj,c,) € M, let F(t) be the set of items that correspond to the
elements of ¢ that have not been included in triplets of M. Note that, due to the maximality
of M, F(t) has zero, one, or two elements among A;, Bj;, and I';. For every triplet ¢t =
(ai,bj,cx) € Th, agent Jyi(t) gets item Ay, agent Ja(t) gets the items in F(t), if any, and item
Oy, and agent J3(t) gets item Z;.

e For every triplet ¢ = (a;,b;,c;) € Ts, agent Jy(t) gets item A, agent Jo(t) gets the items in
F(t), if any, and agent J5(t) gets item Z;.

e Agent 3 gets item ©, for every triplet ¢t € M U T5.
e Agent 2 gets item A.

e Agent 1 gets no items.
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We claim that the allocation above is envy-freeable by assigning a subsidy of x to agent 1 and a
subsidy of x to agent Jo(t) for every triplet ¢t € Ty (if any).

Indeed, agent 1 has positive value only for item A, which is given to agent 2, who gets no
subsidy. Also, no other agent gets a subsidy more than the subsidy x that is given to agent 1.
Hence, agent 1 is not envious. Agent 2 gets item A, which is the only item she values positively
and much higher than the subsidy given to any other agent. Hence, agent 2 is not envious either.
Agent 3 gets exactly max{K, L} items of total value x max{K, L}. She does not envy agent 2 who
gets item A (which agent 3 values for xK) since no subsidy is given to agent 2. Clearly, the value
of agent 3 is much higher than the subsidy given to any other agent.

Consider a triplet t = (a;,b;,c) € M. Agent Ji(t) has a value of 3x for the items A;, Bj,
and I'y she gets. The remaining items for which she has positive valuation of 3x have been given
to agents Jo(t) and J3(t), respectively. Since these agents do not get subsidies, agent Ji(t) is not
envious of them. Clearly, agent Ji(t) is not envious of any other agent since she has zero value for
all other items and no agent gets a subsidy more than x. Agent J3(t) gets item Z;, the only item
for which she has positive value and does not envy any other agent since no one gets a subsidy
higher than x. Agent Ja(t) gets a value of x from item A; and does not envy agent J3(t), who
gets item Z;, or agent 3, who gets item ©,, as these agents receive no subsidy. Clearly, agent Jo(t)
envies no other agent.

Now consider a triplet t = (a;, bj,ci) € M. Agent Ji(t) has a value of 3x for the item A, she
gets. The remaining items for which she has positive valuation have been allocated as follows. Item
Z; has been given to agent Js3(t); clearly, agent Ji(t) is not envious of J3(t) since the latter gets no
subsidies. The items in F'(t) have been given to agent J2(t). Again, agent .Ji(¢) is not envious of
Ja(t) since F'(t) contains at most two items (which agent J;(¢) values for x each) and agent Ja(t)
gets a subsidy of zero (if t € Ty) or x (if ¢ € Ty). Clearly, Ji(t) does not envy any other agent.
Agent J3(t) gets item Z;, the only item for which she has positive value and does not envy any
other agent since no one gets a subsidy higher than x. Agent Jy(t) gets a value of y, either from
item O, (if ¢ € T1) or as subsidy (if ¢ € T), and does not envy agent Ji(t) who gets item A; or
agent 3 who gets item O; only when ¢t € Ts; recall that these two agents never get subsidies. Again,
agent Jo(t) envies no other agent.

4.4 Adapting the proof for the case y =0

The modification required in our reduction so that it covers the case xy = 0 as well is to remove
agent 1 and replace x with 1 in the definition of valuations. In particular, the agents Ji(t), Ja(t),
and Js(t) that correspond to the triplet ¢ = (a;, bj,c;) have valuations 0 for all items besides the
items A;, By, I'y, Ay, Z;, and ©;. Agent 2 has valuation 0 for all items besides item A and agent 3
has valuation zero for all items besides item A and items Oy for ¢ € T. The remaining valuations
are now as follows:

A By Tp A Z ©, A

20 0 0 0 0 0 K
310 o0 0 0 0 1 K
J®]1 1 1 3 3 0 0
Lo 0o 0 1 1 1 0
Jst)|0 0 0 0 1 0 0
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The same reasoning as in our proof for the case x # 0 gives a minimum amount of subsidies for
the SMEF instance of exactly max{K — L,0}, where L is the maximum 3D matching size in the
MAX-3DM-2 instance. In this way, we get that SMEF is NP-hard to approximate within 0.01n
(i.e., it is NP-hard to distinguish between envy-free instances and instances that need subsidies of
0.01n) and the construction satisfies sumv < 30n. This yields the desired inapproximability result
in the statement of Theorem [6] for the case x = 0 as well.

5 Concluding remarks

We have initiated the study of the optimization problem SMEF. The challenging open problem that
deserves investigation is to close the gap between the trivial approximation guarantee of n — 1 in
Section [2] and our negative result for super-constant numbers of agents in Section 4l Unfortunately,
more sophisticated existing algorithms, such as the recent one by Brustle et al. [2020], do not lead
to better approximations.

We remark that max v could be used alternatively to sum in the definition of the approximation
guarantees of SMEF. Actually, the guarantee for our dynamic programming algorithm is stated
in terms of maxwv. We can express the rest of our results using maxv as well. First, the trivial
algorithm presented at the end of Section [2] uses an amount of x + (n — 1) maxv as subsidies.
Second, an adaptation of the current proof of the inapproximability result can easily give that
approximating SMEF within an additive term of ¢ x maxv for a constant ¢ is NP-hard. The
important observation is that maxv < ny (or maxv < n when x = 0) in our construction. Then,
distinguishing between SMEF instances in which the minimum amount is at most x and at least
X(1+ 0.01n) (or at least 0.0ln when x = 0) requires to distinguish between SMEF instances in
which the minimum amount is at most y and at least x + 0.0l max v. So, the inapproximability
constant is a bit higher in this case. The main advantage of adopting sum is that it makes the
problem of computing the tight approximation factor more challenging.

Interestingly, an advantage of the trivial algorithm is that the particular payments incentivize
the agents to report their valuations truthfully. What is the best possible approximation guarantee
that can be obtained for SMEF by truthful algorithms? Unfortunately, a simple application of
Myerson’s characterization in single-item settings [Myerson, [1981] indicates that no approximation
guarantee better than n — 1 is possible. Indeed, consider instances with a single item. By the
characterization of envy-freeable allocations by |Halpern and Shahl [2019] (i.e., the second statement
in Theorem [I]), we know that the agent with the highest valuation should get the item. Then,
Myerson’s characterization for truthful mechanisms in single parameters environments and our
requirement for non-negative payments give us the specific form payments should have so that
truthful reporting is a dominant strategy for all agents when this algorithm is used: if the agent 4
who gets the item receives payment of p > 0, agent ¢ should get a payment of exactly p + v; — v,
where v; and v; are the payments of agents ¢ and t. Now, consider specifically the instance in which
one agent has value 1 for the item, and all other agents have value 0. Truthfulness requires (at
least) a unit of subsidy to each agent that does not get the item (i.e., total subsidies of n — 1 while
sum = 1), even though there is clearly an allocation that is envy-free without any payments. This
yields the claimed lower bound of n — 1 in the approximation guarantee.
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