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Abstract. We consider k-Facility Location games, where n strategic agents report their locations on
the real line, and a mechanism maps them to k ≥ 2 facilities. Each agent seeks to minimize her distance
to the nearest facility. We are interested in (deterministic or randomized) strategyproof mechanisms
without payments that achieve a reasonable approximation ratio to the optimal social cost of the agents.
To circumvent the inapproximability of k-Facility Location by deterministic strategyproof mechanisms,
we restrict our attention to perturbation stable instances. An instance of k-Facility Location on the
line is γ-perturbation stable (or simply, γ-stable), for some γ ≥ 1, if the optimal agent clustering is
not affected by moving any subset of consecutive agent locations closer to each other by a factor at
most γ. We show that the optimal solution is strategyproof in (2+

√
3)-stable instances whose optimal

solution does not include any singleton clusters, and that allocating the facility to the agent next to the
rightmost one in each optimal cluster (or to the unique agent, for singleton clusters) is strategyproof
and (n − 2)/2-approximate for 5-stable instances (even if their optimal solution includes singleton
clusters). On the negative side, we show that for any k ≥ 3 and any δ > 0, there is no deterministic
anonymous mechanism that achieves a bounded approximation ratio and is strategyproof in (

√
2− δ)-

stable instances. We also prove that allocating the facility to a random agent of each optimal cluster is
strategyproof and 2-approximate in 5-stable instances. To the best of our knowledge, this is the first time
that the existence of deterministic (resp. randomized) strategyproof mechanisms with a bounded (resp.
constant) approximation ratio is shown for a large and natural class of k-Facility Location instances.

1 Introduction

We consider k-Facility Location games, where k ≥ 2 facilities are placed on the real line based on
the preferences of n strategic agents. Such problems are motivated by natural scenarios in Social
Choice, where a local authority plans to build a fixed number of public facilities in an area (see
e.g., [40]). The choice of the locations is based on the preferences of local people, or agents. Each
agent reports her ideal location, and the local authority applies a (deterministic or randomized)
mechanism that maps the agents’ preferences to k facility locations.

Each agent evaluates the mechanism’s outcome according to her connection cost, i.e., the dis-
tance of her ideal location to the nearest facility. The agents seek to minimize their connection
cost and may misreport their ideal locations in an attempt of manipulating the mechanism. There-
fore, the mechanism should be strategyproof, i.e., it should ensure that no agent can benefit from
misreporting her location, or even group strategyproof, i.e., resistant to coalitional manipulations.
The local authority’s objective is to minimize the social cost, namely the sum of agent connections
costs. In addition to allocating the facilities in a incentive compatible way, which is formalized by
(group) strategyproofness, the mechanism should result in a socially desirable outcome, which is
quantified by the mechanism’s approximation ratio to the optimal social cost.

Since Procaccia and Tennenholtz [42] initiated the research agenda of approximate mechanism
design without money, k-Facility Location has served as the benchmark problem in the area and
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its approximability by deterministic or randomized strategyproof mechanisms has been studied
extensively in virtually all possible variants and generalizations. For instance, previous work has
considered multiple facilities on the line (see e.g., [27,28,32,37,41]) and in general metric spaces
[26,36]), different objectives (e.g., social cost, maximum cost, the L2 norm of agent connection
costs [23,42,28]), restricted metric spaces more general than the line (cycle, plane, trees, see e.g.,
[2,17,25,31,39]), facilities that serve different purposes (see e.g., [34,35,48]), and different notions
of private information about the agent preferences that should be declared to the mechanism (see
e.g., [16,21,38] and the references therein).

Due to the significant research interest in the topic, the fundamental and most basic question
of approximating the optimal social cost by strategyproof mechanisms for k-Facility Location on
the line has been relatively well-understood. For a single facility (k = 1), placing the facility at
the median location is group strategyproof and optimizes the social cost. For two facilities (k = 2),
the best possible approximation ratio is n − 2 and is achieved by a natural group strategyproof
mechanism that places the facilities at the leftmost and the rightmost location [27,42]. However,
for three or more facilities (k ≥ 3), there do not exist any deterministic anonymous1 strategyproof
mechanisms for k-Facility Location with a bounded (in terms of n and k) approximation ratio [27].
On the positive side, there is a randomized anonymous group strategyproof mechanism2 with an
approximation ratio of n [28] (see also Section 1.1 for a selective list of additional references).

Perturbation Stability in k-Facility Location Games. Our work aims to circumvent the
strong impossibility result of [27] and is motivated by the recent success on the design of polynomial-
time exact algorithms for perturbation stable clustering instances (see e.g., [3,9,10,11,43,44]). An
instance of a clustering problem, like k-Facility Location (a.k.a. k-median in the optimization and
approximation algorithms literature), is γ-perturbation stable (or simply, γ-stable), for some γ ≥ 1,
if the optimal clustering is not affected by scaling down any subset of the entries of the distance
matrix by a factor at most γ. Perturbation stability was introduced by Bilu and Linial [12] and
Awasthi, Blum and Sheffet [7] (and has motivated a significant volume of followup work since then,
see e.g., [3,9,11,44] and the references therein) in an attempt to obtain a theoretical understanding of
the superior practical performance of relatively simple clustering algorithms for well known NP-hard
clustering problems (such as k-Facility Location in general metric spaces). Intuitively, the optimal
clusters of a γ-stable instance are somehow well separated, and thus, relatively easy to identify (see
also the main properties of stable instances in Section 3). As a result, natural extensions of simple
algorithms, like single-linkage (a.k.a. Kruskal’s algorithm), can recover the optimal clustering in
polynomial time, provided that γ ≥ 2 [3], and standard approaches, like dynamic programming
(resp. local search), work in almost linear time for γ > 2 +

√
3 (resp. γ > 5) [1].

In this work, we investigate whether restricting our attention to stable instances allows for
improved strategyproof mechanisms with bounded (and ideally, constant) approximation guaran-
tees for k-Facility Location on the line, with k ≥ 2. We note that the impossibility results of
[27] crucially depend on the fact that the clustering (and the subsequent facility placement) pro-
duced by any deterministic mechanism with a bounded approximation ratio must be sensitive to
location misreports by certain agents (see also Section 6). Hence, it is very natural to investigate
whether the restriction to γ-stable instances allows for some nontrivial approximation guarantees
by deterministic or randomized strategyproof mechanisms for k-Facility Location on the line.

1 A mechanism is anonymous if its outcome depends only on the agent locations, not on their identities.
2 The result of [28] applies to the more general setting where the agent connection cost is a nondecreasing concave
function of the distance to the nearest facility.
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To study the question above, we adapt to the real line the stricter3 notion of γ-metric stability
[3], where the definition also requires that the distances form a metric after the γ-perturbation.
In our notion of linear γ-stability, the instances should retain their linear structure after a γ-
perturbation. Hence, a γ-perturbation of a linear k-Facility Location instance is obtained by moving
any subset of pairs of consecutive agent locations closer to each other by a factor at most γ ≥ 1. We
say that a k-Facility Location instance is γ-stable, if the original instance and any γ-perturbation
of it admit the same unique optimal clustering4 (see also Definition 1).

Interestingly, for γ sufficiently large, γ-stable instances of k-Facility Location have additional
structure that one could exploit towards the design of strategyproof mechanisms with good approx-
imation guarantees (see also Section 3). E.g., each agent location is γ−1 times closer to the nearest
facility than to any location in a different cluster (Proposition 1). Moreover, for γ ≥ 2 +

√
3, the

distance between any two consecutive clusters is larger than their diameter (Lemma 1).

From a conceptual viewpoint, our work is motivated by a reasoning very similar to that dis-
cussed by Bilu, Daniely, Linial and Saks [13] and summarized in “clustering is hard only when it
doesn’t matter” by Roughgarden [46]. In a nutshell, we expect that when k public facilities (such as
schools, libraries, hospitals, representatives) are to be allocated to some communities (e.g., cities,
villages or neighborhoods, as represented by the locations of agents on the real line) the communi-
ties are already well formed, relatively easy to identify and difficult to radically reshape by small
distance perturbations or agent location misreports. Moreover, in natural practical applications of
k-Facility Location games, agents tend to misreport “locally” (i.e., they tend to declare a differ-
ent ideal location in their neighborhood, trying to manipulate the location of the local facility),
which usually does not affect the cluster formation. In practice, this happens because the agents
do not have enough knowledge about locations in other neighborhoods, and because “large non-
local” misreports are usually easy to identify by combining publicly available information about
the agents (e.g., occupation, address, habits, lifestyle). Hence, we believe that the class of γ-stable
instances, especially for relatively small values of γ, provides a reasonably accurate abstraction of
the instances of k-Facility Location games that a mechanism designer is more likely to deal with
in practice. Thus, we feel that our work takes a small first step towards justifying that (not only
clustering but also) strategyproof facility location is hard only when it doesn’t matter.

Contributions and Techniques. Our conceptual contribution is that we initiate the study of
efficient (wrt. their approximation ratio for the social cost) strategyproof mechanisms for the large
and natural class of γ-stable instances of k-Facility Location on the line. Our technical contribution
is that we show the existence of deterministic (resp. randomized) strategyproof mechanisms with
a bounded (resp. constant) approximation ratio for 5-stable instances and any number of facilities
k ≥ 2. Moreover, we show that the optimal solution is strategyproof for (2 +

√
3)-stable instances,

if the optimal clustering does not include any singleton clusters (which is likely to be the case in
virtually all practical applications). To provide evidence that restriction to stable instances does
not make the problem trivial, we strengthen the impossibility result of Fotakis and Tzamos [27], so
that it applies to γ-stable instances, with γ <

√
2. Specifically, we show that that for any k ≥ 3 and

3 The notion of γ-metric stability is “stricter” than standard γ-stability in the sense that the former excludes some
perturbations allowed by the latter. Hence, the class of γ-metric stable instances includes the class of γ-stable
instances. More generally, the stricter a notion of stability is, the larger the class of instances qualified as stable,
and the more general the positive results that one gets. Similarly, for any γ′ > γ ≥ 1, the class of γ(-metric) stable
instances includes the class of γ′(-metric) instances. Hence, a smaller value of γ makes a positive result stronger
and more general.

4 As for the optimal centers, in case of ties, the center of an optimal cluster is determined by a fixed deterministic
tie-breaking rule, e.g., the center is always the left median point of the cluster.
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any δ > 0, there do not exist any deterministic anonymous strategyproof mechanisms for k-Facility
Location on (

√
2− δ)-stable instances with bounded (in terms of n and k) approximation ratio.

At the conceptual level, we interpret the stability assumption as a prior on the class of true
instances that the mechanism should be able to deal with. Namely, we assume that the mechanism
has only to deal with γ-stable true instances, a restriction motivated by (and fully consistent with)
how the stability assumption is used in the literature on efficient algorithms for stable clustering
(see e.g., [3,9,11,12], where the algorithms are analyzed for stable instances only). More specifically,
our mechanisms expect as input a declared instance such that in the optimal clustering, the dis-

tance between any two consecutive clusters is at least (γ−1)2

2γ times larger than the diameters of the
two clusters (a.k.a. cluster-separation property, see Lemma 1). This condition is necessary (but not
sufficient) for γ-stability and can be easily checked. If the declared instance does not satisfy the
cluster-separation property, our mechanisms do not allocate any facilities. Otherwise, our mecha-
nisms allocate k facilities (even if the instance is not stable). We prove that for all γ-stable true
instances (with the exact stability factor γ depending on the mechanism), if agents can only deviate
so that the declared instance satisfies the cluster-separation property (and does not have singleton
clusters, for the optimal mechanism), our mechanisms are strategyproof and achieve the desired
approximation guarantee. Hence, if we restrict ourselves to γ-stable true instances and to agent
deviations that do not obviously violate γ-stability, our mechanisms should only deal with γ-stable
declared instances, due to strategyproofness. On the other hand, if non-stable true instances may
occur, the mechanisms cannot distinguish between a stable true instance and a declared instance,
which appears to be stable, but is obtained from a non-stable instance through location misreports.

The restriction that the agents of a γ-stable instance are only allowed to deviate so that the
declared instance satisfies the cluster-separation property (and does not have any singleton clusters,
for the optimal mechanism) bears a strong conceptual resemblance to the notion of strategyproof
mechanisms with local verification (see e.g., [6,4,14,15,29,30,33]), where the set of each agent’s
allowable deviations is restricted to a so-called correspondence set, which typically depends on the
agent’s true type, but not on the types of the other agents. Instead of restricting the correspondence
set of each individual agent independently, we impose a structural condition on the entire declared
instance, which restricts the set of the agents’ allowable deviations, but in a global and observable
sense. As a result, we can actually implement our notion of verification, by checking some simple
properties of the declared instance, instead of just assuming that any deviation outside an agent’s
correspondence set will be caught and penalized (which is the standard approach in mechanisms
with local verification [4,15,14], but see e.g., [6,26] for noticeable exceptions).

On the technical side, we start, in Section 3, with some useful properties of stables instances of k-
Facility Location on the line. Among others, we show (i) the cluster-separation property (Lemma 1),
which states that in any γ-stable instance, the distance between any two consecutive clusters is at

least (γ−1)2

2γ times larger than their diameters; and (ii) the so-called no direct improvement from
singleton deviations property (Lemma 2), i.e., that in any 3-stable instance, no agent who deviates
to a location, which becomes a singleton cluster in the optimal clustering of the resulting instance,
can improve her connection cost through the facility of that singleton cluster.

In Section 4, we show that for (2 +
√
3)-stable instances whose optimal clustering does not in-

clude any singleton clusters, the optimal solution is strategyproof (Theorem 1). For the analysis, we
observe that since placing the facility at the median location of any fixed cluster is strategyproof, a
misreport cannot be profitable for an agent, unless it results in a different optimal clustering. The
key step is to show that for (2+

√
3)-stable instances without singleton clusters, a profitable misre-

port cannot change the optimal clustering, unless the instance obtained from the misreport violates
the cluster-separation property. To the best of our knowledge, the idea of penalizing (and thus, es-
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sentially forbidding) a whole class of potentially profitable misreports by identifying how they affect
a key structural property of the original instance, which becomes possible due to our restriction to
stable instances, has not been used before in the design of strategyproof mechanisms for k-Facility
Location (see also the discussion above about resemblance to mechanisms with verification).

We should also motivate our restriction to stable instances without singleton clusters in their
optimal clustering. So, let us consider the rightmost agent xj of an optimal cluster Ci in a γ-stable
instance x⃗. No matter the stability factor γ, it is possible that xj performs a so-called singleton
deviation. Namely, xj deviates to a remote location x′ (potentially very far away from any location
in x⃗), which becomes a singleton cluster in the optimal clustering of the resulting instance. Such a
singleton deviation might cause cluster Ci to merge with (possibly part of the next) cluster Ci+1,
which in turn, might bring the median of the new cluster much closer to xj (see also Fig. 1 in
Section 3). It is not hard to see that if we stick to the optimal solution, where the facilities are
located at the median of each optimal cluster, there are γ-stable instances5, with arbitrarily large
γ ≥ 1, where some agents can deviate to a remote location and gain, by becoming singleton clusters,
while maintaining the desirable stability factor of the declared instance (see also Fig. 1).

To deal with singleton deviations6, we should place the facility either at a location close to
an extreme one, as we do in Section 5 with the AlmostRightmost mechanism, or at a random
location, as we do in Section 7 with the Random mechanism. More specifically, in Section 5,
we show that the AlmostRightmost mechanism, which places the facility of any non-singleton
optimal cluster at the location of the second rightmost agent, is strategyproof for 5-stable instances
of k-Facility Location (even if their optimal clustering includes singleton clusters) and achieves
an approximation ratio at most (n − 2)/2 (Theorem 2). Moreover, in Section 7, we show that the
Random mechanism, which places the facility of any optimal cluster at a location chosen uniformly
at random, is strategyproof for 5-stable instances (again even if their optimal clustering includes
singleton clusters) and achieves an approximation ratio of 2 (Theorem 4).

To obtain a deeper understanding of the challenges behind the design of strategyproof mecha-
nisms for stable instances of k-Facility Location on the line, we strengthen the impossibility result
of [27, Theorem 3.7] so that it applies to γ-stable instances with γ <

√
2 (Section 6). Through a

careful analysis of the image sets of deterministic strategyproof mechanisms, we show that for any
k ≥ 3, any δ > 0, and any ρ ≥ 1, there do not exist any ρ-approximate deterministic anonymous
strategyproof mechanisms for (

√
2 − δ)-stable instances of k-Facility Location on the line (Theo-

rem 3). The proof of Theorem 3 requires additional ideas and extreme care (and some novelty) in
the agent deviations, so as to only consider stable instances, compared against the proof of [27,
Theorem 3.7]. Interestingly, singleton deviations play a crucial role in the proof of Theorem 3.

1.1 Other Related Work

Approximate mechanism design without money for variants and generalizations of Facility Location
games on the line has been a very active and productive area of research in the last decade.

Previous work has shown that deterministic strategyproof mechanisms can only achieve a
bounded approximation ratio for k-Facility Location on the line, only if we have at most 2 fa-
cilities [27,42]. Notably, stable (called well-separated in [27]) instances with n = k+1 agents play a

5 E.g., let k = 2 and consider the Θ(γ)-stable instance (0, 1− ε, 1, 6γ, 6γ+ ε, 6γ+1, 6γ+1+ ε, 6γ+2), for any γ ≥ 1.
Then, the agent at location 6γ can decrease its connection cost (from 1) to ε by deviating to location (6γ)2.

6 Another natural way to deal efficiently with singleton deviations is through some means of location verification, such
as winner-imposing verification [26] or ε-symmetric verification [30,29]. Adding e.g., winner-imposing verification to
the optimal mechanism, discussed in Section 4, results in a strategyproof mechanism for (2+

√
3)-stable instances

whose optimal clustering may include singleton clusters.
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key role in the proof of inapproximability of k-Facility Location by deterministic anonymous strat-
egyproof mechanisms [27, Theorem 3.7]. On the other hand, randomized mechanisms are known
to achieve a better approximation ratio for k = 2 facilities [37], a constant approximation ratio if
we have k ≥ 2 facilities and only n = k + 1 agents [19,28], and an approximation ratio of n for
any k ≥ 3 [28]. Fotakis and Tzamos [26] considered winner-imposing randomized mechanisms that
achieve an approximation ratio of 4k for k-Facility Location in general metric spaces. In fact, the
approximation ratio can be improved to Θ(ln k), using the analysis of [5].

For the objective of maximum agent cost, Alon et al. [2] almost completely characterized the
approximation ratios achievable by randomized and deterministic strategyproof mechanisms for 1-
Facility Location in general metrics and rings. Fotakis and Tzamos [28] presented a 2-approximate
randomized group strategyproof mechanism for k-Facility Location on the line and the maximum
cost objective. For 1-Facility Location on the line and the objective of minimizing the sum of
squares of the agent connection costs, Feldman and Wilf [23] proved that the best approximation
ratio is 1.5 for randomized and 2 for deterministic mechanisms. Golomb and Tzamos [32] presented
tight (resp. almost tight) additive approximation guarantees for locating a single (resp. multiple)
facilities on the line and the objectives of the maximum cost and the social cost.

Regarding the application of perturbation stability, we follow the approach of beyond worst-case
analysis (see e.g., [43,44]), where researchers seek a theoretical understanding of the superior practi-
cal performance of certain algorithms by formally analyzing them on practically relevant instances.
The beyond worst-case approach is not anything new for Algorithmic Mechanism Design. Bayesian
analysis, where the bidder valuations are drawn as independent samples from a distribution known
to the mechanism, is standard in revenue maximization when we allocate private goods (see e.g.,
[45]) and has led to many strong and elegant results for social welfare maximization in combinato-
rial auctions by truthful posted price mechanisms (see e.g., [18,22]). However, in this work, instead
of assuming (similar to Bayesian analysis) that the mechanism designer has a relatively accurate
knowledge of the distribution of agent locations on the line (and use e.g., an appropriately opti-
mized percentile mechanism [49]), we employ a deterministic restriction on the class of instances
(namely, perturbation stability), and investigate if deterministic (resp. randomized) strategyproof
mechanisms with a bounded (resp. constant) approximation ratio are possible for locating any num-
ber k ≥ 2 facilities on such instances. To the best of our knowledge, the only previous work where
the notion of perturbation stability is applied to Algorithmic Mechanism Design (to combinatorial
auctions, in particular) is [24] (but see also [8,20] where the similar in spirit assumption of endowed
valuations was applied to combinatorial markets).

2 Notation, Definitions and Preliminaries

We let [n] = {1, . . . , n}. For any x, y ∈ R, we let d(x, y) = |x − y| be the distance of locations x
and y on the real line. For a tuple x⃗ = (x1, . . . , xn) ∈ Rn, we let x⃗−i denote the tuple x⃗ without
coordinate xi. For a non-empty set S of indices, we let x⃗S = (xi)i∈S and x⃗−S = (xi)i ̸∈S . We write
(x⃗−i, a) to denote the tuple x⃗ with a in place of xi, (x⃗−{i,j}, a, b) to denote the tuple x⃗ with a in
place of xi and b in place of xj , and so on. For a random variable X, E(X) denotes the expectation
of X. For an event E in a sample space, Pr(E) denotes the probability that E occurs.

Instances. We consider k-Facility Location with k ≥ 2 facilities and n ≥ k + 1 agents on the real
line. We let N = {1, . . . , n} be the set of agents. Each agent i ∈ N resides at a location xi ∈ R,
which is i’s private information. We usually refer to a locations profile x⃗ = (x1, . . . , xn) ∈ Rn,
x1 ≤ · · · ≤ xn, as an instance. By slightly abusing the notation, we use xi to refer both to the agent
i’s location and sometimes to the agent i (i.e., the strategic entity) herself.
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Mechanisms. A deterministic mechanism M for k-Facility Location maps an instance x⃗ to a k-
tuple (c1, . . . , ck) ∈ Rk, c1 ≤ · · · ≤ ck, of facility locations. We let M(x⃗) denote the outcome of M in
instance x⃗, and let Mj(x⃗) denote cj , i.e., the j-th smallest coordinate in M(x⃗). We write c ∈ M(x⃗)
to denote that M(x⃗) places a facility at location c. A randomized mechanism M maps an instance
x⃗ to a probability distribution over k-tuples (c1, . . . , ck) ∈ Rk.

Connection Cost and Social Cost. Given a k-tuple c⃗ = (c1, . . . , ck), c1 ≤ · · · ≤ ck, of facility
locations, the connection cost of agent i wrt. c⃗, denoted d(xi, c⃗), is d(xi, c⃗) = min1≤j≤k |xi − yj |.
Given a deterministic mechanism M and an instance x⃗, d(xi,M(x⃗)) denotes the connection cost
of agent i wrt. the outcome of M(x⃗). If M is a randomized mechanism, the expected connection
cost of agent i is Ec⃗∼M(x⃗)(d(xi, c⃗)). The social cost of a deterministic mechanism M for an instance

x⃗ is cost(x⃗,M(x⃗)) =
∑n

i=1 d(xi,M(x⃗)). The social cost of a facility locations profile c⃗ ∈ Rk is
cost(x⃗, c⃗) =

∑n
i=1 d(xi, c⃗). The expected social cost of a randomized mechanism M on instance x⃗ is

cost(x⃗,M(x⃗)) =

n∑
i=1

Ec⃗∼M(x⃗)(d(xi, c⃗)) .

The optimal social cost for an instance x⃗ is cost∗(x⃗) = minc⃗∈Rk

∑n
i=1 d(xi, c⃗). For k-Facility Lo-

cation, the optimal social cost (and the corresponding optimal facility locations profile) can be
computed in O(kn log n) time by standard dynamic programming.

Approximation Ratio. A mechanism M has an approximation ratio of ρ ≥ 1, if for any instance
x⃗, cost(x⃗,M(x⃗)) ≤ ρ cost∗(x⃗). We say that the approximation ratio ρ of M is bounded, if ρ is
bounded from above either by a constant or by a (computable) function of n and k.

Strategyproofness. A deterministic mechanism M is strategyproof, if no agent can benefit from
misreporting her location. Formally, M is strategyproof, if for all location profiles x⃗, any agent
i, and all locations y, d(xi,M(x⃗)) ≤ d(xi,M((x⃗−i, y)). Similarly, a randomized mechanism M
is strategyproof (in expectation), if for all location profiles x⃗, any agent i, and all locations y,
Ec⃗∼M(x⃗)(d(xi, c⃗)) ≤ Ec⃗∼M((x⃗−i,y)(d(xi, c⃗)).

Clusterings. A clustering (or k-clustering, if k is not clear from the context) of an instance x⃗ is
any partitioning C⃗ = (C1, . . . , Ck) of x⃗ into k sets of consecutive agent locations. We index clusters
from left to right. I.e., C1 = {x1, . . . , x|C1|}, C2 = {x|C1|+1, . . . , x|C1|+|C2|}, and so on. We refer to
a cluster Ci that includes only one agent (i.e., with |Ci| = 1) as a singleton cluster. We sometimes
use (x⃗, C⃗) to highlight that we consider C⃗ as a clustering of instance x⃗.

Two clusters C and C ′ are identical, denoted C = C ′, if they include the exact same locations.
Two clusterings C⃗ = (C1, . . . , Ck) and Y⃗ = (Y1, . . . , Yk) of an instance x⃗ are the same, if Ci = Yi,
for all i ∈ [k]. Abusing the notation, we say that a clustering C⃗ of an instance x⃗ is identical to a
clustering Y⃗ of a γ-perturbation x⃗′ of x⃗ (see also Definition 1), if |Ci| = |Yi|, for all i ∈ [k].

We let xi,l and xi,r denote the leftmost and the rightmost agent of each cluster Ci. Under
this notation, xi−1,r < xi,l ≤ xi,r < xi+1,l, for all i ∈ {2, . . . , k − 1}. Exploiting the linearity of
instances, we extend this notation to refer to other agents by their relative location in each cluster.
Namely, xi,l+1 (resp. xi,r−1) is the second agent from the left (resp. right) of cluster Ci . The
diameter of a cluster Ci is D(Ci) = d(xi,l, xi,r). The distance of clusters Ci and Cj is d(Ci, Cj) =
minx∈Ci,y∈Cj{d(x, y)}, i.e., the minimum distance between a location x ∈ Ci and a location y ∈ Cj .

A k-facility locations (or k-centers) profile c⃗ = (c1, . . . , ck) induces a clustering C⃗ = (C1, . . . , Ck)
of an instance x⃗ by assigning each agent / location xj to the cluster Ci with facility ci closest to
xj . Formally, for each i ∈ [k], Ci = {xj ∈ x⃗ : d(xj , ci) = d(xj , c⃗)}. The optimal clustering of an
instance x⃗ is the clustering of x⃗ induced by the facility locations profile with minimum social cost.
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The social cost of a clustering C⃗ induced by a k-facility locations profile c⃗ on an instance x⃗ is
simply cost(x⃗, c⃗), i.e., the social cost of c⃗ for x⃗. We sometimes refer to the social cost cost(x⃗, C⃗) of a
clustering C⃗ for an instance x⃗, without any explicit reference to the corresponding facility locations
profile. Then, we refer to the social cost cost(x⃗, c⃗), where each facility ci is located at the median
location of Ci (the left median location of Ci, if |Ci| is even).

We often consider certain structural changes in a clustering due to agent deviations. Let C⃗ be
a clustering of an instance x⃗, which due to an agent deviation, changes to a different clustering C⃗ ′.
We say that cluster Ci is split when C⃗ changes to C⃗ ′, if not all agents in Ci are served by the same
facility in C⃗ ′. We say that Ci is merged in C⃗ ′, if all agents in Ci are served by the same facility, but
this facility also serves in C⃗ ′ some agents not in Ci.

3 Perturbation Stability on the Line: Definition and Properties

Next, we introduce the notion of γ-(linear) stability and prove some useful properties of γ-stable
instances of k-Facility Location, which are repeatedly used in the analysis of our mechanisms.

Definition 1 (γ-Pertrubation and γ-Stability). Let x⃗ = (x1, . . . , xn) be a locations profile. A
locations profile x⃗′ = (x′1, . . . , x

′
n) is a γ-perturbation of x⃗, for some γ ≥ 1, if x′1 = x1 and for

every i ∈ [n − 1], d(xi, xi+1)/γ ≤ d(x′i, x
′
i+1) ≤ d(xi, xi+1). A k-Facility Location instance x⃗ is

γ-perturbation stable (or simply, γ-stable), if x⃗ has a unique optimal clustering (C1, . . . , Ck) and
every γ-perturbation x⃗′ of x⃗ has the same unique optimal clustering (C1, . . . , Ck).

Namely, a γ-perturbation x⃗′ of an instance x⃗ is obtained by moving a subset of pairs of consec-
utive locations closer by a factor at most γ ≥ 1. A k-Facility Location instance x⃗ is γ-stable, if x⃗
and any γ-perturbation x⃗′ of x⃗ admit the same unique optimal clustering (where clustering identity
for x⃗ and x⃗′ is understood as explained in Section 2). We consistently select the optimal center ci
of each optimal cluster Ci with an even number of points as the left median point of Ci.

Our notion of linear perturbation stability naturally adapts the notion of metric perturbation
stability [3, Definition 2.5] to the line. We note, the class of γ-stable linear instances, according
to Definition 1, is at least as large as the class of metric γ-stable linear instances, according to
[3, Definition 2.5]. Similarly to [3, Theorem 3.1] (see also [46, Lemma 7.1] and [7, Corollary 2.3]),
we can show that for all γ ≥ 1, every γ-stable instance x⃗, which admits an optimal clustering
C1, . . . , Ck with optimal centers c1, . . . , ck, satisfies the following γ-center proximity property: For
all cluster pairs Ci and Cj , with i ̸= j, and all locations x ∈ Ci, d(x, cj) > γd(x, ci).

We repeatedly use the following immediate consequence of γ-center proximity (see also [46,
Lemma 7.2]). The proof generalizes the proof of [46, Lemma 7.2] to any γ ≥ 2.

Proposition 1. Let γ ≥ 2 and let x⃗ be any γ-stable instance, with unique optimal clustering
C1, . . . , Ck and optimal centers c1, . . . , ck. Then, for all clusters Ci and Cj, with i ̸= j, and all
locations x ∈ Ci and y ∈ Cj, d(x, y) > (γ − 1)d(x, ci).

The following observation, which allows us to treat stability factors multiplicatively, is an im-
mediate consequence of Definition 1.

Observation 1 Every α-perturbation followed by a β-perturbation of a locations profile can be
implemented by a (αβ)-perturbation and vice versa. Hence, a γ-stable instance remains (γ/γ′)-
stable after a γ′-perturbation, with γ′ < γ, is applied to it.

We next show that for γ large enough, the optimal clusters of a γ-stable instance are well-
separated, in the sense that the distance of two consecutive clusters is larger than their diameters.
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Lemma 1 (Cluster-Separation Property). For any γ-stable instance on the line with optimal

clustering (C1, . . . , Ck) and all clusters Ci and Cj, with i ̸= j, d(Ci, Cj) >
(γ−1)2

2γ max{D(Ci), D(Cj)}.

The cluster-separation property of Lemma 1 was first obtained in [1] as a consequence of γ-
cluster proximity. For completeness, in Section A, we present a different proof that exploits the
linear structure of the instance. Setting γ ≥ 2 +

√
3, we get that:

Corollary 1. Let γ ≥ 2 +
√
3 and let x⃗ be any γ-stable instance with unique optimal clustering

(C1, . . . , Ck). Then, for all clusters Ci and Cj, with i ̸= j, d(Ci, Cj) > max{D(Ci), D(Cj)}.

The following is an immediate consequence of the cluster-separation property in Lemma 1.

Observation 2 Let x⃗ be a k-Facility Location with a clustering C⃗ = (C1, . . . , Ck) such that for
any two clusters Ci and Cj, max{D(Ci), D(Cj)} < d(Ci, Cj). Then, if in the optimal clustering of
x⃗, there is a facility at the location of some x ∈ Ci, no agent in Ci is served by a facility at xj ̸∈ Ci.

Next, we establish the so-called no direct improvement from singleton deviations property, used
to show the strategyproofness of the AlmostRightmost and Random mechanisms. Namely,
we show that in any 3-stable instance, no agent deviating to a singleton cluster in the optimal
clustering of the resulting instance can improve her connection cost through the facility of that
singleton cluster. The proof is deferred to Appendix B.

Lemma 2. Let x⃗ be a γ-stable instance with γ ≥ 3 and optimal clustering C⃗ = (C1, ..., Ck) and
cluster centers (c1, ..., ck), and let an agent xi ∈ Ci\{ci} and a location x′ such that x′ is a singleton
cluster in the optimal clustering of the resulting instance (x⃗−i, x

′). Then, d(xi, x
′) > d(xi, ci).

The following shows that for 5-stable instances x⃗, an agent cannot form a singleton cluster,
unless she deviates by a distance larger than the diameter of her cluster in x⃗’s optimal clustering.

Lemma 3. Let x⃗ be any γ-stable instance with γ ≥ 5 and optimal clustering C⃗ = (C1, ..., Ck). Let
xi ∈ Ci \ {ci} be any agent and x′ any location such that x′ is a singleton cluster in the optimal
clustering of instance x⃗′ = (x⃗−i, x

′), where xi has deviated to x′. Then, d(x′, xi) > D(Ci).

Proof (Sketch.). Initially, we show that a clustering C⃗ ′ of instance x⃗′ = (x⃗−i, x
′), with d(x′, xi) ≤

D(Ci), cannot be optimal and contain x′ as a singleton cluster, unless some agent x⃗\Ci is clustered
together with some agent in Ci. To this end, we use the lower bound on the distance between
difference clusters for 5-stable instances show in Lemma 1. Then, using stability arguments, i.e.
that the optimal clustering should not change for instance x⃗, even when we decrease, by a factor of
4, the distances between consecutive agents in x⃗\Ci, we show that in C⃗ ′ agents in x⃗\Ci experience
an increase in cost of at least 2D(Ci) (notice that x⃗\Ci = x⃗′\(Ci∪{x′})). But the additional cost of
serving x′ from ci in clustering C⃗ is at most 2D(Ci), since d(x′, xi) ≤ D(Ci) and d(xi, ci) ≤ D(Ci).
Hence retaining clustering C⃗ and serving location x′ from ci would have a smaller cost than the
supposedly optimal clustering C⃗ ′. The complete proof follows by a careful case analysis and can be
found in Appendix C. ⊓⊔
4 The Optimal Solution is Strategyproof for (2 +

√
3)-Stable Instances

We next show that the Optimal mechanism, which allocates the facilities optimally, is strate-
gyproof for (2 +

√
3)-stable instances of k-Facility Location whose optimal clustering does not

include any singleton clusters. More specifically, in this section, we analyze Mechanism 1.
In general, due to the incentive compatibility of the median location in a single cluster, a

deviation can be profitable only if it results in a k-clustering different from the optimal clustering
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Fig. 1. An example of a so-called singleton deviation. The deviating agent (grey) declares a remote location, becomes
a singleton cluster, and essentially turns the remaining agents into a (k − 1)-Facility Location instance. Thus, the
deviating agent can benefit from her singleton deviation, due to the subsequent cluster merge.

Mechanism 1: OPTIMAL
Result: An allocation of k-facilities
Input: A k-Facility Location instance x⃗.

1 Compute the optimal clustering (C1, . . . , Ck). Let ci be the left median point of each cluster Ci.
2 if

(
∃i ∈ [k] with |Ci| = 1

)
or

(
∃i ∈ [k − 1] with max{D(Ci), D(Ci+1)} ≥ d(Ci, Ci+1)

)
then

Output: “FACILITIES ARE NOT ALLOCATED”.
3 else

Output: The k-facility allocation (c1, . . . , ck)

(C1, . . . , Ck) of x⃗. For γ is sufficiently large, γ-stability implies that the optimal clusters are well
identified so that any attempt to alter the optimal clustering (without introducing singleton clusters
and without violating the cluster separation property, which is necessary of stability) results in an
increased cost for the deviating agent. We should highlight that Mechanism 1 may also “serve” non-
stable instances that satisfy the cluster separation property. We next prove that the mechanism is
stategyproof if the true instance is (2 +

√
3)-stable and its optimal clustering does not include any

singleton clusters, when the agent deviations do not introduce any singleton clusters and not result
in instances that violate the cluster separation property (i.e. are served by the mechanism) .

Theorem 1. The Optimal mechanism applied to (2+
√
3)-stable instances of k-Facility Location

without singleton clusters in their optimal clustering is strategyproof and minimizes the social cost.

Proof. We first recall some of the notation about clusterings, introduced in Section 2. Specifically,
for a clustering C⃗ = (C1, . . . , Ck) of an instance x⃗ with centers c⃗ = (c1, . . . , ck), the cost of an agent
(or a location) x is d(x, C⃗) = minj∈[k]{d(x, cj)}. The cost of a set of agents X in a clustering C⃗

is cost(X, C⃗) =
∑

x∈X d(xj , C⃗). Finally, the cost of an instance x⃗ in a clustering C⃗ is cost(x⃗, C⃗) =∑
xj∈x⃗ d(xj , C⃗). This general notation allows us to refer to the cost of the same clustering for

different instances. I.e, if C⃗ is the optimal clustering of x⃗, then cost(y⃗, C⃗) denotes the cost of
instance y⃗ in clustering C⃗ (where we select the same centers as in clustering C⃗ for x⃗).

The fact that if Optimal outputs k facilities, they optimize the social cost is straightforward.
So, we only need to establish strategyproofness. To this end, we show the following: Let x⃗ be any
(2+

√
3)-perturbation stable k-Facility Location instance with optimal clustering C⃗ = (C1, . . . , Ck).

For any agent i and any location y, let Y⃗ be the optimal clustering of the instance y⃗ = (x⃗−i, y)
resulting from the deviation of i from xi to y. Then, if y does not form a singleton cluster in (y⃗, Y⃗ ),
either d(xi, C⃗) < d(xi, Y⃗ ), or there is an i ∈ [k − 1] for which max{D(Yi), D(Yi+1)} ≥ d(Yi, Yi+1).
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So, we let xi ∈ Ci deviate to a location y, resulting in y⃗ = (x⃗−i, y) with optimal clustering Y⃗ .
Since y is not a singleton cluster, it is clustered with agents belonging in one or two clusters of
C⃗, say either in cluster Cj or in clusters Cj−1 and Cj . By optimally of C⃗ and Y⃗ , the number of

facilities serving Cj−1 ∪Cj ∪ {y} in (y⃗, Y⃗ ) is no less than the number of facilities serving Cj−1 ∪Cj

in (x⃗, C⃗). Hence, there is at least one facility in either Cj−1 or Cj .

Wlog., suppose that a facility is allocated to an agent in Cj in (y⃗, Y⃗ ). By Corollary 1 and

Observation 2, no agent in Cj is served by a facility in x⃗ \Cj in Y⃗ . Thus we get the following cases

about what happens with the optimal clustering Y⃗ of instance y⃗ = (x⃗−i, y):

Case 1: y is not allocated a facility in Y⃗ : This can happen in one of two ways:

Case 1a: y is clustered together with some agents from cluster Cj and no facility placed in Cj

serves agents in x⃗ \ Cj in Y⃗ .
Case 1b: y is clustered together with some agents from a cluster Cj and at least one of the

facilities placed in Cj serve agents in x⃗ \ Cj in Y⃗ .

Case 2: y is allocated a facility in Y⃗ . This can happen in one of two ways:

Case 2a: y only serves agents that belong in Cj (by optimality, y must be the median location
of the new cluster, which implies that either y < xi,l and y only serves xi,l or xj,l ≤ y ≤ xj,r).

Case 2b: In Y⃗ , y serves agents that belong in both Cj−1 and Cj .

We next show that the cost of the original clustering C⃗ is less than the cost of clustering Y⃗ in y⃗.
Hence, mechanism Optimal would also select clustering C⃗ for y⃗, which would make xi’s deviation
to y non-profitable. In particular, it suffices to show that:

cost(y⃗, C⃗) < cost(y⃗, Y⃗ ) ⇔
cost(x⃗, C⃗) + d(y, C⃗)− d(xi, C⃗) < cost(x⃗, Y⃗ ) + d(y, Y⃗ )− d(xi, Y⃗ ) ⇔

d(y, C⃗)− d(y, Y⃗ ) < cost(x⃗, Y⃗ )− cost(x⃗, C⃗) + d(xi, C⃗)− d(xi, Y⃗ )

Since xi’s deviation to y is profitable, d(xi, C⃗)− d(xi, Y⃗ ) > 0. Hence, it suffices to show that:

d(y, C⃗)− d(y, Y⃗ ) ≤ cost(x⃗, Y⃗ )− cost(x⃗, C⃗)

= cost(Cj , Y⃗ )− cost(Cj , C⃗) + cost(x⃗ \ Cj , Y⃗ )− cost(x⃗ \ Cj , C⃗) (1)

We first consider Case 1a and Case 2a, i.e., the cases where Y⃗ allocates facilities to agents of
Cj (between xj,l and xj,r) that serve only agents in Cj . Note that in case 2a, y can also be located
outside of Cj and serve only xi,l. We can treat this case as Case 1a, since it is equivalent to placing
the facility on xi,l and serving y from there.

In Case 1a and Case 2a, we note that (1) holds if the clustering Y⃗ allocates a single facility to
agents in Cj∪{y}, because the facility is allocated to the median of Cj∪{y}, hence d(y, C⃗)−d(y, Y⃗ ) =

cost(Cj , Y⃗ )−cost(Cj , C⃗), while cost(x⃗\Cj , Y⃗ )−cost(x⃗\Cj , C⃗) ≥ 0, since C⃗ is optimal for x⃗. So, we
focus on the most interesting case where the agents in Cj ∪ {y} are allocated at least two facilities.
We observe that (1) follows from:

d(y, C⃗)− d(y, Y⃗ ) ≤ 1
γ

(
cost(x⃗ \ Cj , Y⃗ )− cost(x⃗ \ Cj , C⃗)

)
(2)

cost(Cj , C⃗)− cost(Cj , Y⃗ ) ≤
(
1− 1

γ

)(
cost(x⃗ \ Cj , Y⃗ )− cost(x⃗ \ Cj , C⃗)

)
(3)

To establish (2) and (3), we first consider the valid γ-perturbation of the original instance x⃗
where all distances between consecutive agent pairs to the left of Cj (i.e. agents {x1, x2, . . . , xj−1,r})
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and between consecutive agent pairs to the right of Cj (i.e. agents {xj+1,l, . . . , xk,r}) are scaled down

by γ. By stability, the clustering C⃗ remains the unique optimal clustering for the perturbed instance
x⃗′. Moreover, since agents in x⃗ \ Cj are not served by a facility in Cj in C⃗ and Y⃗ , and since all
distances outside Cj are scaled down by γ, while all distances within Cj remain the same, the cost

of the clusterings C⃗ and Y⃗ for the perturbed instance x⃗′ is cost(Cj , C⃗) + cost(x⃗ \ Cj , C⃗)/γ and

cost(Cj , Y⃗ ) + cost(x⃗ \Cj , Y⃗ )/γ, respectively. Using cost(x⃗′, C⃗) < cost(x⃗′, Y⃗ ) and γ ≥ 2, we obtain:

cost(Cj , C⃗)− cost(Cj , Y⃗ ) < 1
γ

(
cost(x⃗ \ Cj , Y⃗ )− cost(x⃗ \ Cj , C⃗)

)
(4)

≤
(
1− 1

γ

)(
cost(x⃗ \ Cj , Y⃗ )− cost(x⃗ \ Cj , C⃗)

)
(5)

Moreover, if Cj ∪ {y} is served by at least two facilities in Y⃗ , the facility serving y (and some

agents of Cj) is placed at the median location of Y⃗ ’s cluster that contains y. Wlog., we assume
that y lies on the left of the median of Cj . Then, the decrease in the cost of y due to the additional

facility in Y⃗ is equal to the decrease in the cost of xi,l in Y⃗ , which bounds from below the total

decrease in the cost of Cj due to the additional facility in Y⃗ . Hence,

d(y, C⃗)− d(y, Y⃗ ) ≤ cost(Cj , C⃗)− cost(Cj , Y⃗ ) (6)

We conclude Case 1a and Case 2a, by observing that (2) follows directly from (6) and (4).
Finally, we study Case 1b and Case 2b, i.e, the cases where some agents of Cj are clustered with

agents of x⃗ \Cj in Y⃗ . Let C ′
j1 and C ′

j2 denote the clusters of (y⃗, Y⃗ ) including all agents of Cj (i.e.,
Cj ⊆ C ′

j1 ∪C ′
j2). By hypothesis, at least one of C ′

j1 and C ′
j2 contains an agent z ∈ x⃗ \Cj . Suppose

this is true for the cluster C ′
j1. Then, D(C ′

j1) > D(Cj), since by Corollary 1, for any γ ≥ (2 +
√
3),

the distance of any agent z outside Cj to the nearest agent in Cj is larger than Cj ’s diameter.
But since both C ′

j1 and C ′
j2 contain agents of Cj , we have that d(C ′

j1, C
′
j2) < D(Cj). Therefore,

D(C ′
j1) > d(C ′

j1, C
′
j2) and the cluster-separation property is violated. Hence the resulting instance

y⃗ is not γ-stable and Mechanism 1 does not allocated any facilities for it. ⊓⊔

5 A Deterministic Mechanism Resistant to Singleton Deviations

Next, we present a deterministic strategyproof mechanism for 5-stable instances of k-Facility Loca-
tion whose optimal clustering may include singleton clusters. To make singleton cluster deviations
non profitable, cluster merging has to be discouraged by the facility allocation rule. So, we allocate
facilities near the edge of each optimal cluster, ending up with a significantly larger approximation
ratio and a requirement for larger stability, in order to achieve strategyproofness. Specifically, we
now need to ensure that no agent can become a singleton cluster close enough to her original lo-
cation. Moreover, since agents can now gain by splitting their (true) optimal cluster, we need to
ensure that such deviations are either non profitable or violate the cluster-separation property.

Theorem 2. AlmostRightmost (Mechanism 2) is strategyproof for 5-stable instances of k-
Facility Location and achieves an approximation ratio of (n− 2)/2.

Proof. The approximation ratio of (n − 2)/2 follows directly from the fact that the mechanism
allocates the facility to the second rightmost agent of each non-singleton optimal cluster.

As for strategyproofness, let x⃗ denote the true instance and C⃗ = (C1, . . . , Ck) its optimal
clustering. We consider an agent xi ∈ Cj deviating to location y, resulting in an instance y⃗ = (x⃗−i, y)

with optimal clustering Y⃗ . Agent xi’s cost is at most D(Cj). Agent xi could profitably declare false
location y in the following ways:
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Case 1: The agents in Cj are clustered together in Y⃗ and y is allocated a facility with d(y, xi) <
d(xi, xi,r−1) ≤ D(Cj) (xi,r−1 is the location of xi’s facility, when she is truthful).

Case 1a: y is a singleton cluster and d(y, xi) < D(Cj). For 5-stable instances, Lemma 3 implies
that xi ∈ Cj has to move by at least D(Cj) to become a singleton cluster, a contradiction.

Case 1b: y is the second rightmost agent of a cluster C ′
j in (y⃗, Y⃗ ). Then, the agent xi can

gain only if d(y, xi) < D(Cj). In Case 1, the agents in Cj are clustered together in Y⃗ .
If y < xi, y must be the second rightmost agent of a cluster on the left of xj,l and by
Lemma 1, d(xi, y) ≥ d(xj,l, xj−1,r) > D(Cj). Hence, such a deviation cannot be profitable
for xi (note how this case crucially uses the facility allocation to the second rightmost agent
of a cluster). If y > xi, xi can only gain if y is the second rightmost agent of a cluster
including Cj ∪{y, xj+1,l} and possibly some agents on the left of Cj , which is treated below.

Case 2: The agents in Cj are clustered together in Y⃗ and Cj is merged with some agents from
Cj+1 and possibly some other agents to the left of xj,l (note that merging Cj only with agents
to the left of xj,l does not change the facility of xi). Then, we only need to consider the case
where the deviating agent xi is xj,r, since any other agent to the left of xj,r−1 cannot gain,
because cluster merging can only move their serving facility further to the right. As for xj,r, we

note that by optimality and the hypothesis that agents in Cj belong in the same cluster of Y⃗ ,

xi,r cannot cause the clusters Cj and Cj+1 to merge in Y⃗ by deviating in the range [xj,r, xj+1,l].
The reason is that the set of agents (Ci \ {xj,r}) ∪ {y} ∪ Cj+1 cannot be served optimally by a
single facility, when the set of agents Cj ∪Cj+1 requires two facilities in the optimal clustering

C⃗. Hence, unless Cj+1 is split in Y⃗ (which is treated similarly to Case 3a), xj,r can only move
her facility to Cj+1, which is not profitable for her, due to Lemma 1.

Case 3: Cj is split into two clusters in Y⃗ . Hence, the leftmost agents, originally in Cj , are served
by a different facility than the rest of the agents originally in Cj . We next show that in any
profitable deviation of xi where Cj is split, either the deviation is not feasible or the cluster-
separation property is violated. The case analysis below is similar to the proof of Theorem 1.

Case 3a: Agents in Cj are clustered together with some agents of x⃗ \Cj in Y⃗ . By hypothesis,

there are agents z, w ∈ Cj placed in different clusters of Y⃗ , and at least one of them, say

z, is clustered together with an agent p ∈ Cℓ, with ℓ ̸= j, in Y⃗ . For brevity, we refer to the
(different) clusters in which z and w are placed in clustering Y⃗ as C ′

z and C ′
w, respectively.

Then, D(C ′
z) ≥ d(p, z) > D(Cj), by Lemma 1. But also d(C ′

z, C
′
w) < d(z, w) ≤ D(Cj),

and consequently, D(C ′
z) > d(C ′

z, C
′
w), which implies that the cluster-separation property is

violated and Mechanism 2 does not allocate any facilities in this case.

Mechanism 2: AlmostRightmost
Result: An allocation of k-facilities
Input: A k-Facility Location instance x⃗.

1 Find the optimal clustering C⃗ = (C1, . . . , Ck) of x⃗.
2 if there are two consecutive clusters Ci and Ci+1 with max{D(Ci), D(Ci+1)} ≥ d(Ci, Ci+1) then

Output: “FACILITIES ARE NOT ALLOCATED”.
3 for i ∈ {1, . . . , k} do
4 if |Ci| > 1 then
5 Allocate a facility to the location of the second rightmost agent of Ci, i.e., ci ← xi,r−1.
6 else
7 Allocate a facility to the single agent location of Ci: ci ← xi,l

8 end

9 end
Output: The k-facility allocation c⃗ = (c1, . . . , ck).
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Case 3b: Agents in Cj are split and are not clustered together with any agents of x⃗ \Cj in Y⃗ .

Hence, y is not clustered with any agents in x⃗ \Cj in Y⃗ . Otherwise, i.e., if y is not clustered

with agents of Cj in Y⃗ , it would be suboptimal for clustering Y⃗ to allocate more than one
facility to agents of Cj \ {xi} and at most k− 2 facilities to (x⃗∪{y}) \Cj , while the optimal

clustering C⃗ allocates a single facility to Cj and k − 1 facilities to x⃗ \ Cj . But again if y is

only clustered with agents of Cj , it is suboptimal for clustering Y⃗ to allocate more than one
facility to agents of (Cj ∪{y}) \ {xi} and at most k− 2 facilities to x⃗ \Cj , while the optimal

clustering C⃗ allocates a single facility to Cj and k − 1 facilities to x⃗ \ Cj , as shown in the
proof of Theorem 1. ⊓⊔

6 Low Stability and Inapproximability by Deterministic Mechanisms

We next extend the impossibility result of [27, Theorem 3.7] to
√
2-stable instances of k-Facility

Location on the line, with k ≥ 3. Thus, we provide strong evidence that restricting our attention
to stable instances does not make strategyproof mechanism design trivial.

6.1 Image Sets, Holes and Well-Separated Instances

We start with some basic facts about strategyproof mechanisms and by adapting the technical
machinery of well-separating instances from [27, Section 2.2] to stable instances.

Image Sets and Holes. Given a mechanism M , the image set Ii(x⃗−i) of an agent i with respect
to an instance x⃗−i is the set of facility locations the agent i can obtain by varying her reported
location. Formally, Ii(x⃗−i) = {a ∈ R : ∃y ∈ R with M(x⃗−i, y) = a}.

If M is strategyproof, any image set Ii(x⃗−i) is a collection of closed intervals (see e.g., [47,
p. 249]). Moreover, a strategyproof mechanism M places a facility at the location in Ii(x⃗−i) nearest
to the declared location of agent i. Formally, for any agent i, all instances x⃗, and all locations y,
d(y,M(x⃗−i, y)) = infa∈Ii(x⃗−i){d(y, a)}.

Some care is due, because we consider mechanisms that need to be strategyproof only for γ-
stable instances (x⃗−i, y). The image set of such a mechanismM is well defined (possibly by assuming
that all facilities are placed to essentially +∞), whenever (x⃗−i, y) is not γ-stable. Moreover, the
requirement that M places a facility at the location in Ii(x⃗−i) nearest to the declared location
y of agent i holds only if the resulting instance (x⃗−i, y) is stable. We should underline that all
instances considered in the proof of Theorem 3 are stable (and the same holds for the proofs of the
propositions adapted from [27, Section 2.2]).

Any (open) interval in the complement of an image set I ≡ Ii(x⃗−i) is called a hole of I. Given
a location y ̸∈ I, we let ly = supa∈I{a < y} and ry = infa∈I{a > y} be the locations in I nearest to
y on the left and on the right, respectively. Since I is a collection of closed intervals, ly and ry are
well-defined and satisfy ly < y < ry. For convenience, given a y ̸∈ I, we refer to the interval (ly, ry)
as a y-hole in I.

Well-Separated Instances. Given a deterministic strategyproof mechanism M with a bounded
approximation ρ ≥ 1 for k-Facility Location, an instance x⃗ is (x1| · · · |xk−1|xk, xk+1)-well-separated
if x1 < · · · < xk < xk+1 and ρd(xk+1, xk) < mini∈{2,...,k}{d(xi−1, xi)}. We call xk and xk+1 the
isolated pair of the well-separated instance x⃗.

Hence, given a ρ-approximate mechanism M for k-Facility Location, a well-separated instance
includes a pair of nearby agents at distance to each other less than 1/ρ times the distance between
any other pair of consecutive agents. Therefore, any ρ-approximate mechanism serves the two
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nearby agents by the same facility and serve each of the remaining “isolated” agents by a different
facility. We remark that well-separated instances are also ρ-stable.

We are now ready to adapt some useful properties of well-separated instances from [27, Sec-
tion 2.2]. It is not hard to verify that the proofs of the auxiliary lemmas below apply to

√
2-stable

instances, either without any change or with some minor modifications (see also [27, Appendix A]).
For completeness, we give the proofs of the lemmas below in Appendix D.

Lemma 4 (Proposition 2.2, [27]). Let M be any deterministic startegyproof mechanism with
a bounded approximation ratio ρ ≥ 1. For any (x1| · · · |xk−1|xk, xk+1)-well-separated instance x⃗,
Mk(x⃗) ∈ [xk, xk+1].

Lemma 5 (Proposition 2.3, [27]). Let M be any deterministic startegyproof mechanism with a
bounded approximation ratio ρ ≥ 1, and let x⃗ be a (x1| · · · |xk−1|xk, xk+1)-well-separated instance
with Mk(x⃗) = xk. Then, for every (x1|...|xk−1|x′k, x′k+1)-well-separated instance x⃗′ with x′k ≥ xk,
Mk(x⃗

′) = x′k.

Lemma 6 (Proposition 2.4, [27]). Let M be any deterministic startegyproof mechanism with a
bounded approximation ratio ρ ≥ 1, and let x⃗ be a (x1| · · · |xk−1|xk, xk+1)-well-separated instance
with Mk(x⃗) = xk+1. Then, for every (x1|...|xk−1|x′k, x′k+1)-well-separated instance x⃗′ with x′k+1 ≤
xk+1, Mk(x⃗

′) = x′k+1.

6.2 The Proof of the Impossibility Result

We are now ready to establish the main result of this section. The proof of the following builds on
the proof of [27, Theorem 3.7]. However, we need some additional ideas and to be way more careful
with the agent deviations used in the proof, since our proof can only rely on

√
2-stable instances.

Theorem 3. For every k ≥ 3 and any δ > 0, any deterministic anonymous strategyproof mecha-
nism for (

√
2− δ)-stable instances of k-Facility Location on the real line with n ≥ k+1 agents has

an unbounded approximation ratio.

Proof. We only consider the case where k = 3 and n = 4. It is not hard to verify that the proof
applies to any k ≥ 3 and n ≥ k+1. To reach a contradiction, let M be any deterministic anonymous
strategyproof mechanism for (

√
2−δ)-stable instances of 3-Facility Location with n = 4 agents and

with an approximation ratio of ρ ≥ 1.
We consider a (x1|x2|x3, x4)-well-separated instance x⃗. For a large enough λ ≫ ρ and a very

large (practically infinite) B ≫ 6ρλ, we let x⃗ = (0, λ, 6B + λ, 6B + λ + ε), for some small enough
ε > 0 (ε ≪ λ/ρ). By choosing λ and ε appropriately, becomes the instance x⃗ γ-stable, for γ ≫

√
2.

By Lemma 4, M3(x⃗) ∈ [x3, x4]. Wlog, we assume that M3(x⃗) ̸= x3 (the case where M3(x⃗) ̸= x4
is fully symmetric and requires Lemma 5). Then, by moving agent 4 to M3(x⃗), which results in a
well-separated instance and, by strategyproofness, requires that M keeps a facility there, we can
assume wlog. that M3(x⃗) = x4.

Since x⃗ is well-separated and M is ρ-approximate, both x3 and x4 are served by the facility at
x4. Hence, there is a x3-hole h = (l, r) in the image set I3(x⃗−3). Since M(x⃗) places a facility at x4
and not in x3, the right endpoint r of h lies between x3 and x4, i.e. r ∈ (x3, x4]. Moreover, since
M is ρ-approximate and strategyproof for (

√
2− δ)-stable instances, agent 3 should be served by a

facility at distance at most ρλ to her, if she is located at 4B. Hence, the left endpoint of the hole
h is l > 3B. We distinguish two cases based on the distance of the left endpoint l of h to x4.
Case 1: x4 − l >

√
2λ. We consider the instance y⃗ = (x⃗−3, a), where a > l is arbitrarily close to l

(i.e., a ≳ l) so that d(a, x4) =
√
2λ. Since d(x1, x2) = λ, d(x2, a) is quite large, and d(a, x4) =

√
2λ,
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Mechanism 3: Random
Result: An allocation of k-facilities
Input: A k-Facility Location instance x⃗.

1 Find the optimal clustering C⃗ = (C1, . . . , Ck) of x⃗.
2 if there are two consecutive clusters Ci and Ci+1 with 1.6 ·max{D(Ci), D(Ci+1)} ≥ d(Ci, Ci+1) then

Output: “FACILITIES ARE NOT ALLOCATED”.
3 for i ∈ {1, . . . , k} do
4 Allocate the facility to an agent ci selected uniformly at random from the agents of cluster Ci

5 end
Output: The k-facility allocation c⃗ = (c1, . . . , ck).

the instance y⃗ is (
√
2 − δ)-stable, for any δ > 0. By strategyproofness, M(y⃗) must place a facility

at l, since l ∈ I3(x⃗−3).

Now, we consider the instance y⃗′ = (y⃗−4, l). Since we can choose a > l so that d(l, a) ≪ λ, the
instance y⃗′ is (x1|x2|l, a)-well-separated and (

√
2 − δ)-stable. Hence, by strategyproofness, M(y⃗′)

must keep a facility at l, because l ∈ I4(y⃗−4).

Then, by Lemma 6, y′4 = a ∈ M(y⃗′), because for the (x1|x2|x3, x4)-well-separated instance x⃗,
M3(x⃗) = x4, and y⃗′ is a (x1|x2|l, a)-well-separated instance with y′4 ≤ x4. Since both l, a ∈ M(y⃗′),
either agents 1 and 2 are served by the same facility of M(y⃗′) or agent 2 is served by the facility at
l. In both cases, the social cost of M(y⃗′) becomes arbitrarily larger than a− l, which is the optimal
social cost of the 3-Facility Location instance y⃗′.

Case 2: x4 − l ≤
√
2λ. This case is similar to Case 1, but it requires a bit more careful further

case analysis. The details can be found in Appendix E. ⊓⊔

7 A Randomized Mechanism with Constant Approximation

In this section, we show that for an appropriate stability, a simple randomized mechanism is strat-
egyproof, can deal with singleton clusters and achieves an approximation ratio of 2.

The intuition is that the AlmostRightmost mechanism can be easily transformed to a ran-
domized mechanism, using the same key properties to guarantee strategyproofness, but achieving an
O(1)-approximation, as opposed to O(n)-approximation of AlmostRightmost. Specifically, Ran-
dom (see also Mechanism 3) again finds the optimal clusters, but then places a facility at the location
of an agent selected uniformly at random from each optimal cluster. We again use cluster-separation
property, as a necessary condition for stability of the optimal clustering. The stability properties
required to guarantee strategyproofness are very similar to those required by AlmostRightmost,
because the set of possible profitable deviations is very similar for AlmostRightmost and Ran-
dom. Finally, notice that the cluster-separation property step of Random (step 2) now makes use
that due to Lemma 1, it must be 1.6 ·max{D(Ci), D(Ci+1)} < d(Ci, Ci+1) for 5-stable instances.

Theorem 4. Random (Mechanism 3) is strategyproof and achieves an approximation ratio of 2
for 5-stable instances of k-Facility Location on the line.

Proof (Sketch.). We present here the outline of the proof. The full proof can be found in Ap-
pendix F. The approximation guarantee is straightforward to verify. As mentioned, the proof of
strategyproofness is smilar to the proof of Theorem 2. In general, we need to cover the key deviation
cases, which include the following:

Case 1: why agent deviating agent x ∈ Ci cannot gain by becoming a member of another cluster,
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Case 2: or by becoming a self serving center,

Case 3: or by merging or splitting Ci.

Cases 2 and 3 can be immediately derived from the proof of Theorem 2.

The most interesting case is Case 1: xi deviates to x′ to be clustered together with agents from
a different cluster of C⃗, in order to gain, without splitting Ci (again consider C⃗ = (C1, ..., Ck) the
optimal clustering of original instance x⃗ and C⃗ ′ the optimal clustering of instance x⃗′ = (x⃗−i, x

′)).

By analyzing the expected value of agent xi in both clusterings C⃗ and C⃗ ′ we show that in
order for her to be able to gain from such a deviation, it must be d(x′, xi) < D(Ci) and x′ is
clustered together with agents in Ci−1 or Ci+1, suppose Ci−1 w.l.o.g. Since agents in Ci \ xi are
not split in clustering C⃗ ′, we know they form cluster C ′

i′ ∈ C⃗ ′. Hence, in this case x ∈ C ′
i′−1. The

key to the proof is to show that since d(x′, xi) < D(Ci) then clustering C⃗ ′ on instance x⃗′ violates
the cluster separation property verification step, either between clusters C ′

i′ and C ′
i′−1 or between

clusters C ′
i′−1 and C ′

i′−2. This is also the reason why in this case the cluster separation property
verification step needs to be more precise, for 5-stable instances, as mentioned in the description
of the algorithm. ⊓⊔
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A The Proof of Lemma 1

Proof. It suffices to establish the lemma for two consecutive clusters Ci and Ci+1. We recall that
d(Ci, Ci+1) = d(xi,r, xi+1,l). Moreover, by symmetry, we can assume wlog. that D(Ci) ≥ D(Ci+1).

If Ci is a singleton, D(Ci) = 0 and the lemma holds trivially. If |Ci| = 2, wlog. we can only
consider the case where xi,l is Ci’s center. Otherwise, i.e., if xi,r is Ci’s center in optimal clustering
(C1, . . . , Ci, . . . , Ck) with centers (ci, . . . , xi,r, . . . , cj), the same clustering (C1, . . . , Ci, . . . , Ck) with
centers (c1, . . . , xi,l, . . . , cj) is also optimal for the γ-stable instance x⃗ (and should still be optimal
after a γ perturbation of x⃗, due to the stability of the instance). We then have:

D(Ci) = d(xi,l, xi,r) = d(ci, xi,r) <
1

(γ − 1)
d(xi,r, xi+1,r) =

1

(γ − 1)
d(Ci, Ci+1) ⇒

d(Ci, Ci+1) > (γ − 1)D(Ci)

where the first inequality follows from Proposition 1. The lemma then follows by noticing that
for any γ ≥ 1:

γ − 1 ≥ γ2 + 1

2γ
− 1

The most interesting case is where |Ci| ≥ 3 and xi,l < ci ≤ xi,r. Suppose d(xi,l, ci) = βD(Ci),
for some β ∈ (0, 1] and hence d(ci, xi,r) = (1 − β)D(Ci) (i.e., β quantifies how close ci is to Ci’s
extreme points and to the closest point of Ci+1.) We recall that d(Ci, Ci+1) = d(xi,r, xi+1,l).

We start with a tighter analysis of the equivalent of Proposition 1 for xi,l and xi+1,l, taking into
account their specific ordering on the line:

d(xi,l, xi+1,l) ≥ d(xi,l, ci+1)− d(xi+1,l, ci+i)

> γd(xi,l, ci)−
d(xi+1,l, ci)

γ

= γd(xi,l, ci)−
d(xi+1,l, xi,l)− d(xi,l, ci)

γ
⇒

d(xi,l, xi+1,l) >
γ2 + 1

γ + 1
d(xi,l, ci)

Where the second inequality stands due to the γ-center proximity property of γ stable in-
stances and the equality stands because xi,l < ci < xi+1,l. Since d(Ci, Ci+1) = d(xi,r, xi+1,l) =
d(xi,l, xi+1,l)−D(Ci), and by d(xi,l, ci) = βD(Ci), we get that:

d(Ci, Ci+1) >
(β(γ2 + 1)

γ + 1
− 1

)
D(Ci) (7)

Furthermore, by Proposition1, we have that d(xi,r, xi+1,l) > (γ−1)d(xi,r, ci). Hence, by d(ci, xi,r) =
(1− β)D(Ci), we get that:

d(Ci, Ci+1) > (1− β)(γ − 1)D(Ci) (8)

So, by (7) and (8) we have that it must be:

d(Ci, Ci+1) > max
{β(γ2 + 1)

γ + 1
− 1, (1− β)(γ − 1)

}
D(Ci) (9)
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We now observe that for any fixed γ > 1, the first term of the max in (9), β(γ2+1)
γ+1 − 1, is

increasing for all β > 0, while the second term, (1−β)(γ−1), is decreasing for all β ∈ (0, 1]. Hence,
for any fixed γ > 1, the minimum value of the max in (9) is achieved when β satisfies:

β(γ2 + 1)

γ + 1
− 1 = (1− β)(γ − 1)

Solving for β, we get that:

β =
1

2
+

1

2γ
, (10)

with β ∈ (1/2, 1], when γ ≥ 1.
We conclude the proof by substituting the value of β in (10) to (9). ⊓⊔

B The Proof of Lemma 2

Proof. We establish the lemma for the leftmost agent xi,l as the deviating agent. Specifically, we
show that xi,l needs to move by at least d(xi,l, ci) to the left in order to become a singleton cluster.
The property then follows for the rest of the agents.

Suppose xi,l can create a singleton cluster by deviating less than d(xi,l, ci) to the left. I.e., for
some x′ such that d(x′, xi,l) < d(xi,l, ci) the optimal clustering of x⃗′ = (x⃗−xi,l

, x′) is such that the
agent location at x′ becomes a singleton cluster. We call this clustering (that is optimal for x⃗′)
C⃗ ′. Notice that since d(x′, xi,l) < d(xi,l, ci), x

′ is in the gap between clusters Ci−1 and Ci as by
3-perturbation stability we have d(xi−1,r, xi,l) > 2d(xi,l, ci). This means that in order for this case

to be feasible, no agents from Ci−1 can be clustered together with agents in Ci in (x⃗′, C⃗ ′), because
x′ lies between them and is a singleton cluster.

Consider now the instance x⃗−xi,l
. We know that cost(x⃗−xi,l

, C⃗ ′) ≥ cost(x⃗−xi,l
, C⃗). That is, since

otherwise the optimal clustering for x⃗ would make xi,l a singleton cluster and serve the rest of

the agents as in C⃗ ′. Let diff be the difference in the total cost agents in x⃗−xi,l
experience between

clusterings C⃗ and C⃗ ′. I.e. diff = cost(x⃗−xi,l
, C⃗ ′) − cost(x⃗−xi,l

, C⃗). As before, since xi,l is not a

singleton cluster in (x⃗, C⃗) we know that d(xi,l, ci) < diff (or else setting xi,l as a singleton would

have a lower cost in x⃗ than C⃗).
But we can perform a 3-perturbation in x⃗ in the following way: Scale down all distances between

agents from x1 up to xi−1,r and all distances between agents from xi,l+1 to xn (xn being the
rightmost agent of the instance) by 3. Call this instance x⃗per. Since agents of clusters Ci−1 and Ci

are not clustered together neither in C⃗ nor in C⃗ ′ we have that

diffper ≤
cost(x⃗−xi,l

, C⃗ ′)− cost(x⃗−xi,l
, C⃗)

3
.

So diffper ≤ diff/3. Since d(xi,l, ci) is unaffected in the perturbation and by stability the optimal
clustering of x⃗per must remain the same (as x⃗) we have that it must be d(xi,l, ci) < diff/3 (1).

Finally, the least amount of extra social cost suffered between cost(x⃗, C⃗) and the case of setting
xi,l as a center that serves only itself and serve the remaining agents of the instance as on C⃗ ′ (i.e.
as they would be served should x′ gets a facility that served only herself), will be diff − d(xi,l, ci).
This means that the optimal clustering algorithm would only choose this solution when d(x′, ci) >
diff − d(x, ci). So the agent must deviate by at least diff − 2d(x, ci). But from (1) we have

diff − 2d(x, ci) > 3d(x, ci)− 2d(xi,l, ci) = d(xi,l, ci) ,

which concludes the proof of the lemma. ⊓⊔
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C The Proof of Lemma 3

We first present the outline of the proof and then the proof follows. We do this because despite the
mostly relatively straight forward arguments used in the proof, due to the delicate formalization
required in order to formally describe all the mentioned conditions, the proof gains a good amount
of descriptive length. We consider random agent xi ∈ Ci of instance x⃗ with optimal clustering
C⃗ = (C1, ..., Ck), deviating to location x′ creating instance x⃗′ = (x−i, x

′).

Initially we show that due to the large distance between clusters Ci and Cj with i ̸= j, guaran-
teed by Lemma 1 for 5-stable instances, we need only study the cases where x′ ∈ (xi−1,r, xi,l) and

x′ ∈ (xi,r, xi+1,l) and in the optimal clustering C⃗ ′ of instance x⃗′ no agent in x⃗′\Ci is served together

with any agent in Ci
7, as in all other cases either x′ is not a singleton in C⃗ ′ or d(x′, xi) > D(Ci).

The rest of the proof follows the logic of the proof of Theorem 1 (which follows), tailored to this
specific case. More specifically, given the observation above, we notice the following: In alternative
clustering C⃗ ′′ in which we forcefully place two facilities serving only agents in Ci (optimally with
regards to serving agents in Ci), and serve the remaining agents, x⃗ \ Ci, optimally with k − 2
facilities, the cost agents in x⃗ \Ci experience in clustering C⃗ ′′ is the same cost agents in x⃗′ \Ci

⋃
x′

experience in clustering C⃗ (notice that the sets x⃗ \ Ci and x⃗′ \ Ci
⋃
x′). Now, the cost of agents in

Ci in clustering C⃗ ′′ is at least D(Ci)/2 smaller than it is in C⃗ ′ (that is since we can always place the
facility to the edge agent further from ci - see proof of Theorem 1). But since C⃗ ′′ is not optimal for
x⃗ this means that agents in x⃗ \Ci experience an increase in cost larger than D(Ci)/2 in clustering
C⃗ ′′ when compared to clustering C⃗. For brevity we symbolize this cost increase as cst, so we say
cst > D(Ci)/2.

We now we consider the 4-perturbation of instance x⃗ in which all distances among agents to
the left and to the right of Ci are shrunk by a factor of 4. By stability we know that the optimal
clustering of the perturbed instance should be the same as the optimal clustering of the original!
But in the perturbed instance all costs of agents in x⃗ \ Ci are divided by 4 in both clusterings C⃗
and C⃗ ′′ while the costs of agents in Ci remain the same. So, in order for C⃗ ′′ to be sub-optimal in
the perturbed instance it must be cst/4 > D(Ci)/2 which means cst > 2D(Ci). But serving agent
x′ of x⃗′ by ci has cost at most 2D(Ci) if d(x

′, xi) < D(Ci) since d(xi, ci) < D(Ci). This means that
clustering C⃗ ′ cannot be optimal for x⃗.

Proof. We want to show the lemma for any γ-stable instance for γ ≥ 5.

We prove the lemma for random agent xj ∈ Ci for some cluster Ci in optimal clustering

C⃗ = (C1, . . . , Ck) of the γ-stable instance x⃗. Consider that the agent declares false location x′

providing input profile x⃗′ = (x⃗−j , x
′) to the mechanism in order to become a singleton cluster.

That is, if the optimal clustering of instance x⃗′ is Y⃗ then x′ is a single agent cluster in Y⃗ .

We first study the case where |Ci| = 2. But then, from Lemma 2 we know that for any γ-stable
instance for γ ≥ 3 agent xj ∈ Ci of optimal clustering C⃗ must deviate by at least his distance to

Ci’s center in order to become a singleton cluster in Y⃗ . I.e. it must be d(x′, xj) > d(xj , ci) = D(Ci),
so the lemma stands for this case.

For the most general case, |Ci| ≥ 3 we start with some observations. By Lemma 1 we know that
for any two clusters Ci and Cj of optimal clustering C⃗ = (C1, . . . , Ck) of x⃗ we have d(Ci, Cj) >(
(γ−1)2

2γ

)
max{D(Ci), D(Cj)}. For γ ≥ 5 that is:

d(Ci, Cj) > 1.6max{D(Ci), D(Cj)}. (11)

7 Note here that we refer to the group of agents that belong in cluster Ci of the optimal clustering of instance x⃗.
This group is well defined for instance x⃗′ as well.
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Too begin, we notice the following claim:

Claim 1 Agent xi cannot declare a false location x′ with xi,l ≤ x′ ≤ xi,r in such a way that x′ is

a singleton cluster in Y⃗ .

We can easily see the validity of the claim, since by optimality (also see proof of Theorem 1)
xj ∈ Ci cannot change the optimal clustering by deviating within the bounds of cluster Ci, i.e. if
xi,l ≤ x′ ≤ xi,r.Hence it must be x′ ̸= [xi,l, xi,r]. Even so, for completeness, we provide a proof of
the claim, tailored to the case of 5-stable instances, after the proof of the lemma.

In addition, we notice that if x′ ≤ xi−1,r or x′ ≥ xi+1,l then the lemma trivially stands, again
by Equation 11 (I.e. in this case it would be d(x′, xj) > 1.6D(Ci)).

This means that we need only study the cases where x′ ∈ (xi−1,r, xi,l) or x
′ ∈ (xi,r, xi+1,l) and

d(x′, xj) < D(Ci) (and show that x′ cannot become a singleton cluster in Y⃗ in these cases).

Suppose, contrary to the lemma’s claim, that agent declares location x′ ∈ (xi−1,r, xi,l) with

d(x′, xj) < D(Ci) such that x′ is a singleton in Y⃗ (the other case, x′ ∈ (xi,r, xi+1,l), is symmetrical).

Then we notice the following three properties for optimal clustering Y⃗ of instance x⃗′:

Property 1: In Y⃗ there is a facility among agents in Ci \ xj .
Property 2: In Y⃗ no agent“to the left” of cluster Ci (i.e. by an agent in some cluster Cl for l < i,

of C⃗) is served by an agent in Ci \ xj .

Property 3: In Y⃗ no agent “to the right” of cluster Ci (i.e. by an agent in some cluster Cl for
l > i, of C⃗) is served by an agent in Ci \ xj .

The imminent conclusion from Properties 1, 2 and 3 is the following: Consider instance x⃗ \ Ci

and it’s optimal k − 2-clustering C⃗−2. Then cost(x⃗ \ Ci, Y⃗ ) = cost(x⃗ \ Ci, C⃗−2)
8. We provide short

proofs for each one of these three properties right after the proof of the lemma.

We are now ready to complete the proof. In order to do so we bound the extra cost experienced
by agents in x⃗\Ci in the possible re-clustering after xi’s deviation, i.e. cost(x⃗\Ci, Y⃗ )−cost(x⃗\Ci, C⃗).
We do this by considering the following alternative clustering C ′ of instance x⃗: serve agents in Ci

using two facilities, optimally and agents in x⃗ \Ci using the remaining k− 2 facilities optimally. So
in C⃗ ′ we have:

cost(Ci, C⃗
′) ≤ cost(Ci, C⃗)− D(Ci)

2
, (12)

since placing the second facility placed among agents in Ci to the edge-agent further away from ci
reduces the cost by at least D(Ci)

2 .

But since C⃗ is optimal in x⃗ and hence C⃗ ′ is not, it must be:

cost(x⃗ \ Ci, C⃗ ′)− cost(x⃗ \ Ci, C⃗) >
D(Ci)

2
(13)

Otherwise it would be cost(x⃗, C⃗ ′) < cost(x⃗, C⃗). Now notice that properties 1, 2 and 3 mean
that agents in x⃗ \ Ci are clustered in exactly the same way in C⃗ ′ as in Y⃗ . That means that:

cost(x⃗′ \ {Ci

⋃
x′}, Y⃗ ) = cost(x⃗ \ Ci, C⃗

′) (14)

and that no agent to the left of Ci is clustered together with any agent to the right of Ci in C⃗ ′.

8 For a description of this notation, of the form cost(x⃗, C⃗), see proof of Theorem 1
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The last observation means if we consider a 4-perturbation of instance x⃗, instance x⃗p, in which
we divide all distances among agents between [xl, xi−1,r] and agents between [xi+1,l, xr], where xl
and xr the leftmost and rightmost agents of the instance equivalently we have that:

cost(x⃗p \ Ci, C⃗ ′)− cost(x⃗p \ Ci, C⃗) =
cost(x⃗ \ Ci, C⃗ ′)− cost(x⃗ \ Ci, C⃗)

4

But in xp the distances among agents in Ci remain unaffected which means that in xp, Equa-

tion 12 still stands. This means, that since the instance is 5-stable, clustering C⃗ ′ must still be
sub-optimal in x⃗p and hence it must be

cost(x⃗p \ Ci, C⃗ ′)− cost(x⃗p \ Ci, C⃗) >
D(Ci)

2
⇒

cost(x⃗ \ Ci, C⃗ ′)− cost(x⃗ \ Ci, C⃗)

4
>

D(Ci)

2
⇒

cost(x⃗ \ Ci, C⃗ ′)− cost(x⃗ \ Ci, C⃗) > 2D(Ci).

(15)

Noticing again that by Equation (14), cost(x⃗′ \ {Ci
⋃
x′}, Y⃗ ) = cost(x⃗ \ Ci, C⃗

′) and by Equa-
tion (15) and cost(x⃗ \ Ci, C⃗) = cost(x⃗′ \ {Ci

⋃
x′}, C⃗) we have

cost(x⃗′ \ {Ci

⋃
x′}, Y⃗ )− cost(x⃗ \ {Ci

⋃
x′}, C⃗) > 2D(Ci).

Finally, since d(x′, xi) < D(Ci),

cost({Ci

⋃
x′ \ xi}, C⃗)− cost({Ci

⋃
x′ \ xi}, Y⃗ ) < 2D(Ci),

since d(xi, ci) ≤ D(Ci). By adding the last two equations we get that cost(x⃗′, Y⃗ ) > cost(x⃗′, C⃗)
which means that Y⃗ is not optimal.

⊓⊔

We now present the proofs of Claim 1 and Properties 1, 2 and 3, used in the main proof of
Lemma 3.

Proof (Of Claim 1). Consider x′i,l and x′i,r to be the leftmost and rightmost agents of Ci \ xj (i.e.
if xj ̸= xi,r, xi,l then xi,r = x′i,r and xi,l = x′i,l).

Contrary to the claim, suppose x′i,l ≤ x′ ≤ x′i,r and x′ is a singleton cluster Y⃗ . Since x′ is a
singleton and x′i,l and x′i,r are to her left and right side equivalently, x′i,l and x′i,r cannot be served

by the same facility in Y⃗ (since clustering Y⃗ is optimal for x⃗′). This means that either x′i,l or x
′
i,r

is served by an agent in x⃗ \ Ci or there are two facilities among agents in Ci \ xj in Y⃗ . Both of
these cases are infeasible though. For the first one, suppose that xi,r is not served by an agent in
Ci \ xj . By Equation 11 that means that the cost of serving xi,r is at-least 1.6D(Ci). But since

x′i,l ≤ x′ ≤ x′i,r x′, d(x′, xi,r) < D(Ci) so Y⃗ could not be optimal in x⃗′. For the latter case (Y⃗

places two facilities among agents in Ci \ xj) we see that if Y⃗ is optimal for x⃗′ then the optimal
(k− 1)-clustering of instance (x⃗−j) would place two facilities among agents in Ci \ xj (since x′ is a
singleton removing her and one facility from the instance should yield the exact same clustering for
the rest of the agents). But then, since in C⃗ there is only one facility among agents in Ci, C⃗ could
not be optimal for instance x⃗ (because if the optimal (k − 1)-clustering of instance (x⃗−j) places
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two facilities among agents in set Ci \ xj then the optimal k-clustering of instance x⃗ should place
at least as many among agents in Ci) , which is a contradiction.

Finally we notice that if xj = xi,l, x
′ cannot become a singleton in Y⃗ if x′ ∈ [xi,l, x

′
i,l] since the

cost serving agent xj by ci in that interval is only decreased (in relation to the cost of serving her
by ci in x⃗ - she’s getting closer to her serving facility). Similarly for the case of xj = xi,r moving
in interval [x′i,r, xi,r]. The above mean that agent xj cannot become a singleton cluster by moving

within the bounds of Ci (i.e. if x′ is a singleton in Y⃗ it must be x′ /∈ [xi,l, xi,r]), which is the
claim. ⊓⊔

Proof (Of Property 1). We know that |Ci \ xj | ≥ 2. Furthermore, since d(x′, xj) < D(Ci) we have
that d(x′, ci) < 2D(Ci). But if there is no facility among agents in Ci \ xj that means that these
agents are all served by a facility placed in a location xl with xl ∈ Cl with l ̸= i. But, again by
Equation 11 that would mean that

cost(Ci \ xj , Y⃗ ) > 2 ∗ 1.6D(Ci) + cost(Ci \ xj , C⃗) (16)

(since |Ci\xj | ≥ 2, d(Ci, Cl) ≥ 1.6D(Ci)). Furthermore, since agents in x⃗\Ci are served by the same

number of facilities in Y⃗ as in C⃗, but also have to serve agents in Ci \ xj in Y⃗ (i.e. the placement

of the (k − 1) facilities among agents in x⃗ \ Ci is not optimal in Y⃗ as it is in C⃗, for these agents)
we have

cost(x⃗ \ Ci, Y⃗ ) ≥ cost(x⃗ \ Ci, C⃗). (17)

Hence, by adding (16) and (17) we have that :

cost(x⃗ \ xj , Y⃗ ) > 2 ∗ 1.6D(Ci) + cost(x⃗ \ xj , C⃗)

By remembering that x⃗′ = (x⃗−j , x
′) and in Y⃗ x′ is a singleton cluster (i.e. has cost 0) the above

becomes:

cost(x⃗′, Y⃗ ) > 2 ∗ 1.6D(Ci) + cost(x⃗ \ xj , C⃗) (18)

But, alternative clustering C⃗ ′ for x⃗′ in which we serve all agents as we do in C⃗ and also serve
location x′ by ci has cost

cost(x⃗′, C⃗ ′) ≤ cost(x⃗ \ xj , C⃗) + 2D(Ci), (19)

since d(x′, ci) < 2D(Ci).

This means that, by (18) and (19) cost(x⃗′, Y⃗ ) > cost(x⃗′, C⃗ ′) which means that clustering Y⃗
would be sup-optimal for instance x⃗′, which is a contradiction.

Notice that by Observation 2, property 1 means that no agents in Ci \xj are served by an agent

not in Ci in Y⃗ . ⊓⊔

Proof (Of Property 2). Property 2 is trivial: since x′ ∈ (xi−1,r, xi,l) and x′ forms a singleton cluster

in Y⃗ , by optimality no agent to the left of x′ is clustered together with agents to the right of x′. ⊓⊔

Proof (Of Property 3). Initially, for property 3 we notice the following: At most 1 agent in Ci+1

can be clustered together with agents in Ci in Y⃗ . Otherwise, due to the distance between Ci and
Ci+1, clustering Y⃗ would be sub-optimal (using the same reasoning as for property 1). Obviously,
due to optimality, this agent can only be xi+1,l.
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We now consider the structure of cluster Ci in relation to agent xi+1,l. Specifically, by Equa-
tion (11) it must be

d(xi,r, xi+1,l) > 1.6 ·D(Ci), (20)

since d(xi,r, xi+1,l) = d(Ci, Ci+1). By looking at the proof of Lemma 1 we see that the smallest

possible distance between Ci and Ci+1 is achieved when d(xi,l, ci) =
D(Ci)

c for c = 2γ2

γ2+γ
⇒ 1

c = 0.6

for γ = 5. This means that since agent xj deviates to the left in this case, by at most D(Ci), it
must be

d(x′, ci) ≤ 1.6D(Ci), (21)

in the edge case. Furthermore, by Observation 2, since xi+1,l is not served by an agent in Ci+1

there is no facility among agents in Ci+1 in Y⃗ . I.e. all agents in Ci+1 \xi+1,l are served by a facility
placed on [xi+2,l, xn] where xn the rightmost agent location in the instance. But, by Lemma 1, if

xi+1,l is served by ci+1 ∈ Ci+1 in C⃗, d(Ci+1, Ci+2) > 1.6D(Ci+1) ≥ 1.6d(xi+1,l, ci+1) and so, it is

cost(xi+1,o, Y⃗ ) ≥ d(xi+1,o, xi+2,l) ≥ 1.6d(xi+1,l, ci+1), (22)

for every xi+1,o ∈ Ci+1 \ xi+1,l.

Now we are able to show that clustering Y⃗ cannot be optimal for instance x⃗′ in the edge case. We
will compare it with clustering C⃗ (where every agent is served by the same facility as in clustering
C⃗ and x′ is served by ci). We have the following:

cost(x⃗′ \ {x′
⋃

Ci

⋃
Ci+1}, Y⃗ ) ≥ cost(x⃗′ \ {x′

⋃
Ci

⋃
Ci+1}, C⃗),

by optimality. Furthermore,

cost(Ci+1, Y⃗ ) ≥ cost(Ci+1, C⃗)− d(xi+1,l, ci) + 1.6d(xi+1,l, ci+1) + 1.6D(Ci),

by optimality and equations (20) and (22). Also,

cost(Ci \ x, Y⃗ ) ≥ cost(Ci \ x, C⃗),

by optimality. Finally,
cost(x′, Y⃗ ) + 1.6D(Ci) > cost(x′, C⃗),

by equation (21).
By adding we get cost(x⃗′, Y⃗ ) > cost(x⃗′, C⃗) which means that Y⃗ is sub-optimal for instance x⃗′.

All we need to finalize this observation is realize that as we move away from the edge case, the
above inequalities become easier to satisfy. Specifically if Ci had center c′i < ci we see that factor 1.6
of inequality (21) decreases while d(Ci, Ci+1) increases. If c

′
i > ci the same factor of inequality (21)

may increase by |c′i−ci|, but then d(Ci, Ci+1) increases by at least γ2+1
γ+1 · |c′i−ci| > 4.3|c′i−ci| (since

d(xi,l, xi+1,l) >
γ2+1
γ+1 d(xi,l, ci) - see proof of Lemma 1), hence maintaining cost(x⃗′, Y⃗ ) > cost(x⃗′, C⃗).

⊓⊔

D Proofs of Auxiliary Lemmas Used in the Proof of Theorem 3

For completeness, we restate the proofs of the auxiliary lemmas with the properties of well-separated
instances adapted from [27] and used in the proof of Theorem 3.

Before we proceed with the proofs of the auxiliary lemmas, we need the following basic fact
about the facility allocation of any determistic strategyproof mechanism.

26



Lemma 7 (Proposition 2.1, [27]). Let M be a deterministic strategyproof with a bounded ap-
proximation ratio of ρ ≥ 1 for

√
2-stable instances of k-Facility location on the line. For any

(k + 1)-location instance x⃗ with x1 ≤ x2 ≤ . . . ≤ xk+1, M1(x⃗) ≤ x2 and Mk(x⃗) ≥ xk.

Proof. We show it for M1(x⃗) ≤ x2, the other case is symmetric. Suppose x2 < M1(x⃗). Then the
agent in x1 has the incentive to deviate to location x2, since M1(x⃗−1, x2) = x2 due to the bounded
approximation of M (i.e., in (x⃗−1, x2), M allocates k facilities to k different locations). Notice that
(x⃗−1, x2) is γ-stable for any γ ≥ 1.

D.1 The Proof of Lemma 4

Proof. Since M has a bounded approximation, the isolated pair xk and xk+1 must be served by the
same facility Mk(x⃗). By Lemma 7, we know that Mk(x⃗) ≥ xk. Then, it must also be Mk(x⃗) ≤ xk+1 .
Otherwise, like in Lemma 7, agent xk could declare location xk+1 and decrease her cost, since
Mk(x⃗−k, xk+1) = xk+1 by the bounded approximation of M . Again, the instance (x⃗−k, xk+1) is
arbitrarily stable.

D.2 The Proof of Lemma 5

We can now proceed to the proofs of the auxiliary lemmas, Lemma 6 and Lemma 5, which refer to
the movement of isolated pairs. We only present the proof of Lemma 5 here. The proof of Lemma 6
is fully symmetric.

The proof shown here, refers to 2-Facility Location on well separated instances with 3 agents. All
arguments as well as the stability factor of the instance only depend on the well separated property
of the rightmost pairs of agents as well as their distance from the third agent from the right. That
is, that since in all instances studied in the proof we only change distance between the agents of the
isolated, rightmost pair, in the range (0, d(x1, x2)/r) and only increase the distance between the
isolated pair and the leftmost agent x1, any instance with a large enough distance between x1 and
x2, i.e. for which d(x1, x2) > γ · ρd(x2, x3) will be γ-stable in all parts of the proof. In that way it
is easy to verify that the arguments presented here extend to (x1| . . . |xk−1|xk, xk+1)-well separated
and stable instances of at least a specific minimum distance d(xk−1, xk).

Consider M to be a deterministic, strategyproof, anonymous and bounded approximation mech-
anism, with approximation ration of at most ρ, for 2-facility location. We will work on instance x⃗
with three agents x1 < x2 < x3 which is (x1|x2, x3)-well separated.

The proof of Lemma 5 directly follows from the following propositions, originally established in
[27, Appendix A].

Proposition 2. Consider (x1|x2, x3)-well separated, stable instance x⃗ for which M2(x⃗) = x2. Then
for instance x⃗′ = (x⃗−2, x

′
2) where x2 ≤ x′2 ≤ x3 it will be M2(x⃗′) = x′2

Proof. Notice that since d(x′2, x3) < d(x2, x3) instance x⃗′ is still (x1|x2, x3)-well separated. Further-
more, since x1 is allocated a facility (by the ρ-approximation property of the instance), x⃗′ is at
least as stable as x⃗ since the distance between the isolated pair is shortened and their distance from
x1 has grown. All that needs to be shown is that image set I2(x⃗−2) includes the interval [x2, x3].
Since x2 is allocated a facility, we know x2 ∈ I2(x⃗−2). Furthermore, by the bounded approximation
property of M x3 ∈ I2(x⃗−2). Assume there is a hole (l, r) ∈ I2(x⃗−2) with x2 ≤ l < r ≤ xk. Consider
location y ∈ (l, r) such that d(y, l) < d(y, r). By strategyproofness l ∈ M(x⃗−2, y). But then, by
Lemma 7 we have that F2(x⃗−j , y) > y which contradicts M ’s bounded approximation ratio, since
the two agents of the isolated pair of (x⃗−j , y) are served by different facilities.
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Proposition 3. Consider (x1|x2, x3)-well separated stable instance x⃗ for which M2(x⃗) = x2. Then

for every (x1|x2, x′3)-well separated instance x⃗′ = (⃗x−3, x
′
3), if x⃗

′ is also well separated, M2(x⃗′) = x2.

We notice that in that case, the distance between the agents of the isolated pair might grow a
from x⃗ to x⃗′. Since the proof of this proposition uses instances where the distance of the isolated
pair varies from ϵ to d(x1, x2)/ρ the proposition stands for stable instances only if all possible

(x1|x2, x′3)-well separated instances x⃗′ = (⃗x−3, x
′
3) are well separated. It is easy to see, that since

in all these instances it must be d(x2, x3) < d(x1, x2)/ρ then for a large enough distance d(x1, x2)
(i.e. d(x1, x2) > γ · ρd(x2, x3)) x⃗′ is always stable. We show the following proof considering that we
have made this assumption.

Proof. Since M2(x⃗) < x3, we know that x3 /∈ I3(x⃗−3). So, there is a x3-hole (l, r) ∈ I3(x⃗−3). Since
M2(x⃗) = x2, l = x2 and r > 2x3−x2 (by strategyproofness). By strategyproofnes, if x′3 < (r+ l)/2

(for x2 < x′3 for well separated instance x⃗′), M2(x⃗) = x2.

To finish, we show that there are no (x1|x2, x′3)-well separated instances x⃗′ = (x⃗−3, x
′
3) with

x′3 ≥ (r+ l)/2 and M2(x⃗′) ̸= x2. Again, we reach a contradiction by assuming that there is a point
y ≥ (r + l)/2 for which (x⃗−3, y) is a (x1|x2, y)-well separated instance with M2((x⃗−3, y)) ̸= x2. If
such a y exists, then there exists x′k ∈ [(r + l)/2, r) for which x⃗′ = (x⃗−3, x

′
3) is a (x1|x2, x′3)-well

separated. But then, M2(x⃗′) = r > x′3 (by strategyproofness, because x′3 is closer to r than to

l). Since x⃗′ is (x1|x2, x′3)-well separated this contradicts lemma 4 which dictates that it must be
M2(x⃗−3, x

′
3) ∈ [x2, x

′
3].

Proposition 4. Consider (x1|x2, x3)-well separated stable instance x⃗ for which M2(x⃗) = x2. Then
for every (x1|x′2, x′3)-well separated instance x⃗′ = (x⃗−{2,3}, x

′
2, x

′
3), with x2 < x′2 < (x2+x3)/2, if x⃗′

is also well separated, M2(x⃗′) = x2.

Note that, as for proposition 3 the restriction that x⃗′ is also γ-stable is equivalent to d(x1, x2) >
γ · ρd(x2, x3).

Proof. Since x′2 ∈ [x2, x3] we have that M2(x⃗−2, x
′
2) = x′2, by proposition 2. But since d(x′2, x3) <

d(x2, x3), (x⃗−2, x
′
2) is (x1|x′2, x3)-well separated. Hence, by proposition 3, for (x1|x′2, x′3)-well sepa-

rated instance x⃗′ = (x⃗−{2,3}, x
′
2, x

′
3), M2(x⃗′) = x′2

Proposition 5. Consider (x1|x2, x3)-well separated stable instance x⃗ for which M2(x⃗) = x2. Then
for every (x1|x′2, x′3)-well separated instance x⃗′ = (x⃗−{2,3}, x

′
2, x

′
3), with x2 ≤ x′2, if x⃗

′ is also well

separated, M2(x⃗′) = x2.

Proof. We will inductively use proposition 4 to create instance x⃗′. Consider d = d(x′2, x2), δ =
d(x3, x2)/2 and κ = ⌈d/δ⌉. Then for every λ = 1, 2, 3 . . . , κ consider instance x⃗λ = (x⃗−{2,3}, x2 +
(λ − 1)δ, x3 + (λ − 1)δ). Now observe that x⃗λ is well separated since for it’s rightmost pair, x′2 =
x2 + (λ− 1)δ and x′3 = x3 + (λ− 1)δ it is d(x′2, x

′
3) > 2δ while d(x1, x

′
2) > d(x1, x2). By iteratively

applying proposition 4 to x⃗λ, we have that for every (x⃗−{2,3}, y2, y3) well separated instance with
x2 + (λ− 1)δ ≤ y2 ≤ x2 + λδ, M2(x⃗−{2,3}, y2, y3) = y2. For λ = κ we get M2(x⃗−{2,3}, x

′
2, x

′
3) = x′2 .

E Missing Details from the Proof of Theorem 3: Case 2

Next, we present a detailed proof of Case 2 in the proof of Theorem 3.
Case 2: x4 − l ≤

√
2λ. Let m = (r + l)/2 be the midpoint of the x3-hole (l, r) in I3(x⃗−3). We

consider the instance y⃗ = (x⃗−3, a), where a < m is arbitrarily close to m (i.e., a ≲ m) so that

28



a− l < r− a and d(a, x4) ≲
√
2λ/2. The latter is possible since x3 is already arbitrarily close to x4

and the right endpoint r of the hole h = (l, r) lies in (x3, x4]. Since d(x1, x2) = λ, d(x2, a) is quite
large, and d(a, x4) ≲

√
2λ/2, the instance y⃗ is (

√
2− δ)-stable, for any δ > 0. By strategyproofness,

M(y⃗) must place a facility at l, since l ∈ I3(x⃗−3) and l is the nearest endpoint of the hole h = (l, r)
to a.

As before, we now consider the instance y⃗′ = (y⃗−4, l). Since d(x1, x2) = λ, d(x2, a) is quite
large, and d(a, l) < d(a, r) ≤

√
2λ/2, the instance y⃗′ is (

√
2 − δ)-stable, for any δ > 0. Hence, by

strategyproofness, M(y⃗′) must keep a facility at l, because l ∈ I4(y⃗−4).
To conclude the proof, we need to construct a (x1|x2|l′, l′+ε)-well-separated instance z⃗ with l′ ∈

M(z⃗). Then, we can reach a contradiction to the hypothesis that M has a bounded approximation
ratio, by applying Lemma 6, similarly to Case 1.

To this end, we consider the image set I4(y⃗
′
−4) of agent 4 in y⃗′−4 = (x1, x2, a). Since l ∈ M(y⃗′),

l ∈ I4(y⃗
′
−4). If a − ε ∈ I4(y⃗

′
−4), the instance z⃗ = (y⃗′−4, a − ε) is (x1|x2|a − ε, a)-well-separated

(and thus, (
√
2 − δ)-stable, for any δ > 0). Moreover, by strategyproofness, M(z⃗) must place a

facility at a − ε, because a − ε ∈ I4(y⃗
′
−4). Otherwise, there must be a hole h′ = (l′, r′) in the

image set I4(y⃗
′
−4), with l′ > l (because l ∈ I4(y⃗

′
−4)) and r′ < a − ε (because of the hypothesis

that a − ε ̸∈ l ∈ I4(y⃗
′
−4)). We consider the instance z⃗′ = (y⃗′−4, l

′ + ε) = (x1, x2, l
′ + ε, a). Since

l′ + ε ∈ (l, a), d(a, l′ + ε) < d(a, l) <
√
2λ/2 and the instance z⃗′ is (

√
2 − δ)-stable, for any δ > 0.

Therefore, by strategyproofness and since l′ ∈ I4(y⃗
′
−4), M(z⃗′) must place a facility at l′. We now

consider the instance z⃗ = (z⃗′−3, l
′) = (x1, x2, l

′, l′ + ε), which is (x1|x2|l′, l′ + ε)-well-separated (and

thus, (
√
2 − δ)-stable, for any δ > 0). Moreover, by strategyproofness and since l′ ∈ M(z⃗′), and

thus, l′ ∈ I3(z⃗
′
−3), M(z⃗) must place a facility at l′.

Therefore, starting from the (
√
2 − δ)-stable instance y⃗′, with l ∈ M(y⃗′), we can construct a

(x1|x2|l′, l′ + ε)-well-separated instance z⃗ with l′ ∈ M(z⃗). Then, by Lemma 6, z4 = l′ + ε ∈ M(z⃗),
because for the (x1|x2|x3, x4)-well-separated instance x⃗, M3(x⃗) = x4, and z⃗ is a (x1|x2|l′, l′+ε)-well-
separated instance with z4 ≤ x4. Since both l′, l′ + ε ∈ M(z⃗), the social cost of M(z⃗) is arbitrarily
larger than ε, which is the optimal social cost of the 3-Facility Location instance z⃗. ⊓⊔

F The Proof of Theorem 4

Proof. The approximation guarantee easily follows from the fact that since a facility is uniformly
at random placed over each optimal cluster, the expected cost of the sum of the cost of the agents
in each cluster is 2 times their cost in the optimal clustering.

As is it always with our mechanisms, agent xi ∈ Ci cannot gain by moving within the range of
Ci (this would only increase her utility).

Since the analysis of Random is so similar to the analysis of the mechanism in Section 5, we
skip the detailed case analysis and mention only the key deviation cases that need be covered.
Specifically these include:

Case 1: why agent xi ∈ Ci cannot gain by becoming a member of another cluster,
Case 2: or by becoming a self serving center
Case 3: or by merging or splitting Ci.

Without loss of generality, consider the deviating agent to be the edge agent xi,l ∈ Ci, declaring

location x′ creating instance x⃗′ = (x⃗−xi,l
, x′) with optimal clustering C⃗ ′. If our results stand for her,

they easily transfer to all agents in Ci. Ci contains n agents, including xi,l. For simplicity, without
loss of generality we index these agents from left to right, excluding xi,l , such as xi,l ≤ xi,1 ≤
· · · ≤ xi,n−1 , where xi,1 = xi,l+1 and xi,n−1 = xi,r . Now for simplicity, we represent d(xi,l, xi,j)
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by di,j . Of course di,l = 0. We define as Xi the discrete random variable that takes values from
sample space {di,l, di,1, di,2, . . . , di,n−1} uniformly at random. That is, Xi represents the cost agent
xi,l experiences if she is served by the facility placed in Ci by the mechanism. Then, the expected
cost of xi,l should she not deviate is:

E(Xi) =
0 + di,1 + . . .+ di,n−1

n

That is, since for any agent xj /∈ Ci, d(xj , xi,l) > D(Ci) = di,n−1 by Lemma 1.
Now, for Case 1, “why agent x ∈ Ci cannot gain by becoming a member of another cluster”.

Notice that this is the case where agents in Ci are not merged or splitted in C⃗ ′. With some abuse
of notation, this allows us to refer to the cluster containing agents in Ci \xi,l in C⃗ ′ of x⃗ as C ′

i. C
′
i−1

then is the set of agents belonging to the cluster immediately to the left of C ′
i (i.e. the rightmost

agent of C ′
i−1, excluding x′, is xi−1,r). Consider a deviation x′ that places the deviating agent in

cluster C ′
i−1 after step 1 of the mechanism. Again for simplicity consider d(x′, xi,l) = c and we index

agents in Ci−1 inversely, such that xi−1,1̂ ≥ xi−1,2̂ ≥ . . . ≥ xi−1,n̂′ (meaning that now xi−1,r = xi−1,1̂,

xi−1,r−1 = xi−1,2̂ etc.) where |Ci−1| = n′. Equivalently we set d(xi,l, xi−1,ĵ) = di−1,j . By Corollary 1,
we have di,1 ≤ di,2 ≤ · · · ≤ di,n−1 ≤ di−1,1 ≤ · · · ≤ di−1,n′ . Now we define uniform random variable
X ′

i with sample space {di,1, . . . , di,n−1} (see that di,l is now absent) and random variable X ′
i−1 with

sample space {c, di−1,1, . . . , di−1,n′}. Now X ′
i represents the cost of xi,l should she be served by the

facility placed in C ′
i of the changed instance (which now doesn’t include her) and X ′

i−1 her cost
should she be served by the facility placed at C ′

i−1 (which now includes her false declared location).
The expected cost of xi,l now becomes E(min{X ′

i, X
′
i−1}).

But, since di,1 ≤ di,2 ≤ . . . ≤ di,n−1 ≤ di−1,1 ≤ . . . ≤ di−1,n′ , unless d(x′, xi,l) < di,n−1 = D(Ci),
we have that:

E(min{X ′
i, X

′
i−1}) = E(X ′

i) =
di,1 + . . .+ di,n−1

n− 1
> E(Xi)

That means that xi,l cannot gain by this deviation unless x′ both belongs in C ′
i−1 and d(x′, xi,l) <

D(Ci). All we need to show now is that any such situation would result in a violation of the
inter-cluster distance between C ′

i−1 and C ′
i or between C ′

i−1 and C ′
i−2, guaranteed by the cluster-

separation property and hence it would be caught by the mechanism’s cluster-separation property
verification step.

Specifically consider the distance of xi,l to her center ci of Ci in the optimal clustering. We know
that it must be d(Ci−1, Ci) ≥ D(Ci)·1.6, by Lemma 1, for the given stability factor of 5. But in order
for this distance to be tight, it must be that d(xi,l, ci) = 0.4 ·D(Ci) (see factor c of proof of Lemma 1
-due to stability properties, if d(xi,l, ci) < 0.4 ·D(Ci) or > 0.4 ·D(Ci), d(Ci−1, Ci) grows larger than
D(Ci) · 1.6). Furthermore, in order for this distance to be tight, it must also be d(ci−1, xi−1,r) <
0.4 ·D(Ci) (since by stability it must be d(Ci−1, Ci) = d(xi−1,r, xi,l) > (γ − 1)d(xi−1,r, ci−1)).

Now, since it must be d(x′, xi,l) < D(Ci) it will be d(x′, ci) < 1.4D(Ci) and d(x′, xi−1,r) >
0.6D(Ci) (since d(Ci, Ci−1) > 1.6D(Ci) by Lemma 1). Finally we distinguish between two cases:

Case 1: ci−1 ∈ C ′
i−1. Now notice that d(xi,l, ci−1) > 5d(xi,l, ci) so d(xi,l, ci−1) > 2D(Ci). Then

D(C ′
i−1) ≥ d(ci−1, x

′) > D(Ci) (since d(x′, xi,l) < D(Ci)). But then d(C ′
i−1, C

′
i) ≤ d(x′, ci) ≤

1.4 · D(Ci) which means that the cluster separation verification property of step 2 would be
violated.

Case 2: ci−1 /∈ C ′
i−1. Then, in this edge case we notice it would be d(C ′

i−1, C
′
i−2) ≤ d(ci−1, xi−1,r) ≤

0.4D(Ci). But D(C ′
i−1) ≥ d(xi−1,r, x

′) ≥ 0.6D(Ci). Hence the verification property of step 2 is
again violated between C ′

i−1 and C ′
i−2.

30



All we have to do to finish, is note that as ci moves to the right or to the left, d(Ci−1, Ci) grows
by a multiplicative factor γ − 1 (=4) of d(xi,l, ci) (see proof of Leamma 1) and d(xi,l, ci−1) by a
multiplicative factor of 5 (remember, it must be both d(xi,l, ci−1) > 5d(xi,l, ci) and d(xi,r, ci−1) >
5d(xi,r, ci)). Which means that the above inequalities will still hold. 9

For Case 2, why agent xi,l cannot gain by becoming a self serving cluster, we simply notice
the following: her cost, should she not deviate, is at most D(Ci) (see expected value from previous
case). But, from Lemma 3 we know that xi,l must deviate by at-least ≥ D(Ci), for a stability factor
of 5. So she cannot gain from this deviation10.

For Case 3, it is not hard to see that by merging all the agents in Ci with agents /∈ Ci, her
expected cost can only increase. Furthermore, splitting the agents in Ci would cause the cluster-
separation property verification step to identify the split (see the proof of the strategyproofness of
the AlmostRightmost mechanism, in Section 5) and remove all agents of Ci from the game.

9 Notice here that while this property was a must-have for AlmostRightmost to work i.e. the mechanism wouldn’t
work if x′ both belongs in C′

i−1 and d(x′, xi,l) < D(Ci), here this might not the case. We can easily see this
guarantees strategyproofness, but it might not be necessary which means the mechanism may work for smaller
stability factors.

10 Again, while this property guarantees strategyproofness, it might not be necessary for example, we see that in one
of the bad edge cases, where all agents of Ci are gathered on xi,r, with ci = xi,r a stability of 3 would suffice to
guarantee that xi,l needs to deviate by at-least D(Ci) to become a self-serving cluster.
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