Skip to main content

A Portable Brain-Computer Interface Using Micro-Display forĀ Future Mobile Communication System

  • Conference paper
  • First Online:
Mobile Networks and Management (MONAMI 2021)

Abstract

5G is gradually realizing low latency and high reliable transmission between devices. In the next-generation mobile communication system, in addition to the further evolution for conventional communication technology, a new way of human-machine communication (HMC) represented by brain-computer interfaces (BCIs) will appear to achieve more efficient human-machine communication. BCIs based on steady-state visual evoked potential (SSVEP) are becoming one of the most popular research direction because of its high accuracy and less dependency on data training. However, the implementation of SSVEP-BCIs depends on external visual stimuli which usually use computer monitor to display the external stimuli. Therefore, this kind of BCIs usually has poor portability and wearability. This disadvantage is hindering the combination of BCIs based on SSVEP and specific control scenarios such as aircraft control, which require high wearability of control devices. The current portable schemes usually make use of the binocular effect and AR glasses to improve portability but no BCI system has been designed by making full use of the conclusion that stimulating single eye can also stimulate the brain to produce strong responses. In order to improve the portability of the BCIs based on SSVEP, a monocular-based scheme is proposed in this study. A brain-controlled aircraft system based on SSVEP is designed to verify the feasibility of this wearable scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, L., Liang, Y.C., Niyato, D.: 6G visions: mobile ultra-broadband, super internet-of-things, and artificial intelligence. China Commun. 16(8), 1ā€“14 (2019). https://doi.org/10.23919/JCC.2019.08.001

  2. de Oliveira JĆŗnior, W.G., de Oliveira, J.M., Munoz, R., de Albuquerque, V.H.C.: A proposal for internet of smart home things based on BCI system to aid patients with amyotrophic lateral sclerosis. Neural Comput. Appl. 32(15), 11007ā€“11017 (2018). https://doi.org/10.1007/s00521-018-3820-7

    ArticleĀ  Google ScholarĀ 

  3. Vidal, J.J.: Toward direct brain-computer communication. Ann. Rev. Biophys. Bioeng. 2(1), 157ā€“180 (1973). https://doi.org/10.1146/annurev.bb.02.060173.001105

    ArticleĀ  Google ScholarĀ 

  4. Mane, R., Chouhan, T., Guan, C.: BCI for stroke rehabilitation: motor and beyond. J. Neural Eng. 17(4), 041001 (2020). https://doi.org/10.1088/1741-2552/aba162

  5. Yan, N., et al.: Quadcopter control system using a hybrid BCI based on off-line optimization and enhanced human-machine interaction. IEEE Access 8, 1160ā€“1172 (2020). https://doi.org/10.1109/ACCESS.2019.2961246

    ArticleĀ  Google ScholarĀ 

  6. Hwang, H.J., Lim, J.H., Jung, Y.J., Choi, H., Lee, S.W., Im, C.H.: Development of an SSVEP-based BCI spelling system adopting a qwerty-style led keyboard. J. Neurosci. Methods 208(1), 59ā€“65 (2012). https://doi.org/10.1016/j.jneumeth.2012.04.011

    ArticleĀ  Google ScholarĀ 

  7. Jin, J., Chen, Z., Xu, R., Miao, Y., Wang, X., Jung, T.P.: Developing a novel tactile p300 brain-computer interface with a cheeks-stim paradigm. IEEE Trans. Biomed. Eng. 67(9), 2585ā€“2593 (2020). https://doi.org/10.1109/TBME.2020.2965178

    ArticleĀ  Google ScholarĀ 

  8. Tidoni, E., Abu-Alqumsan, M., Leonardis, D., Kapeller, C., Fusco, G., Guger, C., HintermĆ¼ller, C., Peer, A., Frisoli, A., Tecchia, F., Bergamasco, M., Aglioti, S.M.: Local and remote cooperation with virtual and robotic agents: a p300 BCI study in healthy and people living with spinal cord injury. IEEE Trans. Neural Syst. Rehab. Eng. 25(9), 1622ā€“1632 (2017). https://doi.org/10.1109/TNSRE.2016.2626391

    ArticleĀ  Google ScholarĀ 

  9. Sreeja, S., Samanta, D.: Classification of multiclass motor imagery EEG signal using sparsity approach. Neurocomputing 368, 133ā€“145 (2019). https://doi.org/10.1016/j.neucom.2019.08.037

    ArticleĀ  Google ScholarĀ 

  10. Ang, K.K., Guan, C.: EEG-based strategies to detect motor imagery for control and rehabilitation. IEEE Trans. Neural Syst. Rehab. Eng. 25(4), 392ā€“401 (2017). https://doi.org/10.1109/TNSRE.2016.2646763

    ArticleĀ  Google ScholarĀ 

  11. Sosnik, R., Zur, O.B.: Reconstruction of hand, elbow and shoulder actual and imagined trajectories in 3D space using EEG slow cortical potentials. J. Neural Eng. 17(1), 016065 (2020). https://doi.org/10.1088/1741-2552/ab59a7

  12. Zhang, M., Wang, Z., Hu, H.: A new SSVEP-based BCI utilizing frequency and space to encode visual targets. Sci. China Inf. Sci. 63(8), 1ā€“3 (2020). https://doi.org/10.1007/s11432-019-2652-6

    ArticleĀ  Google ScholarĀ 

  13. Nakanishi, M., Wang, Y., Chen, X., Wang, Y.T., Gao, X., Jung, T.P.: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Trans. Biomed. Eng. 65(1), 104ā€“112 (2018). https://doi.org/10.1109/TBME.2017.2694818

    ArticleĀ  Google ScholarĀ 

  14. Xu, Y., Ding, C., Shu, X., Gui, K., Bezsudnova, Y., Sheng, X., Zhang, D.: Shared control of a robotic arm using non-invasive brain-computer interface and computer vision guidance. Robot. Auton. Syst. 115, 121ā€“129 (2019). https://doi.org/10.1016/j.robot.2019.02.014

    ArticleĀ  Google ScholarĀ 

  15. David, K., Berndt, H.: 6G vision and requirements: is there any need for beyond 5G? IEEE Veh. Technol. Mag. 13(3), 72ā€“80 (2018). https://doi.org/10.1109/MVT.2018.2848498

    ArticleĀ  Google ScholarĀ 

  16. Zhao, X., Liu, C., Xu, Z., Zhang, L., Zhang, R.: SSVEP stimulus layout effect on accuracy of brain-computer interfaces in augmented reality glasses. IEEE Access 8, 5990ā€“5998 (2020). https://doi.org/10.1109/ACCESS.2019.2963442

    ArticleĀ  Google ScholarĀ 

  17. Arpaia, P., Duraccio, L., Moccaldi, N., Rossi, S.: Wearable brain-computer interface instrumentation for robot-based rehabilitation by augmented reality. IEEE Trans. Inst. Measure 69(9), 6362ā€“6371 (2020). https://doi.org/10.1109/TIM.2020.2970846

    ArticleĀ  Google ScholarĀ 

  18. Angrisani, L., Arpaia, P., Esposito, A., Moccaldi, N.: A wearable brain-computer interface instrument for augmented reality-based inspection in industry 4.0. IEEE Trans. Inst. Meas. 69(4), 1530ā€“1539 (2020). https://doi.org/10.1109/TIM.2019.2914712

  19. Daniela, O.R., VerĆ³nica, H.I., John, O.G.: SSVEP study in monocular and binocular vision. In: 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), pp. 1ā€“5 (2019). https://doi.org/10.1109/STSIVA.2019.8730241

  20. Lin, Z., Zhang, C., Wu, W., Gao, X.: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIS. IEEE Trans. Biomed. Eng. 54(6), 1172ā€“1176 (2007). https://doi.org/10.1109/TBME.2006.889197

    ArticleĀ  Google ScholarĀ 

  21. Manyakov, N.V., Chumerin, N., Robben, A., Combaz, A., van Vliet, M., Hulle, M.M.V.: Sampled sinusoidal stimulation profile and multichannel fuzzy logic classification for monitor-based phase-coded SSVEP brain-computer interfacing. J. Neural Eng. 10(3), 036011 (2013). https://doi.org/10.1088/1741-2560/10/3/036011

  22. Brainard, D.H.: The psychophysics toolbox. Spatial Vis. 10(4), 433ā€“436 (1997). https://doi.org/10.1163/156856897X00357

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgments

The authorsā€™ work was supported in part by the Science and Technology Commission Foundation of Shanghai (No. 21JM0010200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglin Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, X., Xu, G., Hu, H. (2022). A Portable Brain-Computer Interface Using Micro-Display forĀ Future Mobile Communication System. In: Calafate, C.T., Chen, X., Wu, Y. (eds) Mobile Networks and Management. MONAMI 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-030-94763-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94763-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94762-0

  • Online ISBN: 978-3-030-94763-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics