Skip to main content

Concept Drift Detection with Denoising Autoencoder in Incomplete Data

  • Conference paper
  • First Online:
  • 1428 Accesses

Abstract

Recent e-commerce and location-based services provide personalized recommendations based on machine-learning models that take into account purchase and visiting histories. Because machine-learning models assume the same distributions between training and test data, they cannot catch up with concept drifts, i.e., changes of behavioral patterns over time. To keep recommendation accurate, it is important to detect concept drifts. Generally, to achieve this, we need complete data (i.e., data without missing values). In real-world datasets, however, there are many incomplete data, and existing concept drift detection techniques do not deal with incomplete data. To address this issue, we investigate how a deep learning technique (denoising autoencoder), which complements missing values, contributes to detecting concept drifts in incomplete data. We conduct experiments on synthetic and real datasets to evaluate the robustness of this technique, and our results show its advantages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: SODA, pp. 1027–1035 (2007)

    Google Scholar 

  2. Barros, R.S., Cabral, D.R., Gonçalves, P.M., Jr., Santos, S.G.: RDDM: reactive drift detection method. Expert Syst. Appl. 90, 344–355 (2017)

    Article  Google Scholar 

  3. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  Google Scholar 

  4. Boracchi, G., Carrera, D., Cervellera, C., Maccio, D.: Quanttree: histograms for change detection in multivariate data streams. In: ICML, pp. 639–648 (2018)

    Google Scholar 

  5. Boulanouar, S., Lamiche, C.: A new hybrid image segmentation method based on fuzzy c-mean and modified bat algorithm. Int. J. Comput. Digit. Syst. 9(4), 677–687 (2020)

    Article  Google Scholar 

  6. Box, G.E., Hunter, W.H., Hunter, S.: Statistics for Experimenters, vol. 664 (1978)

    Google Scholar 

  7. Dasu, T., Krishnan, S., Venkatasubramanian, S., Yi, K.: An information-theoretic approach to detecting changes in multi-dimensional data streams. In: Symposium on the Interface of Statistics, Computing Science, and Applications (2006)

    Google Scholar 

  8. Friedman, J.H., Rafsky, L.C.: Multivariate generalizations of the wald-wolfowitz and smirnov two-sample tests. Ann. Stat. 7, 697–717 (1979)

    Google Scholar 

  9. Gondara, L., Wang, K.: MIDA: multiple imputation using denoising autoencoders. In: PAKDD, pp. 260–272 (2018)

    Google Scholar 

  10. Haug, J., Kasneci, G.: Learning parameter distributions to detect concept drift in data streams. arXiv preprint arXiv:2010.09388 (2020)

  11. Liu, A., Lu, J., Zhang, G.: Concept drift detection: dealing with missing values via fuzzy distance estimations. IEEE Trans. Fuzzy Syst. 29, 3219–3233 (2020)

    Google Scholar 

  12. Liu, A., Lu, J., Zhang, G.: Concept drift detection via equal intensity k-means space partitioning. IEEE Trans. Cybern. 51, 3198–3211 (2020)

    Google Scholar 

  13. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 31(12), 2346–2363 (2018)

    Google Scholar 

  14. Lyu, Y., et al.: Behavior matching between different domains based on canonical correlation analysis. In: ECNLP, pp. 361–366 (2019)

    Google Scholar 

  15. Nguyen, D., et al.: On the transferability of deep neural networks for recommender system. In: IAL, pp. 22–37 (2020)

    Google Scholar 

  16. Shao, J., Ahmadi, Z., Kramer, S.: Prototype-based learning on concept-drifting data streams. In: KDD, pp. 412–421 (2014)

    Google Scholar 

  17. Sun, Y., Tang, K., Minku, L.L., Wang, S., Yao, X.: Online ensemble learning of data streams with gradually evolved classes. IEEE Trans. Knowl. Data Eng. 28(6), 1532–1545 (2016)

    Article  Google Scholar 

  18. Sun, Z., Guo, Q., Yang, J., Fang, H., Guo, G., Zhang, J., Burke, R.: Research commentary on recommendations with side information: A survey and research directions. Electron. Commer. Res. Appl. 37, 100879 (2019)

    Article  Google Scholar 

  19. Wang, H., et al.: Preliminary investigation of alleviating user cold-start problem in e-commerce with deep cross-domain recommender system. In: ECNLP, pp. 398–403 (2019)

    Google Scholar 

  20. Wang, H., et al.: A DNN-based cross-domain recommender system for alleviating cold-start problem in e-commerce. IEEE Open J. Ind. Electron. Soc. 1, 194–206 (2020)

    Article  Google Scholar 

  21. Wang, S., Schlobach, S., Klein, M.: Concept drift and how to identify it. J. Web Semant. 9(3), 247–265 (2011)

    Article  Google Scholar 

  22. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23(1), 69–101 (1996)

    Google Scholar 

  23. Xu, S., Wang, J.: Dynamic extreme learning machine for data stream classification. Neurocomputing 238, 433–449 (2017)

    Article  Google Scholar 

  24. Yonekawa, K., et al.: Advertiser-assisted behavioral ad-targeting via denoised distribution induction. In: IEEE Big Data, pp. 5611–5619 (2019)

    Google Scholar 

  25. Yonekawa, K.,et al.: A heterogeneous domain adversarial neural network for trans-domain behavioral targeting. In: DLKT, pp. 274–285 (2019)

    Google Scholar 

  26. Zhang, Y., et al.: Personalized geographical influence modeling for poi recommendation. IEEE Intell. Syst. 35(5), 18–27 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by JST CREST Grant Number JPMJCR21F2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daichi Amagata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Murao, J., Yonekawa, K., Kurokawa, M., Amagata, D., Maekawa, T., Hara, T. (2022). Concept Drift Detection with Denoising Autoencoder in Incomplete Data. In: Hara, T., Yamaguchi, H. (eds) Mobile and Ubiquitous Systems: Computing, Networking and Services. MobiQuitous 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 419. Springer, Cham. https://doi.org/10.1007/978-3-030-94822-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94822-1_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94821-4

  • Online ISBN: 978-3-030-94822-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics