Skip to main content

Hierarchical Object Detection and Classification Using SSD Multi-Loss

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020)

Abstract

When merging existing similar datasets, it would be attractive to benefit from a higher detection rate of objects and the additional partial ground-truth samples for improving object classification. To this end, a novel CNN detector with a hierarchical binary classification system is proposed. The detector is based on the Single-Shot multibox Detector (SSD) and inspired by the hierarchical classification used in the YOLO9000 detector. Localization and classification are separated during training, by introducing a novel loss term that handles hierarchical classification in the loss function (SSD-ML). We experiment with the proposed SSD-ML detector on the generic PASCAL VOC dataset and show that additional super-categories can be learned with minimal impact on the overall accuracy. Furthermore, we find that not all objects are required to have classification label information as classification performance only drops from \(73.3\%\) to \(70.6\%\) while \(60\%\) of the label information is removed. The flexibility of the detector with respect to the different levels of details in label definitions is investigated for a traffic surveillance application, involving public and proprietary datasets with non-overlapping class definitions. Including classification label information from our dataset raises the performance significantly from \(70.7\%\) to \(82.2\%\). The experiments show that the desired hierarchical labels can be learned from the public datasets, while only using box information from our dataset. In general, this shows that it is possible to combine existing datasets with similar object classes and partial annotations and benefit in terms of growth of detection rate and improved class categorization performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertinetto, L., Mueller, R., Tertikas, K., Samangooei, S., Lord, N.A.: Making better mistakes: leveraging class hierarchies with deep networks. In: Proceedings of the IEEE/CVF CVPR (2020)

    Google Scholar 

  2. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE CVPR, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  3. Everingham, M., et al.: The PASCAL visual object classes challenge 2012 (VOC2012) results (2012)

    Google Scholar 

  4. Everingham, M., et al.: The PASCAL visual object classes challenge 2007 (VOC2007) results (2007)

    Google Scholar 

  5. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  6. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE CVPR (2014)

    Google Scholar 

  7. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  8. Kuznetsova, A., et al.: The open images dataset v4: unified image classification, object detection, and visual relationship detection at scale. IJCV (2020)

    Google Scholar 

  9. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE ICCV, pp. 2980–2988 (2017)

    Google Scholar 

  10. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  11. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  12. Luo, Z., et al.: MIO-TCD: a new benchmark dataset for vehicle classification and localization. IEEE Trans. Image Proc. 27(10), 5129–5141 (2018). https://doi.org/10.1109/TIP.2018.2848705

    Article  MathSciNet  Google Scholar 

  13. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR, pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91

  14. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: CVPR, pp. 6517–6525 (2017). https://doi.org/10.1109/CVPR.2017.690

  15. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)

    Google Scholar 

  16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  17. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE ICCV, pp. 9627–9636 (2019)

    Google Scholar 

  18. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE CVPR (2001)

    Google Scholar 

  19. Wen, L., et al.: UA-DETRAC: a new benchmark and protocol for multi-object detection and tracking. arXiv CoRR abs/1511.04136 (2015)

    Google Scholar 

  20. Zou, Z., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years: a survey (2019)

    Google Scholar 

  21. Zwemer., M.H., Wijnhoven., R.G.J., de With., P.H.N.: SSD-ML: hierarchical object classification for traffic surveillance. In: Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISAPP, vol. 5, pp. 250–259 (2020). https://doi.org/10.5220/0008902402500259

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthijs H. Zwemer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zwemer, M.H., Wijnhoven, R.G.J., de With, P.H.N. (2022). Hierarchical Object Detection and Classification Using SSD Multi-Loss. In: Bouatouch, K., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2020. Communications in Computer and Information Science, vol 1474. Springer, Cham. https://doi.org/10.1007/978-3-030-94893-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94893-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94892-4

  • Online ISBN: 978-3-030-94893-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics