
Skeleton-and-Trackball Interactive Rotation
Specification for 3D Scenes

Xiaorui Zhai1 , Xingyu Chen1,2 , Lingyun Yu3 , and Alexandru Telea4(B)

1 Bernoulli Institute, University of Groningen, Groningen, The Netherlands
{x.zhai,xingyu.chen}@rug.nl

2 School of Computer and Communication Engineering, University of Science
and Technology Beijing, Beijing, China

3 Department of Computer Science and Software Engineering, Xi’an Jiaotong-Liverpool
University, Suzhou, China

Lingyun.Yu@xjtlu.edu.cn
4 Department of Information and Computing Science, Utrecht University,

Utrecht, The Netherlands
a.c.telea@uu.nl

Abstract. We present a new technique for specifying rotations of 3D shapes
around axes inferred from the local shape structure, in support of 3D exploration
and manipulation tasks. We compute such axes by extracting approximations of
the 3D curve skeleton of such shapes using the skeletons of their 2D image silhou-
ettes and depth information present in the Z buffer. Our method allows specifying
rotations around parts of arbitrary 3D shapes with a single click, works in real time
for large scenes, can be easily added to any OpenGL-based scene viewer, and is
simple to implement. We compare our method with classical trackball rotation,
both in isolation and in combination, in a controlled user study. Our results show
that, when combined with trackball, skeleton-based rotation reduces task comple-
tion times and increases user satisfaction, while not introducing additional costs,
being thus an interesting addition to the palette of 3D manipulation tools.

Keywords: Skeletonization · 3D interaction · Image-based techniques

1 Introduction

Interactive exploration and navigation of 3D scenes is essential in many applications
such as CAD/CAM modeling, computer games, and data visualization [26]. 3D rota-
tions are an important interaction tool, as they allow examining scenes from various
viewpoints. Two main 3D rotation types exist – rotation around a center and rotation
around an axis. Rotation around a center can be easily specified via classical mouse-
and-keyboard [51] or touch interfaces [49] by well-known metaphors such as the virtual
trackball [21]. Axis rotation is easy to specify if the axis matches one of the world-
coordinate axes. Rotations around arbitrary axes are much harder to specify, as this
requires a total of 7 degrees of freedom (6 for the axis and one for the rotation angle
around the axis).

c© Springer Nature Switzerland AG 2022
K. Bouatouch et al. (Eds.): VISIGRAPP 2020, CCIS 1474, pp. 26–52, 2022.
https://doi.org/10.1007/978-3-030-94893-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94893-1_2&domain=pdf
http://orcid.org/0000-0002-4244-9485
http://orcid.org/0000-0002-3770-4357
http://orcid.org/0000-0002-3152-2587
http://orcid.org/0000-0003-0750-0502
https://doi.org/10.1007/978-3-030-94893-1_2

Skeleton-and-Trackball Interactive Rotation Specification for 3D Scenes 27

For certain tasks, users do not need to rotate around any 3D axis. Consider examin-
ing a (complex) 3D shape such as a statue: We can argue that a natural way to display
this shape is with the statue’s head upwards; and a good way to explore the shape from
all viewpoints is to rotate it around its vertical symmetry axis while keeping its upwards
orientation fixed.

Several methods support this exploration scenario by aligning the shape’s main sym-
metry axis with one of the world coordinate axes and then using a simple-to-specify
rotation around this world axis [12]. This falls short when (a) the studied shape does
not admit a global symmetry axis, although its parts may have local symmetry axes; (b)
computing such (local or global) symmetry axes is not simple; or (c) we do not want to
first align the shape with a world axis.

To address the above, Zhai et al. [50] recently proposed a novel interaction mecha-
nism based on local symmetry axes: The user points at a region of interest (part) of the
viewed 3D shape, from which a local symmetry axis is computed. Next, one can rotate
the shape around this axis with an interactively specified angle. This method allows an
easy selection of parts and automatic computation of their approximate 3D symmetry
axes, both done using the shape silhouette’s 2D skeleton. The method handles any 3D
scene, e.g., polygon mesh or polygon soup, point-based or splat-based rendering, or
combination thereof, without preprocessing; and works at interactive rates for scenes of
hundreds of thousands of primitives.

Zhai et al. mention that their skeleton-based rotation is not to be seen as a replace-
ment, but a complement, of classical trackball rotation. Yet, what this precisely means,
i.e., how the two rotation mechanisms perform when used in practice, either separately
or jointly, is an open question. Also, they mention a formal evaluation of the effective-
ness of skeleton-based rotation as an important open research question. In this paper, we
extend the work of Zhai et al. in the above directions with the following contributions:

– We provide a more detailed technical explanation of the skeleton-based rotation,
covering aspects left open by the original paper [50];

– We present the design and execution of a controlled user study aimed at gauging the
added value of skeleton-based rotation when used against, but also combined with,
trackball rotation;

– We analyze the results of our study to show that, when used together with track-
ball rotation, skeleton-based rotation brings in added value, therefore being a good
complement, and not replacement, of trackball rotation.

The structure of this paper is as follows. Section 2 presents related work on interactive
rotation specification and skeleton computation. Section 3 details the skeleton-based
rotation presented in [50]. Section 4 presents a formative evaluation aimed at finding
out how the skeleton-based rotation is received by users. Section 5 presents an in-depth
quantitative and qualitative user study that studies the hypotheses outlined by the for-
mative study. Section 6 discusses the skeleton-based rotation and our findings regarding
its best ways of use. Section 7 concludes the paper.

2 Related Work

Rotation Specification: 3D rotations can be specified by many techniques. The track-
ball metaphor [8] is one of the oldest and likely most popular techniques. Given a 3D

28 X. Zhai et al.

center-of-rotation x, the scene is rotated around an axis passing through x and deter-
mined by the projections on a hemisphere centered at x of the 2D screen-space loca-
tions p1 and p2 corresponding to a (mouse) pointer motion. The rotation angle α is
controlled by the amount of pointer motion. While simple to implement and use, track-
ball rotation does not allow precise control of the actual axis around which one rotates,
as this axis constantly changes while the user moves the pointer [2,51]. Several usabil-
ity studies of trackball and alternative 3D rotation mechanisms explain these limitations
in detail [17,23,27,34]. Several refinements of the original trackball [8] were proposed
to address these [24,38]. In particular, Henriksen et al. [21] formally analyze the track-
ball’s principle and its limitations and also propose improvements which address some,
but not all, limitations. At the other extreme, world-coordinate-axis rotations allow
rotating a 3D scene around the x, y, or z axes [26,51]. The rotation axis and rotation
angle are chosen by simple click-and-drag gestures in the viewport. This works best
when the scene is already pre-aligned with a world axis, so that rotating around that
axis yields meaningful viewpoints.

Pre-alignment of 3D models is a common preprocessing stage in visualization [7].
Principal Component Analysis (PCA) does this by computing a 3D shape’s eigenvectors
e1, e2 and e3, ordered by their eigenvalues λ1 ≥ λ2 ≥ λ3, so that the coordinate
system {ei} is right-handed. Next, the shape is aligned with the viewing coordinate
system (x, y, z) by a simple 3D rotation around the shape’s barycenter [28,42]. Yet,
pre-alignment is not effective when the scene does not have a clear main axis (λ1 close
to λ2) or when the major eigenvector does not match the rotation axis desired by the
user.

3D rotations can be specified by classical (mouse-and-keyboard) [51] but also touch
interfaces. Yu et al. [49] present a direct-touch exploration technique for 3D scenes
called Frame Interaction with 3D space (FI3D). Guo et al. [18] extend FI3D with con-
strained rotation, trackball rotation, and rotation around a user-defined center. [48] used
trackball interaction to control rotation around two world axes by mapping it to single-
touch interaction. Hancock et al. [19,20] use two or three touch input to manipulate 3D
shapes on touch tables and, in this context, highlighted the challenge of specifying 3D
rotations. All above works stress the need for simple rotation-specification mechanisms
using a minimal number of touch points and/or keyboard controls.

Medial Descriptors:Medial descriptors, also known as skeletons, are used for decades
to capture the symmetry structure of shapes [5,39]. For shapes Ω ⊂ Rn, n ∈ {2, 3}
with boundary ∂Ω, skeletons are defined as

SΩ = {x ∈ Ω)|∃f1 ∈ ∂Ω, f2 ∈ ∂Ω : f1 �= f2 ∧ ||x− f1|| = ||x− f2|| = DTΩ(x} (1)

where fi are called the feature points [32] of skeletal point x and DTΩ is the distance
transform [10,37] of skeletal point x, defined as

DTΩ(x ∈ Ω) = min
y∈∂Ω

‖x − y‖ (2)

Skeleton-and-Trackball Interactive Rotation Specification for 3D Scenes 29

These feature points define the so-called feature transform [22,41]

FTΩ(x ∈ Ω) = argmin
y∈∂Ω

‖x − y‖, (3)

which gives, for each point x in a shape Ω, its set of feature points on ∂Ω, or contact
points with ∂Ω of the maximally inscribed disk in Ω centered at x.

Many methods compute skeletons of 2D shapes, described as either polyline
contours [33] or binary images [10,15,16,46]. State-of-the-art methods regularize the
skeleton by removing its so-called spurious branches caused by small noise pertur-
bations of the boundary ∂Ω, which bring no added value, but only complicate fur-
ther usage of the skeleton. Regularization typically defines a so-called importance
ρ(x) ∈ R+|x ∈ SΩ which is low on noise branches and high elsewhere on SΩ . Several
authors [10,15,16,33,46] set ρ to the length of the shortest path along ∂Ω between the
two feature points f1 and f2 of x. Upper thresholding ρ by a sufficiently high value
removes noise branches. Importance regularization can be efficiently implemented on
the GPU [14] using fast distance transform computation [6]. Overall, 2D skeletonization
can be seen, from a practical perspective, as a solved problem.

In 3D, two skeleton types exist [41]: Surface skeletons, defined by Eq. 1 forΩ ⊂ R3,
consist of complex intersecting manifolds with boundary, and hence are hard to com-
pute and utilize [41].Curve skeletons are curve-sets in R3 that locally capture the tubular
symmetry of shapes [9]. They are structurally much simpler than surface skeletons and
enable many applications such as shape segmentation [36] and animation [4]. Yet, they
still cannot be computed in real time, and require a well-cured definition ofΩ as a water-
tight, non-self-intersecting, fine mesh [40] or a high-resolution voxel volume [15,35].

Kustra et al. [29] and Livesu et al. [31] address the above challenges of 3D curve-
skeleton computation by using an image based approach. They compute an approximate
3D curve skeleton from 2D skeletons extracted from multiple 2D views of a shape.
While far simpler and also more robust than true 3D skeleton extraction, such methods
need hundreds of views and cannot be run at interactive rates. Our proposal also uses
an image-space skeleton computation, but uses different, simpler, heuristics than [29,
31] to estimate 3D depth, and a single view, thereby achieving the speed required for
interactivity.

3 Proposed Method

We construct a 3D rotation in five steps (Fig. 1). We start by loading the scene of interest
– any arbitrary collection of 3D primitives, with no constraints on topology or sampling
resolution – into the viewer (a). Next, the user can employ any mechanisms offered by
the viewer, e.g. trackball rotation, zoom, or pan, to choose a viewpoint of interest, from
which the scene shows a detail around which one would like to further rotate to explore
the scene. In our example, such a viewpoint (b) shows the horse’s rump, around which
– for the sake of illustration – we want to rotate to examine the horse from different
angles.

30 X. Zhai et al.

click
to start e) rotation axis estimation

sihouette boundary ∂Ω

skeleton SΩ distance field DTSΩ

clicked point pskeleton
anchor sp

skeleton
neighbors N(sp)

rotation
axis a

||p-sp|| = rotation speed
(single click mode)

p

sp

b) free
manipulation

c) viewpoint
of interest

d) image-space computations
(silhouette, skeleton, Z-buffers)

f) rotation along
local axis

move
to control

release
to end

a) initial
pose

_
_

d
n×a
d (n×a)

rotation angle
(click & drag mode)

Fig. 1. Skeleton-based rotation pipeline with tool states (blue) and user actions (green). Image
taken from [50]. (Color figure online)

3.1 Rotation Axis Computation

From the above-mentioned initial viewpoint, we compute the rotation axis by perform-
ing three image-space operations, denoted as A, B, and C next.

A. Silhouette Extraction: This is the first operation in Fig. 1, step (d). We render the
shape with Z buffering on and using the GL LESS OpenGL depth-test. Let Ωnear be
the resulting Z buffer. We next find the silhouette Ω of the shape as all pixels that have
a value in Ωnear different from the default (the latter being 1 for standard OpenGL
settings).

B. Skeleton Computation: We next compute the silhouette skeleton SΩ (Eq. 1) by
the method in [46] (Fig. 1, step (d)). To eliminate spurious skeletal branches caused
by small-scale noise along ∂Ω, we regularize SΩ by the salience-based metric in [43].
This regularization works as follows – see also the sketch in Fig. 2c. For every point
x ∈ SΩ of the full skeleton delivered by Eq. 1, we first compute the importance ρ [46],
i.e., the shortest path along ∂Ω between the two feature points of x (see also Sect. 2).
This path is marked red in Fig. 2c. As shown in [15,41,46], and outlined in Sect. 2, ρ
monotonically increases along skeletal branches from their endpoints to the skeleton
center, and equals, for a skeleton point x, the amount of boundary which is captured
(described) by x.

We next define the salience of skeletal point x as

σ(x) =
ρ(x)

DTΩ(x)
, (4)

that is, the importance ρ normalized by the skeletal point’s distance to boundary. As
shown in [43], σ is overall high on skeleton branches caused by important (salient)
cusps of ∂Ω and overall low on skeleton branches caused by small-scale details (noise
cusps) along ∂Ω. Figure 2c shows this for a small cusp on the boundary of a 2D silhou-
ette of a noisy 3D dino shape. As we advance in this image along the black skeleton
branch into the shape’s rump (going below the grey area in the picture), ρ stays con-
stant, but the distance to boundary DTΩ increases, causing σ to decrease. Hence, we
can regularize SΩ simply by removing all its pixels having a salience value lower than a

Skeleton-and-Trackball Interactive Rotation Specification for 3D Scenes 31

fixed threshold σ0. Following [43], we set σ0 = 1. Figure 2 illustrates this regularization
by showing the raw skeleton SΩ and its regularized version

SΩ = {x ∈ SΩ |σ(x) ≥ σ0} (5)

for the noisy dino shape. Salience regularization (Fig. 2b) removes all spurious branches
created by boundary noise, but leaves the main skeleton branches, corresponding to the
animal’s limbs, rump, and tail, intact. Images (d–g) in the figure show the silhouette Ω,
importance ρ, distance transform DTΩ , and salience σ for a zoom-in area around the
shape’s head, for better insight. Looking carefully at image (e), we see that ρ has non-
zero values also outside the main skeleton branch corresponding to the animal’s neck,
visible as light-blue pixels. While such details may look insignificant, they are crucial:
Thresholding ρ by too low values – the alternative regularization to our proposal – keeps
many spurious skeletal branches, see the red inset in Fig. 2a. In contrast, σ is practically
zero outside the neck branch (Fig. 2g). So, thresholding σ by σ0 = 1 yields a clean
skeleton, see the red inset in Fig. 2b. Salience regularization is simple and automatic
to use, requiring no free parameters, and hence preferable to ρ regularization – which
requires careful setting of the threshold for ρ – or to any other skeleton regularization
we are aware of. For further details on salience regularization, we refer to [43] and also
its public implementation [44].

a) noisy (non-regularized)
 skeleton SΩ

b) regularized
 skeleton SΩ

_

d) silhouette Ω e) importance ρ f) distance DTΩ g) salience σ

Ω

skeleton SΩ

c) regularization

x
f1 f2

ρ

Fig. 2. Raw skeleton SΩ with (a) noise-induced branches and (b) salience-based regularized
skeleton SΩ . c) Principle of salience regularization. (d–g) Details of silhouette, importance, dis-
tance transform, and salience values for the noisy dino’s head.

C. Rotation Axis Computation: This is step (e) in Fig. 1. Let p be the pixel under
the user-controlled pointer (blue in Fig. 1e). We first find the closest skeleton point
sp = argminy∈SΩ

‖p− y‖ by evaluating the feature transform (Eq. 3) FTSΩ
(p) of the

regularized skeleton SΩ at p. Figure 1d shows the related distance transform DTSΩ
.

32 X. Zhai et al.

In our case, sp is a point on the horse’s rump skeleton (cyan in Fig. 1e). Next, we
find the neighbor points N(sp) of sp by searching depth-first from sp along the pixel
connectivity-graph of SΩ up to a fixed maximal distance set to 10% of the viewport
size. N(sp) contains skeletal points along a single branch in SΩ , or a few connected
branches, if sp is close to a skeleton junction. In our case, N(sp) contains a fragment
of the horse’s rump skeleton (red in Fig. 1e). For each q ∈ N(sp), we set the depth
qz as the average of Ωfar(q) and Ωnear(q). Here, Ωnear is the Z buffer of the scene
rendered as described in step A above; and Ωfar is the Z buffer of the scene rendered as
before, but with front-face culling on, i.e., the depth of the nearest backfacing polygons
to the view plane.

Figure 3 shows how this works. The user clicks above the horse’s rump and drags
the pointer upwards (a). Image (b) shows the resulting rotation. As visible in the inset
in (a), the rotation axis (red) is centered inside the rump, as its depth qz is the average
of the near and far rump faces. To better understand this, the image left to Fig. 3a shows
the horse rendered transparently, seen from above. The depth values in Ωnear and Ωfar

are shown in green, respectively blue. The skeleton depth values (red) are the average
of these. Note that, when the rotation ends, the new silhouette skeleton does not match
the rotation axis – see inset in (b). This is normal and expected. If the user wants to start
a new rotation from (b), then the 2D skeleton from this image will be used to compute
a new, matching, rotation axis.

Next, we consider a case of overlapping shape parts (Fig. 3c). The user clicks left
to the horse’s left-front leg, which overlaps the right-front one, and drags the pointer
to the right. Image (d) shows the resulting rotation. The rotation axis (red) is centered
inside the left-front leg. In this case, Ωfar(q) contains the Z values of the backfacing
part of the left-front leg, so (Ωnear(q) + Ωfar(q))/2 yields a value roughly halfway
this leg along the Z axis. The image left to Fig. 3c clarifies this by showing the horse
from above and the respective depth values in Ωnear (green) and Ωfar (blue).

Separately, we handle non-watertight surfaces as follows: If Ωfar(q) contains the
default Z value (one), this means there’s no backfacing surface under a given pixel q,
so the scene is not watertight at q. We then set qz to Ωnear(q).

We now have a set N3D = {(q ∈ N(sp),qz)} of 3D points that approximate the
3D curve skeleton of our shape close to the pointer location p. We set the 3D rotation
axis a to the line passing through the average point of N3D and oriented along the
largest eigenvector of N3D’s covariance matrix (Fig. 1e, red dotted line).

3.2 Controlling the Rotation

We propose three interactive mechanisms to control the rotation (Fig. 1), step (f)):

– Indication: As the user moves the pointer p, we continuously update the display of
a. This shows along which axis the scene would rotate if the user initiated rotation
from p. If a is found suitable, one can start rotating by a click following one of the
two modes listed next; else one can move the pointer p to find a more suitable axis;

– Single Click: In this mode, we compute a rotation speed σ equal to the distance ‖p−
sp‖ and a rotation direction δ (clockwise or anticlockwise) given by the sign of the
cross-product (sp −p)×n, where n is the viewplane normal. We next continuously
rotate (spin) the shape around a with the speed σ in direction δ;

Skeleton-and-Trackball Interactive Rotation Specification for 3D Scenes 33

a) b)

c) d)

clicked
point p

clicked
point p

rotation

rotation

pointer
drag

pointer
drag

point p dragged here

point p
dragged here

view
plane

Ωnear

Ω far

skeleton
pixel q

Ωnear(q)Ω far(q)

depth
axis

skeleton
depth values

view
plane

skeleton
pixel q

Ωnear(q)Ω far(q)

qz = (Ωnear(q)+Ω far(q))/2

depth
axis

qz = (Ωnear(q)+Ω far(q))/2

Fig. 3. Depth estimation of rotation axis for (a, b) non-overlapping part and (c, d) overlapping
parts. In both cases, the rotation axis (red) is nicely centered in the shape. See Sect. 3.1. (Color
figure online)

– Click and Drag: Let d be the drag vector created by the user as she moves the
pointer p from the current to the next place in the viewport with the control, e.g.
mouse button, pressed. We rotate the scene around awith an angle equal to d·(n×a)
(Fig. 1e).

We stop rotation when the user release the control (mouse button). In single-click mode,
clicking closer to the shape rotates slowly, allowing to examine the shape in detail.
Clicking farther rotates quicker to e.g. explore the shape from the opposite side. The
rotation direction is given by the side of the skeleton where we click: To change from
clockwise to counterclockwise rotation in Fig. 1, we only need to click below, rather
than above, the horse’s rump. In click-and-drag mode, the rotation speed and direction
is given by the drag vector d: Values d orthogonal to the rotation axis a create cor-
responding rotations clockwise or anticlockwise around a; values d along a yield no
rotation. This matches the intuition that, to rotate along an axis, we need to move the
pointer across that axis.

The skeleton-based construction of the rotation axis is key to the effectiveness of
our approach: If the shape exhibits some elongated structure in the current view (e.g.
rump or legs in Fig. 1c), this structure yields a skeleton branch. Clicking closer to this
structure than to other structures in the same view – e.g., clicking closer to the rump
than to the horse’s legs or neck – selects the respective skeleton branch to rotate around.
This way, the 3D rotation uses the ‘natural’ structure of the viewed shape. We argue that
this makes sense in an exploratory scenario, since, during rotation, the shape parts we
rotate around stay fixed in the view, as if one ‘turns around’ them. The entire method
requires a single click and, optionally, a pointer drag motion to execute. This makes
our method simpler than other 3D rotation methods for freely specifiable 3D axes, and

34 X. Zhai et al.

also applicable to contexts where no second button or modifier keys are available, e.g.,
touch screens.

3.3 Improvements of Basic Method

We next present three improvements of the local-axis rotation mechanism described
above.

Zoom Level: A first issue regards computing the scene’s 2D silhouette Ω (Sect. 3.1A).
For this to work correctly, the entire scene must be visible in the current viewport.
If this is not the case, the silhouette boundary ∂Ω will contain parts of the viewport
borders. Figure 4a shows this for a zoomed-in view of the horse model, with the above-
mentioned border parts marked purple. This leads to branches in the skeleton SΩ that
do not provide meaningful rotation axes. We prevent this to occur by requiring that the
entire scene is visible in the viewport before initiating the rotation-axis computation. If
this is not the case, we do not allow the skeleton-based rotation to proceed, but map the
user’s interaction to standard trackball-based rotation.

a) b)

c) d)

wrong skeleton
branches

sp

sp sp

Fig. 4. Two problems of estimating rotation axes from skeletons. (a) Zoomed-in scene. Anchor
points close to (c), respectively farther from (b, d) a skeleton junction. See Sect. 3.3. Image taken
from [50]. (Color figure online)

Skeleton Junctions: If the user selects p so that the skeleton anchor sp is too close to
a skeleton junction, then the neighbor-set N(sp) will contain points belonging to more
than two branches. Estimating a line from such a point set (Sect. 3.1C) is unreliable,
leading to possibly meaningless rotation axes. Figures 4b–d illustrates the problem. The
corresponding skeleton points N(sp) used to estimate the axis are shown in yellow, and
the resulting axes in red. When sp is far from the junction (Figs. 4b,d), N(sp) contains
mainly points from a single skeleton branch, so the estimated rotation axes are reliable.
When sp is very close to a junction (Fig. 4c), N(sp) contains points from all three
meeting skeletal branches, so, as the user moves the pointer p, the estimated axis ‘flips’
abruptly and can even assume orientations that do not match any skeleton branch.

Skeleton-and-Trackball Interactive Rotation Specification for 3D Scenes 35

We measure the reliability of the axis a by the anisotropy ratio γ = λ1/λ3 of the
largest to smallest eigenvalue of N3D’s covariance matrix. Other anisotropy metrics can
be used equally well [13]. High γ values indicate elongated structures N3D, from which
we can reliably compute rotation axes. Low values, empirically detected as γ < 5, indi-
cate problems to find a reliable rotation axis. When this occurs, we prevent executing
the axis-based rotation.

Selection Distance: A third issue concerns the position of the point p that starts the
rotation: If one clicks too far from the silhouette Ω, the rotation axis a may not match
what one expects. To address this, we forbid the rotation when the distance d from p
to Ω exceeds a given upper limit dmax. That is, if the user clicks too far from any
silhouette in the viewport, the rotation mechanism does not start. This signals to the
user that, to initiate the rotation, she needs to click closer to a silhouette. We compute
d as DTΩ(p), where Ω is the viewpoint area outside Ω, i.e., all viewport pixels where
Ωnear equals the default Z buffer value (see Sect. 3.1A).

We studied two methods for estimating dmax (see Fig. 5). First, we set dmax to a
fixed value, in practice 10% of the viewport size. Using a constant dmax is however
not optimal: We found that, when we want to rotate around thick shape parts, e.g. the
horse’s rump in Fig. 5b, it is intuitive to select p even quite far away from the silhouette.
This is the case of point p1 in Fig. 5b. In contrast, when we want to rotate around thin
parts, such as the horse’s legs, it is not intuitive to initiate the rotation by clicking too far
away from these parts. This is the situation of point p2 in Fig. 5b. Hence, dmax depends
on the scale of the shape part we want to rotate around; selecting large parts can be done
by clicking farther away from them than selecting small parts.

sihouette
boundary ∂Ω

clicked point p
1 closest silhouette

point q
1

to p
1

distance to silhouette d
1

clicked point p
2

distance to silhouette d
2

closest silhouette
point q

2
to p

2

distance field DTΩ
_

clicked point p
1 closest silhouette

point q
1

to p
1

distance field DTSΩ
_

shape thickness
at q

1

closest silhouette
point q

2
to p

2

clicked point p
2

shape thickness at q
2

a) b) c)

Fig. 5. Improvements of axis-based rotation method. (a) A view of the shape to be rotated.
(b) Fixed maximum-distance setting for two clicked points p1 and p2. (c) Thickness-based
maximum-distance setting for two clicked points p1 and p2. Image taken from [50].

We model this by setting dmax to the local shape thickness (Fig. 5c). We estimate
thickness as follows: We find the closest point on the silhouette boundary ∂Ω to the
clicked point p as q = FTΩ(p). The shape thickness at q is the distance to the skele-
ton, i.e., DTSΩ

(q). This is the 2D equivalent of the more general 3D-shape-thickness
estimation proposed in [45]. In Fig. 5c, the point p1 is the farthest clickable point around
q1 to the silhouette that allows starting a rotation around the rump. If we click further

36 X. Zhai et al.

from the silhouette than the distance dmax from p1 to q1, no rotation is done. For the
leg part, the farthest clickable point around q2 must, however, be much closer to the
silhouette (Fig. 5c), since here the local shape thickness (distance dmax from p2 to q2)
is smaller.

4 Formative Evaluation

To evaluate our method, we conducted first a formative evaluation. In this evaluation,
only the authors of this work and a few other researchers, familiar with 3D interac-
tive data visualization, were involved. This evaluation aimed at (a) verifying how the
skeleton-based rotation practically works on a number of different 3D shapes; and (b)
eliciting preliminary observations from the subjects to construct next a more in-depth
evaluation study. We next present the results of this first evaluation phase. Section 5
details the second-phase evaluation designed using these findings.

Figure 6 shows our 3D skeleton-based rotation applied to two 3D mesh models. For
extra insights, we recommend watching the demonstration videos [47]. First, we con-
sider a 3D mesh model of a human hand which is not watertight (open at wrist). We
start from a poor viewpoint from which we cannot easily examine the shape (a). We
click close to the thumb (b) and drag to rotate around it (b–e), yielding a better view-
point (e). Next, we want to rotate around the shape to see the other face, but keeping the
shape roughly in place. Using a trackball or world-coordinate axis rotation cannot easily
achieve this. We click on a point close to the shape-part we want to keep fixed during
rotation (f), near the wrist, and start rotation. Images (g–j) show the resulting rotation.

Figure 6(k-ad) show a more complex ship shape. This mesh contains multiple self-
intersecting and/or disconnected parts, some very thin (sails, mast, ropes) [30]. Comput-
ing a 3D skeleton for this shape is extremely hard or even impossible, as Eq. 1 requires
a watertight, non-self-intersecting, connected shape boundary ∂Ω. Our method does
not suffer from this, since we compute the skeleton of the 2D silhouette of the shape.
We start again from a poor viewing angle (k). Next, we click close to the back mast to
rotate around it, showing the ship from various angles (l–o). Images (p–u) show a dif-
ferent rotation, this time around an axis found by clicking close to the front sail, which
allows us to see the ship from front. Note how the 2D skeleton has changed after this
rotation – compare images (p) with (v). This allows us to select a new rotation axis by
clicking on the main sail, to see the ship’s stern from below (w–z). Finally, we click on
the ship’s rump (aa) to rotate the ship and make it vertical (ab–ad). The entire process
of three rotations took around 20 s.

Figure 7 shows a different dataset type – a 3D point cloud that models a colli-
sion simulation between the Milky Way and the nearby Andromeda Galaxy [11,25]. Its
160K points describe positions of the stars and dark matter in the simulation. Image (a)
uses volume rendering to show the complex structure of the cloud, for illustration pur-
poses. We do not use this rendering, but rather render the cloud in our pipeline using 3D
spherical splats (b). Image (c) shows the cloud, rendered with half-transparent splats,
so that opacity reflects local point density. Since we render a 3D sphere around each
point, this results in a front and back buffer Ωnear and Ωfar, just as when rendering a
3D polygonal model. From these, we can compute the 2D skeleton of the cloud’s sil-
houette, as shown in the figure. Images (d–f) show a rotation around the central tubular

Skeleton-and-Trackball Interactive Rotation Specification for 3D Scenes 37

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

click

drag
drag

drag

click

drag drag drag
drag

(k) (l) (m) (n) (o)

click

drag drag

(p) (q) (r) (s) (t) (u)
click

drag
drag

click
drag drag

click drag
drag

(v) (w) (x) (y) (z)

(aa) (ab) (ac) (ad)

Legend

pointer
clicked point p
pointer move d
rotation axis a
3D neighbors N

3D

rotation direction

Fig. 6. Examples of two rotations (a–e), (f–j) for the hand shape and four rotations (k–o), (p–u),
(v–z), (aa–ad) for the ship model. Image taken from [50].

structure of the cloud, which reveals that the could is relatively flat when seen from the
last viewpoint (f). Image (g) shows the new 2D skeleton corresponding to the view-
point after this rotation. We next click close to the upper high-density structure (f) and
rotate around it. Images (h–j) reveal a spiral-like structure present in the lower part of
the cloud, which was not visible earlier. To explore this structure better, we next click
on its local symmetry axis (l) and rotate around it. Images (l–n) reveal now better this

38 X. Zhai et al.

(b) (c) (d) (e) (f)

click
drag drag

click
drag drag

click

drag

drag

(g) (h) (i) (j)

(k) (l) (m) (n)

(a)

Fig. 7. Exploration of astronomical point cloud dataset. (a) Volume-rendered overview [25]. Rota-
tions around three 3D axes (b–f), (g–j), (k–n). Image taken from [50].

structure. As for the earlier examples, executing these three rotations took roughly 15 s.
Scientists involved with studied this dataset for roughly a decade appreciated positively
the ease of use of the skeleton-based rotation as compared to standard trackball and
multi-touch gestures.

We gathered several insights during our formative evaluation by free-form discus-
sions with the participants – that is, without following a strict evaluation protocol based
on tasks and quantitative responses. We summarize below the most important ones:

– Skeleton rotation works quite well for relatively small changes of viewpoint; more
involved changes require decomposing the desired rotation into a set of small-size
changes and careful selection of their respective rotation axes;

– Skeleton rotations seems to be most effective for precise rotations, in contrast to typ-
ical trackball usage, which works well for larger, but less precise, viewpoint changes;

– All participants stated that they believe that skeletons allow them to perform certain
types of rotation easier than if they had used the trackball for the same tasks. How-
ever, they all mentioned that they do not feel that skeletons can replace a trackball.
Rather, they believe that a free combination of both to be most effective. Since they
could only use the skeleton rotation (in our evaluation), they do not know whether
(or when) this tool works better than a trackball;

– All participants agreed that measuring the added-value of skeleton rotation is very
important for its adoption.

5 Detailed Evaluation: User Study

The formative evaluation (Sect. 4) outlined that there is perceived added-value in the
skeleton rotation tool, but this value needs to be actually measured before users would

Skeleton-and-Trackball Interactive Rotation Specification for 3D Scenes 39

consider adopting the tool – either standalone or in combination with trackball. To
deepen our understanding of how skeleton-based rotation works, and to answer the
above questions, we designed and conducted a more extensive user evaluation. We next
describe the design, execution, and analysis of the results of this evaluation.

Ea
sy

Mo
de

ra
te

Ha
rd

Shape Ω1 (horse) 96966 faces Shape Ω2 (hand) 98496 faces Shape Ω3 (ship) 75040 faces Shape Ω4 (flower) 389632 faces

Evaluation
designer

Shapes
horse, hand, ship, flower

Trials
easy, moderate, hard

Modalities
T, S, B

shape Ω i

poses MVs, MVt

modality m {T, S, B}

Run data Interactive tool

End user

Result database

completion times

aborted runs

Questionnaires
user details

qualitative data

Result
Analysis

N Nα<αmin
t>tmax ESC

rotate

over
timeout?

user
aborted?

finished
alignment?

N

Y Y Y
time t

start

end

Database of 36 runs

startselect
run save

pe
rfo

rm

fill in

Interactive tool flowchart

27 users x 36 runs

Design tooldesign
runs

save MVt

A. Design the study B. Execute the study (all 27 users) C. Analyze results

source target

Fig. 8. Top: user evaluation showing the 12 trials for one modality (Sect. 5.1). Each trial consists
of a source window in which the user interacts to align the shape to match the target window.
Bottom: execution of end-to-end user evaluation. The use of our interactive tool in both design
and evaluation modes is shown in red (Sect. 5.2). (Color figure online)

5.1 Evaluation Design

Tool: To assess how the skeleton rotation modality compares with the trackball modal-
ity, we designed an experiment supported by an interactive tool. The tool has two win-
dows: The target window shows a 3D shape viewed from a viewpoint (pose) that is
preselected by the evaluation designer. No interaction is allowed in this window. The
source window shows the same shape, which can be freely manipulated by the user
via the skeleton (S), the trackball (T), or both tools (B), activated via the left, respec-
tively right, mouse buttons. Both windows have the same resolution (5122 pixels), use

40 X. Zhai et al.

the same lighting and rendering parameters, and have a fixed position on the computer
screen, to simplify usage during the experiment that invokes multiple runs of the tool.
Besides rotation, the tool also allows panning and zooming. We also added an option
to automatically zoom out to show the full extent of a shape. This eliminates the issues
described in Sect. 3.3, i.e., manipulations that move part of the shape outside the win-
dow. When in S mode, the tool shows the silhouette skeleton (black), nearest skeleton
points (yellow), and estimated rotation axis (red) as explained earlier in Sect. 3.1 and
shown e.g. in Fig. 3. The user can interactively tune the simplification level of the skele-
ton via the ‘+’ and ‘−’ keys, to show more or fewer branches from which to select a
suitable rotation axis (cf Fig. 2).

Figure 8 (central inset) shows a flowchart of the tool’s operation, which we detail
next. Participants are asked to use the tool with each modality in turn (S, T, B) to align
the source with the target. The tool continuously computes, after each motion of the
mouse pointer, the value

α = arccos

(
Tr(MVs · MV T

t) − 1
2

)
, (6)

whereMVs andMVt are the 3×3OpenGL rotation matrices (ignoring, thus, translation
and scaling) corresponding to the pose of the shape in the source and the target, respec-
tively; Tr is the matrix trace operator; and T denotes matrix transposition. The value
α ∈ [0, 180] is the smallest rotation (around any axis) needed to obtain the target pose
from the source pose [3]. Note that Eq. 6 is sensitive to mirroring, which is desired, since
rotations cannot cause mirroring. Alignment is considered completed when α < αmin;
in practice, we set αmin = 15◦. Also, note that Eq. 6 only checks for rotation, and not
scaling or panning, differences. This makes sense, since the tested modalities S, T, B
control rotation only; scaling (zooming) and panning, though allowed to help users to
inspect shapes, are not part of our evaluation, and perform identically with S, T, and B.
During manipulation, the tool continuously displays the current value of α. This shows
users how far away they are from the target rotation MVt, thus, from completing a task.
This feedback is useful when visual comparison of the source and target poses is hard
to do.

Shapes: We use the alignment tool to evaluate the performance of the S, T, and B
modalities on N = 4 shapes Ωi, 1 ≤ i ≤ N , shown in Fig. 8(top). Shapes were
selected so as to be familiar, have a structure that exposes potential local-rotation axes,
and have geometric complexity ranging from simple (horse, hand) to complex (ship).
The flower shape is of lower complexity than the ship; however, its manifold structure
makes it particularly hard to understand and manipulate, since it looks quite similar
from many viewpoints. All shapes use identical material properties and no opacity or
textures, to favor uniform evaluation. We excluded the more complicated point-cloud
shape (Fig. 7) used during formative evaluation (Sect. 4) since no more than five of our
recruited subjects had the technical background needed to understand what such data
means in the first place.

Task Difficulties: For each shape, we use three target poses MVt to capture three levels
of difficulty of the alignment task:

Skeleton-and-Trackball Interactive Rotation Specification for 3D Scenes 41

– Easy: Alignment can be done by typically one or two manipulations, such as a rota-
tion around one of the x or y window axes, or a rotation around a clearly-visible
symmetry axis of the shape). For example, the blue-framed target in Fig. 8 can be
obtained from the green-framed pose (left to it) by a single counterclockwise rota-
tion of the horse with 90◦ around the y axis or, alternatively, the rump’s skeleton;

– Hard: Alignment requires multiple rotations around many different rotation axes; it
is not easy to see, from the source and target, which would be these axes;

– Intermediate: Alignment difficulty is gauged as between the above two extremes.

We call next the combination of shape Ωi and start-and-end pose (MVs,MVt)
a trial. Using multiple-difficulty trials aims to model tasks of different complexity.
Trial difficulty was assessed by one of the authors (who also designed the actual poses
MVt) and agreed upon by the others by independent testing. We verified that all three
modalities could accomplish all trials within a time t lower than a predefined timeout
tmax = 120 s.

Figure 8(top) shows the source (left window in each window-pair) and target (right
window in same pair) windows for the 12 trials spanning the 4 shapes using the T
modality. Source windows show the currently-enabled modality in red text, to remind
users how they can interact. We see, for instance, that the easy trial would require, in
S mode, a simple 90◦ rotation around the y axis (in T mode) for the ship model, or
around the main skeleton branch passing through the horse’s rump for the horse model.
In contrast, the hard task requires several incremental rotations for all modalities. The
12 trials use identical initial poses MVs and target poses MVt. That is, the user is asked
to perform, for each shape, the same alignmentMVs → MVt using all three modalities,
thus ensuring that only the target pose (endpoint of manipulation) and, of course, the
used modality, affect the measured execution time.

In total, we thus execute 12 trials × 3 modalities= 36 runs. For each run, we record
the time needed for the user to complete it. If the user fails to perform the alignment
within the allowed timeout, the run is considered failed and the user moves automati-
cally to the next run. Users can at any time (a) abort a run by pressing ‘ESC’ to move
to the next run; this helped impatient users who did not grasp how to perform a given
alignment task and did not want to wait until the timeout; (b) abort the entire evaluation,
if something goes entirely wrong; and (c) reset the viewpoint to the initial one (MVs),
to ‘undo’ all manipulations performed so far if these are deemed unproductive.

Pose Design: The different target poses MVt were designed in advance by us by using
the S and T tools – intermixed – to freely change the shape’s pose until obtaining the
desired target poses, and stored, as explained, as 3 × 3 OpenGL rotation matrices.

5.2 Evaluation Execution

Subjects: Twenty-seven persons took part in the evaluation. they self-report ages of 9
to 64 years (median: 24, average: 26.9); and gender being male (16) and female (11),
see Fig. 9b. To gauge their experience with 3D manipulation, we asked them to report
how many times a year they used 3D games and/or 3D design software. Both categories
are reported in Fig. 9b as ‘3D software usage’. Results show a median of 30 times, with

42 X. Zhai et al.

Age (years) 3D
software

Gender Student

ma
le

fem
ale

ye
s

no

a) b)

Fig. 9. a) Setup employed during the user evaluation. b) Self-reported characteristics of the exper-
iment participants. See Sect. 5.2.

the minimum being zero (never) and the maximum being basically every day. From
these data we conclude that most participants should have a good practical mastery of
3D manipulation. Fromf the 27 participants, 13 were students in fields as diverse as
Computer Science, social science, medicine, economy and society, and mathematics;
the other 14 were primary or secondary school pupils (6) or employed in various liberal
professions (8). All participants reported no color blindness issues. All except one were
right-handed. They all reside in the Netherlands or Belgium. Communication during the
training and experiment was done in the native language of each participant by a (near-
)native speaker. For participants with limited English proficiency, all English material
(tutorial, questionnaires) was transcribed by the trainer.

Workflow: Participants followed the evaluation workflow showed in Fig. 8(bottom).
First, we created the information needed to execute the 36 runs (Fig. 8(bottom, A)), as
explained in Sect. 5.1. Next, participants were given access, prior to the actual experi-
ment, to an web tutorial which describes both S and T tools in general, and also allows
users to practice with these tools by running the actual application to execute some sim-
ple alignment tasks. No statistics were collected from this intake phase. After intake,
users asked if they felt interested in, and able to follow, the tutorial. This intake acted as
a simple filter to separate users with interest in the evaluation (and potential ability to
do it) from the rest, so as to minimize subsequent effort. Seven persons dropped from
the process due to lack of general computer skills (1 user), one too young (6 years), one
too old (82 years), and four due to technical problems related to remote-deployment of
the tool. These persons are not included in any of the statistics further on, nor in Fig. 9b.

Next, a trainer (role filled by different co-authors) took part in a controlled session
where they explained to either individual participants or, when social distancing rules
due to the Corona pandemy were not applicable, to groups of participants how the tool
works and also illustrated it live. The aim of this phase was to refine the knowledge
disseminated by the web tutorial and confirm that participants understood well the eval-
uation process and tooling. Participants and trainers used Linux-based PCs (16 to 32

Skeleton-and-Trackball Interactive Rotation Specification for 3D Scenes 43

GB RAM) with recent NVidia cards, wide screens, and a classical two-button mouse.
To maximize focus on the experiment, no application was run on screen during the
evaluation besides the two-window tool described in Sect. 5.1. Training took both the
in-person form (with trainer and user(s) physically together), and via TeamViewer or
Skype screen sharing, when social distancing rules mandated separation. Training took
between 20 and 40min per user, and was done until users told that they were confi-
dent to use the tool to manipulate both a simple model and a complex one via all three
modalities (S, T, B). During this phase, we also verified that the tool runs at real-time
framerates on the users’ computers so as to eliminate confusing effects due to inter-
action lag; and that the users did not experience any difficulty in using the keyboard
shortcuts outlined in Sect. 5.1.

After training, and confirmation by participants that they understand the evaluation
tool and tasks to be done, participants started executing the 36 runs (Fig. 8(bottom,
B). They could pause between runs as desired but not change the orders of the runs.
Figure 9a shows the setup used during the evaluation by one of the actual participants;
notice the two-window interaction tool on the screen. At the end, the results of all 36
runs – that is, either completion time or run failure (either by timeout or user abor-
tion) – were saved in a database with no mention of the user identity. Next, users com-
pleted a questionnaire covering both personal and self-assessment data and answers to
questions concerning the usability of the tool. Both types of results (timing data and
questionnaires) were further analyzed (Fig. 8(bottom, C)), as described in Sect. 5.3.

5.3 Analysis of Results

We next present both a quantitative analysis of the timing results and an analysis of the
qualitative data collected via questionnaires.

Analysis of Timing Results. A most relevant question is: How did performance (mea-
sured in completion time and/or number of aborted runs) depend on the interaction
modality and shape? Figure 10a shows the average completion time, for the success-
ful runs, aggregated (over all users) per modality and next per shape. User identities
are categorically color-coded for ease of reading the figure. Median and interquartile
ranges for each modality are shown by black lines, respectively gray bands. We see that
the S modality is significantly slower than T and S. However, the B modality is faster
than T, both as median and interquartile range, and also for each specific shape. This is
an interesting observation, as it suggests that, in B mode, users did gain time by using S
only for some specific manipulations for which T was hard to use. A likely explanation
for this is that the B modality was always used last during the trials. Hence, when in B
mode, users could discover the situations when S outperformed T, and switch to S in
those cases to gain time. We will analyze thys hypothesis further below.

Figure 10b shows the number of failed runs per modality, shape, and user. These
are largest for the S modality. This tells again that S cannot be used alone as a general-
purpose manipulation tool. If we combine this insight with the total times per shape
(Fig. 10a), we see that the perceived difficulty of the task varies significantly over both
shapes and modalities: T and S behave quite similarly, with horse and ship being easier

44 X. Zhai et al.

Both (B) Trackball only (T) Skeleton only (S)

a)
 To

tal
 tim

e (
se

co
nd

s)

User

b)
 F

ail
ed

 ru
ns

Flower Hand Horse Ship Flower Hand Horse Ship Flower Hand Horse Ship

Flower Hand Horse Ship Flower Hand Horse Ship Flower Hand Horse Ship0

10

20

30

Fig. 10. Completion time (a) and number of failed runs (b) per modality and shape, all users. See
Sect. 5.2.

to handle and flower being the hardest. In contrast, hand seems to be the hardest to
handle by the S modality, as it has most aborted runs. Upon a closer analysis, we found
that the pose used by the ‘hard’ trial for hand (see the respective image in Fig. 8(top))
is quite easy to achieve with T (and thus also B), but quite difficult to obtain using S,
since it implies, at several points, performing a rotation around an axis orthogonal to
the hand’s palm, for which no skeleton line exists in the silhouette. The second-hardest
shape for S is ship. Analyzing the users’ detailed feedback showed us that ship’s com-
plex geometry produces a wealth of potential rotation axes with quite different angles,
which makes the users’ choice (of the optimal rotation axis) hard. This happens far less
for the other simpler-structure shapes. Separately, Fig. 10b shows that the number of
aborted runs in B mode is far lower than that in S mode, being practically the same
as for T mode. This, and the fact that B mode is fastest, reinforces our hypothesis that
users employ the S tool in B mode only for very specific manipulations and revert to T
for all other operations. Hence, S works best as a complement, not a replacement, of T.

Skeleton-and-Trackball Interactive Rotation Specification for 3D Scenes 45

Figure 11a introduces additional information in the analysis by showing how the
average times vary over the three task difficulty levels (easy, moderate, hard, see
Sect. 5.1). For all shapes and modalities, the task labeled easy by us is, indeed, com-
pleted the fastest. The other two difficulty levels are, however, not significantly different
in execution times. We also see that effort (time) is distributed relatively uniformly over
all difficulty levels for all shapes and modalities. This indicates that there is no ‘outlier’
task or shape in our experiment that would strongly bias our evaluation’s insights.

Finally, we examine the data from a user-centric perspective. Figure 11b shows the
total time per user, split per modality, with the fastest users at the right and the slowest
at the left. We see a quite large spread in performance, the fastest user being roughly
2.5 times faster than the slowest one. We see that the T modality does not explain
the big speed difference – the red bars’ sizes do not correlate with the total time. In
contrast, the blue bars show an increase when scanning the chart right-to-left, at the 8th

leftmost bar – meaning that the 8 slowest users needed clearly more time to use the B
modality as opposed to the remaining 19 users. Scanning the graph right-to-left along its
orange bars shows a strongly increasing bar-size. That is, the main factor differentiating
slow from fast users is their skill in using the S tool. We hypothesized that this skill
has to do with the users’ familiarity with 3D manipulation tools. To examine this, we
show a scatterplot of the average time per user (all trials, all shapes) vs the user’s self-
reported number of days per year that one uses 3D computer games or 3D creation
software (Fig. 11c). All points in the plot reside in the lower range of the y axis, i.e.,
all users report under 100 days/year of 3D tool usage, except user 12 who indicated 3D
gaming daily. The computed correlation line shown in the figure (R2 = 0.0022, p =
0.813) indicates a negligible inverse correlation of average time with 3D software usage.
Hence, our hypothesis is not confirmed. The question what determines the variability in
users’ average completion times is still open.

Questionnaire Results. As mentioned at the beginning of Sect. 5.2, users completed a
questionnaire following the experiment. They were asked to answer 13 questions con-
cerning their experience with each of the three modalities (T, S, B) using a 7-point
Likert scale S (1 = strongly disagree, 2 = disagree, 3 = disagree somewhat, 4 = no opin-
ion, 5 = agree somewhat, 6 = agree, 7 = strongly agree). An extra question (Q14) asked
which of the three modalities users prefer overall. Figure 12(bottom) shows these 14
questions. Here, ‘tool’ refers to the modality being evaluated. Following earlier studies
that highlight that user satisfaction is not the same as user efficiency or effectiveness
when using interactive tools [17,34], we included questions that aim to cover all these
aspects. Users could also input free text to comment on their perceived advantages and
limitations of all three modalities or any other remarks.

Figure 12(top) shows the aggregated answers for Q1..Q13 for each of the three
modalities with box-and-whisker plots (box shows the interquartile range; whiskers
show data within 1.5 times this range). We see that the S modality ranks, overall, worse
than the T modality, except for accuracy (Q5). Accuracy (Q5) can be explained by the
fact that users need to control a single degree of freedom with S – the rotation angle –
but two degrees of freedom with T. In other words, once a suitable rotation axes is cho-
sen, S allows one to precisely specify the rotation angle around this axis. We also see

46 X. Zhai et al.

Flower Hand Horse Ship Flower Hand Horse Ship Flower Hand Horse Ship

Both (B) Trackball only (T) Skeleton only (S)

Av
er

ag
e t

im
e (

se
co

nd
s)

0

20

40

60

80

100

120

140

Fast usersSlow users

To
tal

 tim
e (

se
co

nd
s)

0

200

400

600

800

1000

Trackball only (T)
Skeleton only (S)

Both (B)

Hard
Moderate
Easy

a)

b) c)

User

Average time (seconds)

3D
 so

ftw
ar

e u
sa

ge
 (d

ay
s/y

ea
r)

0

100

200

300

250

150

50

030 2010

correlation
line

outlier (user 12)

Fig. 11. a) Average completion time per difficulty levels, modality, and shape. b) Total time for
all users, from slowest to fastest, split per modality. c) Correlation of average time (all runs) with
users’ frequency of 3D software usage. See Sect. 5.2.

that S helps completing the task less often than T (Q10), which matches the failure rates
shown in Fig. 10b. However, the B modality ranks in nearly all aspects better than both
T and S. This supports our hypothesis that S best complements, rather than replaces,
T. An interesting finding are the scores for Q8 and Q6, which show that B was per-
ceived as less tiring to use, and needing fewer steps to accomplish the task respectively,
than both T and S. This matches the results in Fig. 10a that show that B is faster than
both T and S – thus, arguably less tiring to use. For Q14, 22 of the 27 users stated that
they prefer B overall, while the remaining 5 users preferred T, with none mentioning S
as the highest-preference tool. As for the previous findings, this strongly supports our
hypothesis that the S and T modalities work best when combined.

From the free text that captures the user’s comments on the perceived advantages
and limitations of all three modalities, we could distil several salient points. For space
constraints, we list only a few below:

– Trackball (T): Several users praised T for being “easy to use”. However, users also
complained about trackball being imprecise for performing fine adjustments;

Skeleton-and-Trackball Interactive Rotation Specification for 3D Scenes 47

Trackball only (T) Skeleton only (S) Both modalities (B)

1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13

2

1

4

3

5

7

6

Q

S

Q1 The tool met my needs for performing the alignment task
Q2 The tool worked as expected (after following the training)
Q3 The tool helped me be more effective than the two other tools
Q4 The tool was easy to use
Q5 The tool was accurate
Q6 The tool requires the fewest steps (compared to the other two) to accomplish my goals
Q7 I felt that I have to think carefully to get a good result with this tool
Q8 The tool was tiring to use
Q9 Both occasional and regular users would like the tool
Q10 I can use the tool successfully every time
Q11 I learned to use the tool quickly
Q12 I easily remember how to use the tool
Q13 I am satisfied with the tool
Q14 Which tool (T, S, or B) do you overall prefer?

Fig. 12. Results of 13-point user questionnaire for the three modalities. Questions are shown
below the charts. See Sect. 5.3.

– Skeleton (S): This modality was mentioned as better than the other two by only a
few users, and specifically for the horse, hand, and flower models, because of their
clear and simple skeletons, which allow one to intuitively rotate the shape around
its parts (“easy to turn the hand around a finger”; “easy to turn the horse around a
leg”; “S helps to turn the flower around its stem”). However, several users mentioned
advantages of S when used in combination with T. These are discussed below;

– Both (B): Overall, this modality received the most positive comments. It was
deemed the “most accurate”; and “feeling quick to use when we have two methods
[to choose from]”. Specifically, users noted that B is “good for doing final adjust-
ments/fine tuning the alignment” and that “S helps T to getting the desired result
easily” and “I started with T and used S for final touches”. One user also com-
mented: “I work as a graphic designer with a lot of 3D tools; I see how S helps me
by providing a lot of control when rotating, and I would love to have this tool along
my other manipulation tools in my software [...] but I would not use it standalone”.

Summarizing the above, we see that our initial hypothesis that the S modality helps
(complements) T for precision tasks is largely supported by user experience.

48 X. Zhai et al.

6 Discussion

6.1 Technical Aspects

The skeleton-based rotation method presented in Sect. 3 has the following main
features:

Genericity: We handle 3D meshes, polygon soups, and point clouds; our only require-
ment is that these generate fragments with a depth value. This contrasts using 3D curve
skeletons for interaction, which heavily constrain the input scene quality, and cannot
be computed in real time, as already mentioned. Also, the skeleton tool can be directly
combined (used alongside) any other interaction tool, such as trackball, with no con-
straints.

Reversibility: Since 3D rotation axes are computed from 2D silhouette skeletons, rota-
tions are not, strictly speaking, invertible: Rotating from a viewpoint v1 with an angle
α around a 3D local axis a1 computed from the silhouette Ω1 leads to a viewpoint v2

in which, from the corresponding silhouette Ω2, a different axis a2 �= a1 can be com-
puted. This is however a problem only if the user releases the pointer (mouse) button
to end the rotation; if the button is not released, the computation of a new axis a2 is not
started, so moving the pointer back will reverse the rotation.

Scalability: Our method uses OpenGL 1.1 (primitive rendering and Z-buffer reading)
plus the 2D image-based skeletonization method in [46] used to compute the skeleton
SΩ , its regularization SΩ , and the feature transform FTSΩ

. We implemented skele-
tonization in NVidia’s CUDA and C++ to handle scenes of hundreds of thousands of
polygons rendered at 10002 pixel resolution in a few milliseconds on a consumer-grade
GPU, e.g.GTX 660. The skeletonization computational complexity is linear in the num-
ber of silhouette pixels, i.e., O(|Ω|). This is due to the fact that the underlying distance
transform used has the same linear complexity. For details on this, we refer to the orig-
inal algorithm [6]. The separate code of this skeletonization method is available at [1].
Implementing the two improvements presented in Sect. 3 is also computationally effi-
cient: The skeleton’s distance transform DTSΩ

is already computed during the rotation
axis estimation (Sect. 3.1C). The distance DTΩ and feature transforms FTΩ require
one extra skeletonization pass of the background image Ω. All in all, our method deliv-
ers interaction at over 100 frames-per-second on the aforementioned consumer-grade
GPU. The full code of our skeleton-and-trackball manipulation tool (Sect. 5.1) is pro-
vided online [47].

Novelty: To our knowledge, this is the first time when 2D image-based skeletons have
been used to perform interactive manipulations of 3D shapes. Compared to similar
view-based reconstructions of 3D curve skeletons from their 2D silhouettes [29,31],
our method requires a single viewpoint to compute an approximate 3D curve skeleton
and is two to three orders of magnitude faster.

6.2 Usability and Applicability

The evaluation described in Sect. 5 confirmed the insights elicited from the earlier for-
mative study (Sect. 4), i.e. that skeleton rotation is best for precise, small-scale, final

Skeleton-and-Trackball Interactive Rotation Specification for 3D Scenes 49

alignment touches; and that skeleton rotation best works as a complement, and not
replacement, of trackball rotation. The latter point was supported by all types of data
from our evaluation – task timing, scores assigned by users to evaluation questions, and
free-form text feedback. The same data shows that users rank the combined modality
(B) as better than both S and T modalities taken separately. The user scores also show
that, overall, the combined modality is easy to learn and use (Fig. 12, Q2-4-8-11-12).
Put together, all above support our claim of added value for the skeleton-based rotation
technique.

Besides the above results, the user study also unveiled several questions which we
cannot fully answer:

User Performance: There is a large variability of user performance, measured as task
success rates and completion times (see Fig. 11b and related text). We cannot explain
this variability by differences in the experiment setup, previous user familiarity with
3D manipulation, amount of training with the evaluated tool, or other measured factors.
This variability may be due to user characteristics which the self-reported variables
(Fig. 9b and related text) do not capture; to the high heterogeneity of the user popula-
tion; but also due to dependent variables which we did not measure, e.g., how often did
users use the skeleton simplification level (Sect. 5.1) to produce suitable skeletons for
generating rotation axes. Repeating the experiment with a more homogeneous popula-
tion and more measured variables would help answering this question.

Applicability: An important limitation of our study is that, for the B modality, we did
not measure how (much) the task was completed using each separate modality, i.e., S
and T. The formative study (Sect. 4), textual user feedback for the controlled experi-
ment, and our observation of the users during the experiment jointly show that, in most
cases involving moderate or hard tasks, trackball was first used to obtain a viewpoint
roughly close to the target one, which was next fine-tuned using skeleton. This is fully
in line with our initial design ideas (see Fig. 1 and related text) and also with earlier
findings on what trackball best works for [21,27,34]. However, understanding more
precisely which are the rotation types that skeleton best supports would greatly help
to improve the combined modality by e.g. suggesting this modality to the user when it
appears fit, and/or conversely, blocking this modality when it does not match the task at
hand.

Study Limitations: Besides the above-mentioned aspects, our study (Sect. 5) has fur-
ther limitations: It uses only four shapes that cannot capture the rich distributions of
3D shapes that need manipulation. Also, it only covers the task of rotating from an
initial pose to a given final pose. Yet, manipulation is also used for free exploration
and/or design actions which do not require reaching a predefined pose. It is unclear
how to quantitatively measure the added value of interaction tools in such contexts,
beyond qualitative user-satisfaction questionnaires [21]. Also, we cannot exclude learn-
ing effects between the trials that address the same task with different modalities.
Finally, what is the exact added-value of all the rotation-specification improvements
(Sect. 3.3) was not currently measured. Exploring all these directions is left to future
work.

50 X. Zhai et al.

7 Conclusion

We proposed a method for specifying interactive rotations of 3D scenes around local
rotation axes using image skeletons. We compute such axes from the skeleton of the 2D
silhouette of the rendered scene, enhanced with depth information from the rendered
Z buffer. Specifying such rotation axes requires a single click-and-drag gesture and
no additional parameter settings. Our method is simple to implement, using distance
and feature transforms provided by modern 2D skeletonization algorithms; handles 3D
scenes consisting of arbitrarily complex polygon meshes (not necessarily watertight,
connected, and/or of good quality) or 3D point clouds; can be integrated in any 3D
viewing system that allows access to the Z buffer; and works at interactive frame-rates
even for scenes of hundreds of thousands of primitives.

We measured the added value of the proposed rotation technique by a formative
study (to elicit main concerns from users) followed by a controlled user study. Results
showed that, when combined with trackball rotation, our method leads to better results
(in terms of task completion times) and higher user satisfaction than trackball rotation
alone. Also, our method is easy to learn and does not carry a significant learning or
execution cost for the users, thereby not increasing the costs of using standard trackball
rotation.

Several future work directions are possible. More cues can be used to infer more
accurate 3D curve skeletons from image data, such as shading and depth gradients,
leading to more precise rotation axes. Such data-driven cues could be also used to better
control the rotation, and also suggest to the user which of the two modalities (skeleton-
based or trackball rotation) are best for a given context. Separately, we aim to deploy
our joint skeleton-and-trackball rotation tool on touch displays (single or multiple input)
and evaluate its effectiveness in supporting domain experts to perform 3D exploration
for specific applications, such as the astronomical data exploration outlined in Sect. 4.

References

1. Telea, A.: Real-time 2D skeletonization using CUDA (2019). http://www.staff.science.uu.nl/
∼telea001/Shapes/CUDASkel

2. Bade, R., Ritter, F., Preim, B.: Usability comparison of mouse-based interaction techniques
for predictable 3D rotation. In: Butz, A., Fisher, B., Krüger, A., Olivier, P. (eds.) SG
2005. LNCS, vol. 3638, pp. 138–150. Springer, Heidelberg (2005). https://doi.org/10.1007/
11536482 12

3. Belousov, B.: Difference between two rotation matrices (2016). http://www.boris-belousov.
net/2016/12/01/quat-dist

4. Bian, S., Zheng, A., Chaudhry, E., You, L., Zhang, J.J.: Automatic generation of dynamic
skin deformation for animated characters. Symmetry 10(4), 89 (2018)

5. Blum, H.: A transformation for extracting new descriptors of shape. In: Models for the Per-
ception of Speech and Visual Form, pp. 362–381. MIT Press (1967)

6. Cao, T.T., Tang, K., Mohamed, A., Tan, T.S.: Parallel banding algorithm to compute exact
distance transformwith the GPU. In: Proceedings of ACMSIGGRAPH Symposium on Inter-
active 3D Graphics and Games, pp. 83–90 (2010)

7. Chaouch, M., Verroust-Blondet, A.: Alignment of 3D models. Graph. Models 71(2), 63–76
(2009)

http://www.staff.science.uu.nl/~telea001/Shapes/CUDASkel
http://www.staff.science.uu.nl/~telea001/Shapes/CUDASkel
https://doi.org/10.1007/11536482_12
https://doi.org/10.1007/11536482_12
http://www.boris-belousov.net/2016/12/01/quat-dist
http://www.boris-belousov.net/2016/12/01/quat-dist

Skeleton-and-Trackball Interactive Rotation Specification for 3D Scenes 51

8. Chen, M., Mountford, S., Sellen, A.: A study in interactive 3D rotation using 2D control
devices. Comput. Graph Forum 22(4), 121–129 (1998)

9. Cornea, N., Silver, D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE
TVCG 13(3), 597–615 (2007)

10. Costa, L., Cesar, R.: Shape Analysis and Classification. CRC Press, Boca Raton (2000)
11. Dubinski, J.: When galaxies collide. Astron. Now 15(8), 56–58 (2001)
12. Duffin, K.L., Barrett, W.A.: Spiders: a new user interface for rotation and visualization of

N-dimensional point sets. In: Proceedings of IEEE Visualization, pp. 205–211 (1994)
13. Emory, M., Iaccarino, G.: Visualizing turbulence anisotropy in the spatial domain with

componentality contours. Cent. Turbul. Res. Ann. Res. Briefs 123–138 (2014). https://web.
stanford.edu/group/ctr/ResBriefs/2014/14 emory.pdf

14. Ersoy, O., Hurter, C., Paulovich, F., Cantareiro, G., Telea, A.: Skeleton-based edge bundling
for graph visualization. IEEE TVCG 17(2), 2364–2373 (2011)

15. Falcao, A., Feng, C., Kustra, J., Telea, A.: Multiscale 2D medial axes and 3D surface skele-
tons by the image foresting transform. In: Saha, P., Borgefors, G., di Baja, G.S. (eds.) Skele-
tonization - Theory, Methods, and Applications. Elsevier (2017). Chap. 2

16. Falcão, A., Stolfi, J., Lotufo, R.: The image foresting transform: theory, algorithms, and
applications. IEEE TPAMI 26(1), 19–29 (2004)

17. Frokjaer, E., Hertzum, M., Hornbaek, K.: Measuring usability: are effectiveness, efficiency,
and satisfaction really correlated? In: Proceedings of CHI, pp. 345–352 (2000)

18. Guo, J., Wang, Y., Du, P., Yu, L.: A novel multi-touch approach for 3D object free manip-
ulation. In: Chang, J., Zhang, J.J., Magnenat Thalmann, N., Hu, S.-M., Tong, R., Wang, W.
(eds.) AniNex 2017. LNCS, vol. 10582, pp. 159–172. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-69487-0 12

19. Hancock, M., Carpendale, S., Cockburn, A.: Shallow-depth 3D interaction: design and evalu-
ation of one-, two- and three-touch techniques. In: Proceedings of ACMCHI, pp. 1147–1156
(2007)

20. Hancock, M., ten Cate, T., Carpendale, S., Isenberg, T.: Supporting sandtray therapy on an
interactive tabletop. In: Proceedings of ACM CHI, pp. 2133–2142 (2010)

21. Henriksen, K., Sporring, J., Hornbaek, K.: Virtual trackballs revisited. IEEE TVCG 10(2),
206–216 (2004)

22. Hesselink, W.H., Roerdink, J.B.T.M.: Euclidean skeletons of digital image and volume data
in linear time by the integer medial axis transform. IEEE TPAMI 30(12), 2204–2217 (2008)

23. Hinckley, K., Tullio, J., Pausch, R., Proffitt, D., Kassell, N.: Usability analysis of 3D rotation
techniques. In: Proceedings of UIST, pp. 1–10 (1997)

24. Hultquist, J.: A virtual trackball. In: Graphics Gems, vol. 1, pp. 462–463 (1990)
25. Dubinski, J., et al.: GRAVITAS: portraits of a universe in motion (2006). https://www.cita.

utoronto.ca/∼dubinski/galaxydynamics/gravitas.html
26. Jackson, B., Lau, T., Schroeder, D., Toussaint, K., Keefe, D.: A lightweight tangible 3D

interface for interactive visualization of thin fiber structures. IEEE TVCG 19(12), 2802–
2809 (2013)

27. Jacob, I., Oliver, J.: Evaluation of techniques for specifying 3D rotations with a 2D input
device. In: Proceedings of HCI, pp. 63–76 (1995)

28. Kaye, D., Ivrissimtzis, I.: Mesh alignment using grid based PCA. In: Proceedings of CGTA,
pp. 174–181 (2015)

29. Kustra, J., Jalba, A., Telea, A.: Probabilistic view-based curve skeleton computation on the
GPU. In: Proceedings of VISAPP. SciTePress (2013)

30. Kustra, J., Jalba, A., Telea, A.: Robust segmentation of multiple intersecting manifolds from
unoriented noisy point clouds. Comput. Graph. Forum 33(4), 73–87 (2014)

31. Livesu, M., Guggeri, F., Scateni, R.: Reconstructing the curve-skeletons of 3D shapes using
the visual hull. IEEE TVCG 18(11), 1891–1901 (2012)

https://web.stanford.edu/group/ctr/ResBriefs/2014/14_emory.pdf
https://web.stanford.edu/group/ctr/ResBriefs/2014/14_emory.pdf
https://doi.org/10.1007/978-3-319-69487-0_12
https://doi.org/10.1007/978-3-319-69487-0_12
https://www.cita.utoronto.ca/~dubinski/galaxydynamics/gravitas.html
https://www.cita.utoronto.ca/~dubinski/galaxydynamics/gravitas.html

52 X. Zhai et al.

32. Meijster, A., Roerdink, J., Hesselink, W.: A general algorithm for computing distance trans-
forms in linear time. In: Goutsias, J., Vincent, L., Bloomberg, D.S. (eds.) Mathematical Mor-
phology and its Applications to Image and Signal Processing. Computational Imaging and
Vision, vol. 18, pp. 331–340. Springer, Boston (2002). https://doi.org/10.1007/0-306-47025-
X 36

33. Ogniewicz, R.L., Kubler, O.: Hierarchic Voronoi skeletons. Pattern Recog. 28, 343–359
(1995)

34. Partala, T.: Controlling a single 3D object: viewpoint metaphors, speed, and subjective satis-
faction. In: Proceedings of INTERACT, pp. 536–543 (1999)

35. Reniers, D., van Wijk, J.J., Telea, A.: Computing multiscale skeletons of genus 0 objects
using a global importance measure. IEEE TVCG 14(2), 355–368 (2008)

36. Rodrigues, R.S.V., Morgado, J.F.M., Gomes, A.J.P.: Part-based mesh segmentation: a survey.
Comput. Graph. Forum 37(6), 235–274 (2018)

37. Rosenfeld, A., Pfaltz, J.: Distance functions in digital pictures. Pattern Recogn. 1, 33–61
(1968)

38. Shoemake, K.: ARCBALL: a user interface for specifying three-dimensional orientation
using a mouse. In: Proceedings of Graphics Interface (1992)

39. Siddiqi, K., Pizer, S.: Medial Representations: Mathematics, Algorithms and Applications.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-1-4020-8658-8

40. Sobiecki, A., Yasan, H.C., Jalba, A.C., Telea, A.C.: Qualitative comparison of contraction-
based curve skeletonization methods. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.)
ISMM 2013. LNCS, vol. 7883, pp. 425–439. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38294-9 36

41. Tagliasacchi, A., Delame, T., Spagnuolo, M., Amenta, N., Telea, A.: 3D skeletons: a state-
of-the-art report. Comput. Graph. Forum 35(2), 573–597 (2016)

42. Tangelder, J.W.H., Veltkamp, R.C.: A survey of content based 3D shape retrieval methods.
Multimed. Tools Appl. 39(3) (2008)

43. Telea, A.: Feature preserving smoothing of shapes using saliency skeletons. In: Linsen, L.,
Hagen, H., Hamann, B., Hege, H.C. (eds.) Visualization in Medicine and Life Sciences II.
Mathematics and Visualization, pp. 136–148. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21608-4 9

44. Telea, A.: Source code for salience skeleton computation (2014). https://webspace.science.
uu.nl/∼telea001/Shapes/Salience

45. Telea, A., Jalba, A.: Voxel-based assessment of printability of 3D shapes. In: Soille, P.,
Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 393–404. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21569-8 34

46. Telea, A., van Wijk, J.J.: An augmented fast marching method for computing skeletons and
centerlines. In: Ebert, D., Brunet, P., Navazo, I. (eds.) Proceedings of Eurographics/IEEE
VGTC Symposium on Visualization (VisSym), pp. 251–259. The Eurographics Association
(2002)

47. The Authors: Source code and videos of interactive skeleton-based axis rotation (2019).
http://www.staff.science.uu.nl/∼telea001/Shapes/CUDASkelInteract

48. Yu, L., Isenberg, T.: Exploring one- and two-touch interaction for 3D scientific visualization
spaces. In: Posters of Interactive Tabletops and Surfaces, November 2009

49. Yu, L., Svetachov, P., Isenberg, P., Everts, M.H., Isenberg, T.: FI3D: direct-touch interaction
for the exploration of 3D scientific visualization spaces. IEEE TVCG 16(6), 1613–1622
(2010)

50. Zhai, X., Chen, X., Yu, L., Telea, A.: Interactive axis-based 3D rotation specification using
image skeletons. In: Proceedings of 15th International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, pp. 169–178.
SciTePress (2020)

51. Zhao, Y.J., Shuralyov, D., Stuerzlinger, W.: Comparison of multiple 3D rotation methods. In:
Proceedings of IEEE VECIMS, pp. 19–23 (2011)

https://doi.org/10.1007/0-306-47025-X_36
https://doi.org/10.1007/0-306-47025-X_36
https://doi.org/10.1007/978-1-4020-8658-8
https://doi.org/10.1007/978-3-642-38294-9_36
https://doi.org/10.1007/978-3-642-38294-9_36
https://doi.org/10.1007/978-3-642-21608-4_9
https://doi.org/10.1007/978-3-642-21608-4_9
https://webspace.science.uu.nl/~telea001/Shapes/Salience
https://webspace.science.uu.nl/~telea001/Shapes/Salience
https://doi.org/10.1007/978-3-642-21569-8_34
http://www.staff.science.uu.nl/~telea001/Shapes/CUDASkelInteract

	Skeleton-and-Trackball Interactive Rotation Specification for 3D Scenes
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Rotation Axis Computation
	3.2 Controlling the Rotation
	3.3 Improvements of Basic Method

	4 Formative Evaluation
	5 Detailed Evaluation: User Study
	5.1 Evaluation Design
	5.2 Evaluation Execution
	5.3 Analysis of Results

	6 Discussion
	6.1 Technical Aspects
	6.2 Usability and Applicability

	7 Conclusion
	References

