Skip to main content

Untangling the XRP Ledger: Insights and Analysis

  • Conference paper
  • First Online:
  • 539 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1545))

Abstract

Over the last few years, the interest in blockchain platforms has fostered the implementation of a number of distributed ledger-based solutions for the exchange of information, assets and digitized goods in both the private and the public sectors. While proposing promising alternatives to the original Bitcoin protocol is an important goal that the bulk of the effort in blockchain community has been focused on, it may not be enough. A major challenge faced by blockchain systems goes beyond the ability to superficially explore their attack surface, and firstly must consider the importance of studying the functioning of their underlying consensus protocols also in the form of non-functional properties such as security and safety. It is to this extent that recent research has started to rigorously analyze the Bitcoin protocol and its close variants, whilst BFT-like systems have not received equal attention so far. In this paper, we focus on the XRP Ledger with the aim to lay down the first steps towards the complete formalization of its unique consensus mechanism. We provide a thorough description of its different phases and present an analysis of some of its properties, which will be suitable as a basis for future research in the same vein.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The XRP Ledger is better known as “Ripple” because originally this was the name used to refer to the protocol. Recently, in order to differentiate it from the company, the term “XRP Ledger” has been adopted to refer to the technology.

  2. 2.

    https://xrpcharts.ripple.com/#/validators.

  3. 3.

    In the XRP Ledger documentation [35], the term “closed” is used to denote what here we refer to as “last closed”. Our choice is dictated by the desire to make the exposition clearer and more consistent with what is in the current implementation [36].

  4. 4.

    Even if it appears counterintuitive, in practice the open ledger is never really closed. When certain conditions are met, the validator throws away its open ledger, builds a new last closed ledger by starting with the prior last closed ledger, and then creates a new open ledger using the newly created last closed ledger as a basis.

  5. 5.

    In the XRP Ledger network, the very first ledger started with ledger index 1. However, since in practice this is no longer available, the ledger \(\#32570\) is considered the actual genesis ledger.

References

  1. Abraham, I., Malkhi, D.: The blockchain consensus layer and BFT. Bull. EATCS 3(123) (2017). http://eatcs.org/beatcs/index.php/beatcs/article/view/506

  2. Armknecht, F., Karame, G.O., Mandal, A., Youssef, F., Zenner, E.: Ripple: Overview and Outlook. In: Conti, M., Schunter, M., Askoxylakis, I. (eds.) Trust 2015. LNCS, vol. 9229, pp. 163–180. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22846-4_10

    Chapter  Google Scholar 

  3. Badertscher, C., Garay, J., Maurer, U., Tschudi, D., Zikas, V.: But why does it work? a rational protocol design treatment of bitcoin. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 34–65. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_2

    Chapter  Google Scholar 

  4. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger: a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_11

    Chapter  Google Scholar 

  5. Bano, S., et al.: Consensus in the Age of Blockchains. CoRR abs/1711.03936 (2017). http://arxiv.org/abs/1711.03936

  6. Braghin, C., Cimato, S., Cominesi, S.R., Damiani, E., Mauri, L.: Towards blockchain-based e-voting systems. In: Abramowicz, W., Corchuelo, R. (eds.) BIS 2019. LNBIP, vol. 373, pp. 274–286. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36691-9_24

    Chapter  Google Scholar 

  7. Braghin, C., Cimato, S., Damiani, E., Baronchelli, M.: Designing smart-contract based auctions. In: Yang, C.-N., Peng, S.-L., Jain, L.C. (eds.) SICBS 2018. AISC, vol. 895, pp. 54–64. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-16946-6_5

    Chapter  Google Scholar 

  8. Cachin, C., Tackmann, B.: Asymmetric distributed trust. In: Felber, P., Friedman, R., Gilbert, S., Miller, A. (eds.) 23rd International Conference on Principles of Distributed Systems, OPODIS 2019, 17–19 December, 2019, Neuchâtel, Switzerland. LIPIcs, vol. 153, pp. 7:1–7:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.OPODIS.2019.7

  9. Cachin, C., Vukolic, M.: Blockchain Consensus Protocols in the Wild. CoRR abs/1707.01873 (2017). http://arxiv.org/abs/1707.01873

  10. Cachin, C., Zanolini, L.: Asymmetric Byzantine Consensus. CoRR abs/2005.08795 (2020). https://arxiv.org/abs/2005.08795

  11. Chase, B., MacBrough, E.: Analysis of the XRP Ledger Consensus Protocol. CoRR abs/1802.07242 (2018). http://arxiv.org/abs/1802.07242

  12. Christodoulou, K., Iosif, E., Inglezakis, A., Themistocleous, M.: Consensus crash testing: exploring ripple’s decentralization degree in adversarial environments. Future Internet 12(3), 53 (2020)

    Article  Google Scholar 

  13. Daian, P., Pass, R., Shi, E.: Snow White: Provably Secure Proofs of Stake. Cryptology ePrint Archive, Report 2016/919 (2016)

    Google Scholar 

  14. Damgård, I., Desmedt, Y., Fitzi, M., Nielsen, J.B.: Secure protocols with asymmetric trust. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 357–375. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_22

    Chapter  Google Scholar 

  15. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985). https://doi.org/10.1145/3149.214121

    Article  MathSciNet  MATH  Google Scholar 

  16. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_10

    Chapter  Google Scholar 

  17. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_10

    Chapter  Google Scholar 

  18. Garay, J.A., Kiayias, A., Leonardos, N., Panagiotakos, G.: Bootstrapping the blockchain, with applications to consensus and fast PKI setup. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 465–495. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_16

    Chapter  Google Scholar 

  19. García-Pérez, Á., Gotsman, A.: Federated byzantine quorum systems. In: Cao, J., Ellen, F., Rodrigues, L., Ferreira, B. (eds.) 22nd International Conference on Principles of Distributed Systems, OPODIS 2018, 17–19 December 2018, Hong Kong, China. LIPIcs, vol. 125, pp. 17:1–17:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018). https://doi.org/10.4230/LIPIcs.OPODIS.2018.17

  20. Gramoli, V.: From blockchain consensus back to byzantine consensus. Future Gener. Comput. Syst. 107, 760–769 (2017)

    Article  Google Scholar 

  21. Halpin, H., Piekarska, M.: Introduction to security and privacy on the blockchain. In: EuroS&P 2017 - 2nd IEEE European Symposium on Security and Privacy, Workshops, April 2017. https://doi.org/10.1109/EuroSPW.2017.43, https://hal.inria.fr/hal-01673293

  22. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_12

    Chapter  Google Scholar 

  23. Losa, G., Gafni, E., Mazières, D.: Stellar consensus by instantiation. In: Suomela, J. (ed.) 33rd International Symposium on Distributed Computing (DISC 2019). Leibniz International Proceedings in Informatics (LIPIcs), vol. 146, pp. 27:1–27:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2019). https://doi.org/10.4230/LIPIcs.DISC.2019.27, http://drops.dagstuhl.de/opus/volltexte/2019/11334

  24. Malkhi, D., Nayak, K., Ren, L.: Flexible Byzantine Fault Tolerance. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, London, UK, 11–15 November 2019, pp. 1041–1053. ACM (2019). https://doi.org/10.1145/3319535.3354225

  25. Malkhi, D., Reiter, M.K.: Byzantine quorum systems. In: Leighton, F.T., Shor, P.W. (eds.) Proceedings of the 29th Annual ACM Symposium on the Theory of Computing, El Paso, Texas, USA, 4–6 May 1997, pp. 569–578. ACM (1997). https://doi.org/10.1145/258533.258650

  26. Mauri, L., Cimato, S., Damiani, E.: A comparative analysis of current cryptocurrencies. In: Proceedings of the 4th International Conference on Information Systems Security and Privacy - Volume 1: ICISSP, pp. 127–138. INSTICC, SciTePress (2018). https://doi.org/10.5220/0006648801270138

  27. Mauri, L., Cimato, S., Damiani, E.: A Formal Approach for the Analysis of the XRP Ledger Consensus Protocol. In: Furnell, S., Mori, P., Weippl, E.R., Camp, O. (eds.) Proceedings of the 6th International Conference on Information Systems Security and Privacy, ICISSP 2020, Valletta, Malta, 25–27 February 2020, pp. 52–63. SCITEPRESS (2020). https://doi.org/10.5220/0008954200520063

  28. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008). https://bitcoin.org/bitcoin.pdf

  29. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_22

    Chapter  MATH  Google Scholar 

  30. Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 380–409. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_14

    Chapter  Google Scholar 

  31. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. J. ACM 27(2), 228–234 (1980)

    Article  MathSciNet  Google Scholar 

  32. Pérez, D., Xu, J., Livshits, B.: We Know What They’ve Been Put Through: Revisiting High-scalability Blockchain Transactions. CoRR abs/2003.02693 (2020). https://arxiv.org/abs/2003.02693

  33. Rawat, D.B., Chaudhary, V., Doku, R.: Blockchain: Emerging Applications and Use Cases. CoRR abs/1904.12247 (2019). http://arxiv.org/abs/1904.12247

  34. Ripple Labs Inc.: Ripple. https://ripple.com/ (a), https://ripple.com/. Accessed 01 June 2020

  35. Ripple Labs Inc.: XRP Ledger Dev Portal. https://xrpl.org/index.html (b), https://xrpl.org/index.html. Accessed 01 June 2020

  36. Ripple Labs Inc.: Ripple Source, GitHub repository. https://github.com/ripple/rippled/tree/develop/src/ripple (c), https://github.com/ripple/rippled/tree/develop/src/ripple. Accessed 01 June 2020

  37. Saad, M., et al.: Exploring the Attack Surface of Blockchain: A Systematic Overview. CoRR abs/1904.03487 (2019). http://arxiv.org/abs/1904.03487

  38. Schwartz, D., Youngs, N., Britto, A.: The Ripple Protocol Consensus Algorithm. Ripple Labs Inc., White Paper (2014). https://ripple.com/files/ripple_consensus_whitepaper.pdf

  39. Vukolic, M.: The origin of quorum systems. Bull. EATCS 101, 125–147 (2010). http://eatcs.org/beatcs/index.php/beatcs/article/view/183

  40. Vukolić, M.: The quest for scalable blockchain fabric: proof-of-work vs. BFT replication. In: Camenisch, J., Kesdoğan, D. (eds.) iNetSec 2015. LNCS, vol. 9591, pp. 112–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39028-4_9

    Chapter  Google Scholar 

  41. Wang, W., et al.: A Survey on Consensus Mechanisms and Mining Management in Blockchain networks. CoRR abs/1805.02707 (2018). http://arxiv.org/abs/1805.02707

  42. Wilson, B.: Raise quorum/increase fault tolerance, June 2018. https://github.com/ripple/rippled/issues/2604. Accessed 01 Oct 2019

  43. Xiao, Y., Zhang, N., Lou, W., Hou, Y.T.: A Survey of Distributed Consensus Protocols for Blockchain Networks. CoRR abs/1904.04098 (2019). http://arxiv.org/abs/1904.04098

Download references

Acknowledgment

This work has been partly supported by the EC within the Project CONCORDIA (H2020-830927).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stelvio Cimato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mauri, L., Cimato, S., Damiani, E. (2022). Untangling the XRP Ledger: Insights and Analysis. In: Furnell, S., Mori, P., Weippl, E., Camp, O. (eds) Information Systems Security and Privacy. ICISSP 2020. Communications in Computer and Information Science, vol 1545. Springer, Cham. https://doi.org/10.1007/978-3-030-94900-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94900-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94899-3

  • Online ISBN: 978-3-030-94900-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics