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Abstract. The complexity of the list homomorphism problem for signed
graphs appears difficult to classify. Existing results focus on special classes
of signed graphs, such as trees [4] and reflexive signed graphs [25]. Ir-
reflexive signed graphs are in a certain sense the heart of the problem, as
noted by a recent paper of Kim and Siggers. We focus on a special class
of irreflexive signed graphs, namely those in which the unicoloured edges
form a spanning path or cycle, which we call separable signed graphs. We
classify the complexity of list homomorphisms to these separable signed
graphs; we believe that these signed graphs will play an important role
for the general resolution of the irreflexive case. We also relate our re-
sults to a conjecture of Kim and Siggers concerning the special case of
semi-balanced irreflexive signed graphs; we have proved the conjecture
in another paper, and the present results add structural information to
that topic.

1 Motivation and background

We investigate the complexity of (list) homomorphism problems for signed graphs.
The complexity of homomorphism (and list homomorphism) problems is a pop-
ular topic. For undirected graphs, it was shown in [22] that the problem of
deciding the existence of a homomorphism of an input graph to a fixed graph
H (also known as the H-Colouring problem, or just H-Colouring) is poly-
nomial if H is bipartite or has a loop, and is NP-complete otherwise. For gen-
eral structures H, the corresponding problem lead to the so-called Dichotomy
Conjecture [17, 24], which was only recently established [12, 34]. In the list ho-
momorphism problem for H (also known as the List H-Colouring problem,
or just List H-Colouring), the input is a graph together with lists of allowed
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images for each vertex. (The precise definitions are given below.) The list homo-
morphism problems have generally a nicer behaviour than the homomorphism
problems, because the lists facilitate recursion to subproblems. For undirected
graphs, List H-Colouring is polynomial if H is a bi-arc graph (see below),
and is NP-complete otherwise [14, 15]. Even for general structures H, where the
list version is equivalent to a special case of the basic version, the classification
for the list version was achieved a decade earlier [11] than the basic version.

Signed graphs are related to graphs with two symmetric binary relations; they
are additionally equipped with an operation of switching (explained below). The
possibility of switching poses a challenge when classifying the complexity of ho-
momorphisms, as the problem no longer appears to be a homomorphism problem
for relational structures. Nevertheless, it can be shown [4] that it is equivalent
to such a problem and hence the results from [12, 34] imply that there these
problems also enjoy a dichotomy of polynomial versus NP-complete. For homo-
morphisms of signed graphs without lists, a concrete dichotomy classification
was conjectured in [8], and proved in [10]. Interestingly, for signed graphs, the
list version no longer seems easier to classify, and the progress towards a classi-
fication or even a conjecture has been slow [3, 8, 25].

Signed graphs. A signed graph Ĝ consists of a set V (G) and two symmetric

binary relations +,−. We also view Ĝ as a graph G (the underlying graph of Ĝ)
with the vertex set V (G), the edge set +∪−, and a mapping σ : E(G) → {+,−},
assigning a sign (+ or −) to each edge of G. A loop is considered to be an edge.
Two signed graphs are considered (switching) equivalent if one can be obtained
from the other by a sequence of switchings; switching at a vertex v results in
changing the signs of all non-loop edges incident to v. The signs of loops are
unchanged by switching.

We will usually view signs of edges as colours, and view positive edges as
blue (solid lines in figures), and negative edges as red (dashed lines in figures). It
will be convenient to call a red-blue pair of edges with the same endpoint(s) a
bicoloured edge; however, it is important to keep in mind that formally they are
two distinct edges. By contrast, we call edges that are not part of such a pair
unicoloured. If a vertex u is adjacent by a bicoloured edge or a unicoloured edge
to v, we say that v is a bicoloured neighbour or an unicoloured neighbour of u,
respectively.

We call Ĥ a signed tree if the underlying graph H, with any existing loops
removed and multi-edges replaced by simple edges, is a tree.

The study of signed graphs seems to have originated in [19, 20], and was
most notably advanced in the papers of Zaslavsky [29, 30, 31, 32, 33]. Guenin [18]
pioneered the investigation of homomorphisms of signed graphs; see also, e.g., [9,
26, 27].

Homomorphisms of signed graphs. A sign-preserving homomorphism of a signed
graph Ĝ to a signed graph Ĥ is a function f : V (G) → V (H) such that if xy is a

blue (respecitvely red) edge of Ĝ, then f(x)f(y) is either a blue (respectively red)
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or a bicoloured edge of Ĥ. This definition implies bicoloured edges of Ĝ map to
bicoloured edges of Ĥ and for each unicoloured edge of Ĝ with a bicoloured image
in Ĥ implicitly the image is the appropriate edge of the same sign within the
bicoloured edge. A homomorphism of the signed graph Ĝ to the signed graph
Ĥ is a mapping f : V (G) → V (H) for which there exists a signed graph Ĝ′

equivalent to Ĝ such that f is a sign-preserving homomorphism of Ĝ′ to Ĥ. A
list homomorphism of Ĝ to Ĥ, with respect to the lists L(v) ⊆ V (H), v ∈ V (G),

is a homomorphism f of Ĝ to Ĥ such that f(v) ∈ L(v) for all v ∈ V (G). We
remark an equivalent definition of homomorphisms for signed graphs without
switching but rather based on the balance of cycles (in Ĝ and their image in

Ĥ) can be found in [27]. This alternative definition works with the notions
of unicoloured and bicoloured edges. See [7] for further details. For this paper
we will use exclusively the definition based on switching and sign-preserving
homomorphisms.

Let Ĥ be a fixed signed graph. The homomorphism problem for Ĥ (the Ĥ-
Colouring problem, or just H-Colouring) takes as input a signed graph

Ĝ and asks whether there exists a homomorphism of Ĝ to Ĥ. The list homo-
morphism problem for Ĥ (the List Ĥ-Colouring problem, or just List Ĥ-

Colouring) takes as an input a signed graph Ĝ with lists L(v) ⊆ V (H), for
every v ∈ V (G), and asks whether there exists a homomorphism f of the signed

graph Ĝ to Ĥ such that f(v) ∈ L(v) for every v ∈ V (G).

A subgraph Ĝ of the signed graph Ĥ is the signed core, or simply an s-core, of
Ĥ if there is signed graph homomorphism f of Ĥ to Ĝ, and every homomorphism
of the signed graph Ĝ to itself is a bijection on V (G). It is easy to see that the
signed core of any signed graph is unique up to switching isomorphism7 The
dichotomy classification for H-Colouring conjectured in [8] and proved in [10]
is as follows.

Theorem 1. [10] H-Colouring is polynomial-time solvable if the signed core

of Ĥ has at most two edges, and is NP-complete otherwise.

In counting edges we of course include loops, and count each unicoloured
edge as one and each bicoloured edge as two.

Balanced and semi-balanced signed graphs. A signed graph is balanced if it is
equivalent to one in which all edges are only blue, and is anti-balanced if it is
equivalent to one in which all edges are only red. Note that it follows that a
balanced (anti-balanced) signed graph has no bicoloured edges.

A signed graph is semi-balanced (semi-anti-balanced) if it is equivalent to one
in which all edges are bicoloured or blue (respectively red).8

7 Ĝ and Ĥ are switching isomorphic if there exist homomorphisms ϕ : Ĝ → Ĥ and
ψ : Ĥ → Ĝ such that ϕ◦ψ and ψ◦ϕ are identity mappings on Ĝ and Ĥ, respectively.

8 We note that this class has been called pr-graphs in [25], uni-balanced graphs in [4],
and weakly balanced graphs in [3, 6].
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Fig. 1. A signed graph (on the left) together with a chain (on the right). The upper
walk is U , the lower walk is D; the dotted blue edges must be absent.

For list homomorphisms of signed graphs, there are several special cases
where the complexity has been classified. These include signed graphs without
bicoloured edges [5], signed trees with possible loops [4], and semi-balanced re-
flexive and irreflexive signed graphs [6, 7, 25]. We first introduce the relevant
structures used to prove NP-completeness results and used to construct polyno-
mial time algorithms.

Chains. Let U,D be two walks in Ĥ of equal length. Suppose U has vertices
u = u0, u1, . . . , uk = v, and D has vertices u = d0, d1, . . . , dk = v. As U and D
are walks, vertices may repeat both within U and D and be common to both U
and D. We say that (U,D) is a chain, provided uu1, dk−1v are unicoloured edges
and ud1, uk−1v are bicoloured edges, and for each i, 1 ≤ i ≤ k − 2, we have

1. both uiui+1 and didi+1 are edges of Ĥ while diui+1 is not an edge of Ĥ, or
2. both uiui+1 and didi+1 are bicoloured edges of Ĥ while diui+1 is not a

bicoloured edge of Ĥ.

Figure 1 show a simple example of a chain and Figure 2 shows some important
irreflexive signed trees with a chain.

The existence of a chain in a signed graph implies hardness.

Theorem 2. [4] If a signed graph Ĥ contains a chain, then List Ĥ-Colour-
ing is NP-complete.

Invertible pairs. An invertible pair in an undirected graph H is a pair of ver-
tices a, b, with two walks U,D of the same length, where U has vertices a =
u0, u1, . . . , uk = b, uk+1, . . . , ut = a, and D has vertices b = d0, d1, . . . , dk =
a, dk+1, . . . , dt = b, such that for each i, 1 ≤ i ≤ t − 2, both uiui+1 and didi+1

are edges of H, while diui+1 is not an edge of Ĥ. For simplicity we say that a
signed graph has an invertible pair if its underlying graph has an invertible pair.

Figure 3 shows the graph F1, with an invertible pair 1, 10. The walks U,D
begin as indicated. Then U alternates on 7−6 while D moves from 10 to 1. Next
while D alternates on 1− 2, U moves from 7 to 10. Continuing similarly for the
second half, U moves from 10 to 1 and D moves from 1 to 10.

The following result follows from [4, 14, 15, 21].

Theorem 3. If Ĥ has an invertible pair, then List Ĥ-Colouring is NP-
complete.

We now introduce the concepts needed to state the polynomial time results.
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U = 2− 3− . . .− k − (k − 1)
D = 2− 1− 2− . . .− (k − 1)

U = 3− 2− 1− 2− . . . . . . . . . . . . . . .− (k − 2)
D = 3− . . .− (k − 1)− k − (k − 1)− (k − 2)

U = 4− 8− 9− 8− 4− 5− 6− 7− 6− 5− 4
D = 4− 3− 2− 1− 2− 3− 4− 8− 9− 8− 4

U = 4− 3− 2− 1− 2− 3− 4− 8− 4
D = 4− 8− 4− 5− 6− 7− 6− 5− 4

U = 8− 4− 5− 6− 7− 6− 5− 4− 8− 9− 8
D = 8− 9− 8− 4− 3− 2− 1− 2− 3− 4− 8

Fig. 2. The family F of signed graphs yielding NP-complete problems, and a chain in
each. (The figure appeared first in [4].)

a = 1

b = 10

2 3 4 5 6 7

8

9

U = 1− 2− 3− 4− 5− 6 − 7− ...
D = 10− 9− 10− 9− 10− 9− 10− ...

Fig. 3. The graph F1, with an invertible pair.

Bi-arc graphs. Let C be a fixed circle with two specified points n and s. A bi-arc
graph is a graph H such that each vertex v ∈ V (H) can be associated with a
pair of intervals Nv, Sv where Nv contains n but not s and Sv contains s but
not n satisfying the following conditions: (i) Nv intersects Sw if and only if Sv

intersects Nw, and (ii) Nv intersects Sw if and only if vw is not an edge of H.
This class of graphs includes all interval graphs: a reflexive graph is a bi-arc
graph if and only if it is an interval graph. Moreover, an irreflexive graph is a
bi-arc graph if and only if it is bipartite and its complement is a circular arc
graph [15].

Min ordering. To distinguish the two parts of a bipartite graph we speak of black
and white vertices. A min ordering of a bipartite graph H is a pair <b, <w, where
<b is a linear ordering of the black vertices and <w is a linear ordering of the
white vertices, such that for white vertices x <w x′ and black vertices y <b y′,
if xy′, x′y are both edges in H, then xy is also an edge in H. It is known [17]
that if a bipartite graph H has a min ordering, then List H-Colouring can be
solved in polynomial time. A special min ordering of a signed irreflexive graph Ĥ
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is a min ordering of the underlying undirected graph H for which all bicoloured
neighbours of each vertex appear before all of its unicoloured neighbours.

Existing classifications. We can now state our classifications mentioned above.
For the case of signed graphs without bicoloured edges, the result is this.

Theorem 4. [5] Suppose Ĥ is a connected signed graph without bicoloured edges.

If the underlying graph H is a bi-arc graph, and Ĥ is balanced or anti-balanced,
then List Ĥ-Colouring is polynomial-time solvable. Otherwise, the problem
is NP-complete.

For signed trees with possible loops, the general results are technical [4], but
since the focus of this paper is on irreflexive graphs we state the classification in
the special case of irreflexive signed trees. Note F1 and F refer to Figure 3 and
Figure 2 respectively.

Theorem 5. [4] Let Ĥ be an irreflexive tree. If the underlying graph of Ĥ

contains F1 or if Ĥ contains a signed graph from the family F , as an induced
subgraph, then List Ĥ-Colouring is NP-complete. Otherwise, Ĥ admits a
special min ordering and the problem is polynomial-time solvable.

Recall that the tree F1 from Figure 3 has an invertible pair. Thus for ir-
reflexive trees, the only NP-complete cases have a chain or an invertible pair. It
is easy to see that irreflexive trees are always semi-balanced. We can similarly
interpret Theorem 4 specialized for irreflexive signed graphs without bicoloured
edges. Specifically, if the underlying graph is not bipartite then Theorem 1 im-
plies the list homomorphism problem is NP-complete. Also note that bipartite
signed graphs without bicoloured edges are semi-balanced if and only if they
are balanced. Finally, a bipartite graph is a bi-arc graph if and only if it has
a min ordering [21], which is trivially special as there are no bicoloured edges.
Thus Theorem 4 also implies that for (semi-) balanced irreflexive signed graphs
without bicoloured edges, the list homomorphism problem is polynomial-time
solvable if there is special min ordering [15], and otherwise there is an invertible
pair and the problem is NP-complete. Note that a graph without bicoloured
edges cannot have a chain.

Extrapolating from these results, Kim and Siggers [25] conjectured that for
all semi-balanced irreflexive signed graphs, the list homomorphism problem is
polynomial-time solvable if there is special min ordering, and otherwise there is
a chain or an invertible pair and the problem is NP-complete. We have proved
this conjecture in [6].

Theorem 6. [6] For a semi-balanced irreflexive signed graph Ĥ, List Ĥ-

Colouring is polynomial-time solvable if Ĥ has a special min ordering; other-
wise, Ĥ contains a chain or an invertible pair and the problem is NP-complete.

Similar facts have been proved for reflexive graphs [7, 25].

6



1.1 Our results

In this paper we focus on another particular class of irreflexive signed graphs
called separable signed graphs. We say that an irreflexive signed graph Ĥ is
path-separable (respectively cycle-separable) if the unicoloured edges of Ĥ form

a spanning path (respectively cycle) in the underlying graph of Ĥ. We also say
a signed graph is separable if it is path-separable or cycle-separable.

We provide a detailed classification of complexity of the corresponding list
homomorphism problems, see Theorems 7 and 10. We find that the polynomial
cases are nicely structured and rather rare.

Separable signed graphs are not necessarily semi-balanced, so our results
extend beyond Theorem 6. Even for semi-balanced separable graphs these results
provide much more structural detail for the description of the polynomial cases.
We believe that the case of separable signed graphs, together with the case of
irreflexive signed trees from Theorem 5, will play an important role for a full
classification of complexity for irreflexive signed graphs.

A short preliminary version of this paper (containing only a small subset of
the proofs) has appeared in the conference [1], prior to our paper [6]. In this
expanded journal version we provide all proofs, taking advantage of now having
Theorem 6 to simplify some of the arguments. The original proofs can be found
in [2].

1.2 Motivation

Irreflexive signed graphs are in a sense the core of the problem, see [25]. As noted
earlier, by Theorem 1, List H-Colouring is NP-complete unless the underlying
graph H is bipartite. There is a natural transformation of each general problem
to a problem for a bipartite irreflexive signed graph, akin to what is done for
unsigned graphs in [16]; this is nicely explained in [25].

However, for bipartite H, we don’t have a combinatorial classification be-
yond the case of trees H, except in the case Ĥ has no bicoloured edges (when

Theorem 4 applies), or when Ĥ has no unicoloured edges (when the problem es-
sentially concerns unsigned graphs and thus is solved by [16]). Therefore we may
assume that both bicoloured and unicoloured edges are present. We focus in this
paper on those bipartite irreflexive signed graphs Ĥ in which the unicoloured
edges form simple structures, namely spanning paths and cycles.

2 Path-separable signed graphs

In this section, we consider irreflexive path-separable signed graphs Ĥ, i.e., ones
in which the unicoloured edges form a spanning path P in the underlying graph
H. By suitable switching, we may assume the edges of P are all blue. In other
words, all the edges of the spanning path P are blue, and all the other edges of
Ĥ are bicoloured. Thus a path-separable signed graph is semi-balanced. Recall
that the distinction between unicoloured and bicoloured edges is independent of
switching, thus such a spanning path P is unique.

7



Induced cycles imply hardness. Recall that for any irreflexive signed graph Ĥ,
List Ĥ-Colouring is NP-complete if the underlying graph H contains an odd
cycle, since then the s-core of Ĥ has at least three edges. Moreover, we now show
that the List Ĥ-Colouring is also NP-complete if H contains any induced
cycle of length greater than four. Indeed, it suffices to prove this if H is an even
cycle of length k > 4. If all edges of H are unicoloured, then the problem is NP-
complete by Theorem 4, since an irreflexive cycle of length k > 4 is not a bi-arc
graph. If all edges of the cycle H are bicoloured, then we can easily reduce from
the previous case. If H contains both unicoloured and bicoloured edges, then Ĥ
contains an induced subgraph of type a) or b) in the family F in Figure 2, and
the problem is NP-complete by Theorem 2. There are cases when the subgraphs
are not induced, but the chains from the proof of Theorem 2 are still applicable.

Two important patterns. We further identify two additional cases of Ĥ with
NP-complete list homomorphism problems. An alternating 4-cycle is a 4-cycle
v1v2v3v4 in which the edges v1v2, v3v4 are bicoloured and the edges v2v3, v4v1
unicoloured. A 4-cycle pair consists of 4-cycles v1v2v3v4 and v1v5v6v7, sharing
the vertex v1, in which the edges v1v2, v1v5 are bicoloured, and all other edges are
unicoloured. An alternating 4-cycle has the chain U = v1, v4, v3;D = v1, v2, v3,
and a 4-cycle pair has the chain U = v1, v4, v3, v2, v1;D = v1, v5, v6, v7, v1. There-
fore, if a signed graph Ĥ contains an alternating 4-cycle or a 4-cycle pair as an
induced subgraph, then List Ĥ-Colouring is NP-complete. Note that the lat-
ter chain requires only v2v6 and v3v5 to be non-edges. The problem remains
NP-complete as long as these edges are absent; all other edges with endpoints
in different 4-cycles can be present. If both v2v6 and v3v5 are bicoloured edges,
then there is an alternating 4-cycle v2v3v5v6. Thus we conclude that List Ĥ-
Colouring is NP-complete if Ĥ contains a 4-cycle pair as a subgraph (not
necessarily induced), unless exactly one of v3v5 or v2v6 is a bicoloured edge.

Assumptions. From now on we will assume that Ĥ is a path-separable signed
graph with the unicoloured edges (all blue) forming a spanning path P =

v1, . . . , vn. We will assume further that List Ĥ-Colouring is not NP-complete,
and derive information on the structure of Ĥ. In particular, the underlying graph
H is bipartite and does not contain any induced cycles of length greater than 4,
and Ĥ does not contain an alternating 4-cycle or a 4-cycle pair; more generally,
Ĥ does not contain a chain. If Ĥ has no bicoloured edges (and hence no edges

not on P ), then List Ĥ-Colouring is polynomial-time solvable by Theorem 4,

since a path is a bi-arc graph. If there is a bicoloured edge in Ĥ, then we may
assume there is a bicoloured edge vivi+3, otherwise there is an induced cycle of
length greater than 4.

Blocks and segments. A block in a path-separable signed graph Ĥ is a sub-
path vivi+1vi+2vi+3 of P , with the bicoloured edge vivi+3. The previous para-

graph concluded that Ĥ must contain a block. Note that if vivi+1vi+2vi+3 is
a block, then vi+1vi+2vi+3vi+4 cannot be a block: in fact, vi+1vi+4 cannot be
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a bicoloured edge, otherwise Ĥ would contain an alternating 4-cycle. However,
vi+2vi+3vi+4vi+5 can again be a block, and so can vi+4vi+5vi+6vi+7, etc. If both
vivi+1vi+2vi+3 and vi+2vi+3vi+4vi+5 are blocks then vivi+5 must be a bicoloured
edge, otherwise vivi+3vi+2vi+5 would induce a signed graph of type a) in fam-

ily F from Figure 2. A segment in Ĥ is a maximal subpath vivi+1 . . . vi+2j+1

of P with j ≥ 1 that has all bicoloured edges vi+evi+e+3, where e is even,
0 ≤ e ≤ 2j − 2. A maximal subpath is not properly contained in another such
subpath. Thus each subpath vi+evi+e+1vi+e+2vi+e+3 of the segment is a block,
and the segment is a consecutively intersecting sequence of blocks; note that it
can consist of just one block. Two segments can touch as the second and third
segment in Figure 4, or leave a gap as the first and second segment in the same
figure.

Sources. In a segment vivi+1 . . . vi+2j+1 we call each vertex vi+e with 0 ≤ e ≤
2j − 2 a forward source, and each vertex vi+o with 3 ≤ o ≤ 2j + 1 a backward
source. Thus forward sources are the beginning vertices of blocks in the segment,
and the backward sources are the ends of blocks in the segment. If a < b, we
say the edge vavb is a forward edge from va and a backward edge from vb. In
this terminology, each forward source has a forward edge to its corresponding
backward source. Because of the absence of a signed graph of type a) in family
F from Figure 2, we can in fact conclude, by the same argument as in the
previous paragraph, that each forward source in a segment has forward edges to
all backward sources in the segment.

Leaning segments. We say that a segment vivi+1 . . . vi+2j+1 is right-leaning if
vi+evi+e+o is a bicoloured edge for all e is even, 0 ≤ e ≤ 2j − 2, and all odd
o ≥ 3; and we say it is left-leaning if vi+2j+1−evi+2j+1−e−o is a bicoloured edge
for all e even, 0 ≤ e ≤ 2j − 2 and all odd o ≥ 3. Thus in a right-leaning segment
each forward source has all possible forward edges (that is, all edges to vertices
of opposite colour in the bipartition, including vertices with subscripts greater
than i + 2j + 1). The concepts of left-leaning segments, backward sources and
backward edges are defined similarly.

Segmented graphs. We say that a path-separable signed graph Ĥ is right-seg-
mented if all segments are right-leaning, and there are no edges other than those
mandated by this fact. In other words, each forward source has all possible for-
ward edges, and each vertex which is not a forward source has no forward edges.
Similarly, we say that a path-separable signed graph Ĥ is left-segmented if all
segments are left-leaning, and there are no edges other than those mandated by
this fact. In other words, each backward source has all possible backward edges,
and each vertex which is not a backward source has no backward edges. Finally,
Ĥ is left-right-segmented if there is a unique segment vivi+1 . . . vi+2j+1 that is
both left-leaning and right-leaning, all segments preceding it are left-leaning,
all segments following it are right-leaning, and moreover there are additional
bicoloured edges vi−evi+2j+o for all even e ≥ 2 and all odd o ≥ 3, but no
other edges. In other words, vertices v1, v2, . . . , vi+2j+1 induce a left-segmented

9



to all white vertices

17 18 19 20

to all black vertices to all white
vertices

to all black vertices

v v v v v v v v v v v v v v vvv
3 4 5 6

v
7 8 9 10 11 12 13 14 15 16

Fig. 4. An example of a left-right-segmented signed graph. The additional bicoloured
edges from all white vertices before v12 to all black vertices after v15 are not shown.

graph, vertices vi, vi+1, . . . , vn induce a right-segmented graph, and in addition
to the edges this requires there are all the edges joining vi−e from v1, . . . , vi−1

to vi+o from vi+2j+2, . . . , vn, with even e and odd o. A segmented graph is a
path-separable signed graph that is right-segmented or left-segmented or left-
right-segmented. Note that a blue path without any bicoloured edges is trivially
segmented, having no segments at all.

For example, in Figure 4 there are three segments, the left-leaning segment
v5v6v7v8v9v10, the left- and right-leaning segment v12v13v14v15, and the right-
leaning segment v15v16v17v18v19v20. Thus this is a left-right-segmented signed
graph.

We are now ready to formulate the first of the two main results of this paper.

Theorem 7. Let Ĥ be a path-separable signed graph. Then List Ĥ-Colour-
ing is polynomial-time solvable if Ĥ is a segmented signed graph. Otherwise, the
problem is NP-complete.

We now focus on a proof of this theorem. For this case, we can use Theorem 6
because, as we noted above, a path separable graph is semi-balanced.

2.1 The NP-complete cases

Theorem 8. Let Ĥ be a path-separable signed graph which is not segmented.
Then List Ĥ-Colouring is NP-complete.

Proof. Let Ĥ be a path-separable signed graph for which the list homomorphism
problem is not NP-complete, with the unicoloured edges all blue and forming
the spanning path P = v1, . . . , vn. We will show that Ĥ is a segmented signed
graph. It follows from the discussion above that if there are bicoloured edges,
then there are segments, but the problem is that there could be possibly some
other bicoloured edges.

A crucial observation. Consider two consecutive segments, a segment S, ending
with the block vi, vi+1, vi+2, vi+3, and a segment S′ beginning with the block
vj , vj+1, vj+2, vj+3, where i+3 ≤ j. Note that there can be no bicoloured edge
joining two vertices from the set {vi+1, . . . , vj+2}, because the segments S, S′ are
maximal and consecutive. If there is any edge joining two vertices of that set,
there would have to be one forming a 4-cycle with the unicoloured edges, since
the underlying graph has no induced cycles longer than 4.

10



We emphasize that this crucial observation will be repeatedly used in the
arguments in the following paragraphs, usually without specifically mentioning
it.

A claim. We claim that either vi (the last forward source of the segment S) has
forward edges to all vi+3, vi+5, vi+7, . . . , vs for some s > j +1, or symmetrically,
vj+3 (the first backward source of the next segment S′) has backward edges to
all vj , vj−2, vj−4, . . . , vt for some t < i + 2. In the former case we say that S
precedes S′, in the latter case we say that S′ precedes S.

We now prove the claim by showing either S precedes S′ or vice versa.

Case 1. Suppose first that i and j have the same parity (are both even or
both odd). There must be other bicoloured edges, otherwise there is a signed
graph of type a) from the family F in Figure 2 induced on the vertices vi, vi+3,

vi+4, . . . , vj , vj+3, and hence a chain in Ĥ. Therefore, using the above crucial ob-
servation, there must be extra edges incident with vi or vj+3. Moreover, as long
as there is no edge vivj+3, there would always be an induced subgraph of type a)
from the family F . On the other hand, if vivj+3 is an edge, then there is a chain
with U = vi, vi+1, vi+2, vi+3, vi, vj+3 and D = vi, vj+3, vj+2, vj+1, vj+2, vj+3, un-
less vi+2vj+3 or vivj+1 is an edge as there is no edge vi+3vj+2 by our crucial
observation above. Note that both vi+2vj+3 and vivj+1 cannot be edges, be-
cause of the chain U = vi, vi+1, vi+2, vj+3, D = vi, vj+1, vj+2, vj+3. Assume
that vivj+1 is an edge. Now we can repeat the argument: there would be a
chain with U = vi, vi+1, vi+2, vi+3, vi, vj+1 and D = vi, vj+1, vj , vj−1, vj , vj+1,
unless vivj−1 is an edge. In this case, we don’t need to consider vi+2vj+1, since
both lie in {vi+1, . . . , vj+2}. We can continue this way until this argument im-
plies the already existing edge vivi+3, and conclude that vi is adjacent to all
vj+3, vj+1, vj−1, . . . , vi+3, which proves the claim with s = j + 3. If vi+2vj+3 is
an edge, we conclude symmetrically that the claim holds for t = i.

Case 2. Now assume that the parity of i and j is different. This happens, for
instance, when i + 3 = j: in this case, we would have a 4-cycle pair unless
one of vivj+2, vi+1vj+3 is an edge. Both cannot be edges, as there would be an
alternating 4-cycle. This verifies the claim when i + 3 = j. Otherwise, there
again is a signed graph of type a) from the family F in Figure 2, induced on the
vertices vi, vi+3, vi+4, . . . , vj , vj+3, so there must be extra edges incident with vi
or vj+3. Moreover, there would always remain such an induced subgraph unless
there is a vertex vp with i+3 ≤ p ≤ j that is adjacent to both vi and vj+3. Thus
let vp be such a vertex.

We first show that p can be chosen to be j or i+ 3, i.e., that vj is adjacent
to vi, or vj+3 is adjacent to vi+3. Indeed, if vivj , vi+3vj+3 are not edges, then
vivj+2 must also not be an edge (else we obtain a cycle of length greater than
4), and we have the chain

U = vi, vi+1, vi+2, vi+3, vi, vp, vj+3, D = vi, vp, vj+3, vj+2, vj+1, vj+2, vj+3.
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Recall that we are still using the crucial observation that there is no bicoloured
edge joining two vertices from the set {vi+1, . . . , vj+2}.

Consider now the case that p = j (or symmetrically p = i+ 3). Since vivp is
an edge and there are no induced cycles of length greater than 4, the vertex vi
must also be adjacent to vj−2, vj−4, . . . , vi+5. Moreover, using again the crucial
observation, vi is also adjacent to vj+2, as otherwise we would have the chain
U = vi, vi+1, vi+2, vi+3, vi, vj and D = vi, vj , vj+1, vj+2, vj+1, vj . Thus the claim
holds, with s = j + 2. In the case p = i + 3, we obtain a symmetric situation,
proving the claim with t = i+ 1.

We conclude that for any two consecutive segments, exactly one precedes the
other.

Auxiliary segments. For technical reasons, we also introduce two auxiliary seg-
ments, calling all other segments normal. If the first normal segment S of Ĥ
starts at vi with i > 2, we introduce the left end-segment to consist of the ver-
tices v1, v2, . . . , vi. We say that the left end-segment precedes S if there is no
edge vi−2vi+3, and we say that S precedes the left end-segment if vi−2vi+3 is an
edge. Similarly, if the last normal segment S′ ends at vk with k < n − 1, the
right end-segment consists of the vertices vk, vk+1, . . . , vn. The right end-segment
precedes S′ if vk−3vk+2 is not an edge, and S′ precedes the right end-segment if
vk−3vk+2 is an edge. Then it is still true that for any two consecutive segments,
one precedes the other.

A special situation. Suppose that we have the special situation where each seg-
ment (including the end-segments) precedes the next segment. Consider again
the last normal segment S′, ending in block vk−3, vk−2, vk−1, vk. We first note
that since there are no induced cycles of length greater than 4, and no blocks
after the block vk−3, vk−2, vk−1, vk, there cannot be any forward edges from
vk−1, vk, vk+1, . . .. By the same argument and the absence of alternating 4-cycles,
there are no forward edges from vk−2 either.

Our special assumption implies that vk−3vk+2 is an edge. Then vk−3 has also
an edge to vk+4, otherwise we have a signed graph of type b) from family F
in Figure 2, induced on the vertices vk−1, vk−2, vk−3, vk+2, vk+3, vk+4. It is easy
to check that the subgraph is induced because otherwise there would be either
another block, or an alternating 4-cycle. Then we argue similarly that vk−3 has
also an edge to vk+6, and so on, concluding by induction that the last forward
source vk−3 has all possible forward edges, and that no vertex after vk−3 has
any forward edges. Because of the absence of alternating 4-cycles, also the vertex
vk−4 has no forward edges, so if vk−5 is a forward source in S′, we can use the
same arguments to conclude it has all forward edges. Thus each forward source
vk−o of S′ (with odd o > 3) has all possible forward edges. We conclude the last
segment S′ is right-leaning, and there are no other forward edges (starting in its
vertices or later) than those mandated by this fact.

We proceed by induction from the last segment to the first segment to show
that in this special situation all segments are right-leaning and there are no
other forward edges at all. The proof is analogous to the preceding paragraph.
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Consider for instance a segment S ending in block vi, vi+1, vi+2, vi+3: since it
precedes the next block, its last forward source, vi has all possible forward edges
until vs where s > j+1 and the next segment begins with vj . Now the arguments
can be repeated, starting with avoiding a signed graph of type b) from family
F in Figure 2 induced on the vertices vi+2, vi+1, vi, vs, vs+1, vs+2. Finally, the
vertices in the left end-segment cannot have any forward edges, as the absence
of other blocks and of induced cycles of length greater than 4 implies there would
have to be an edge vf−5vf where vf is the first backward source, contrary to the
assumption that the left end-segment precedes the first normal segment.

Thus we have proved that if each segment precedes the next segment, then Ĥ
is a right-segmented graph. By symmetric arguments, we obtain the case of left-
segmented signed graphs by assuming that each segment precedes the previous
segment. It remains to consider the cases where some segment precedes, or is
preceded by, both its left and right neighbours. Our goal is to prove that in that
case, List Ĥ-Colouring is NP-complete if Ĥ is not left-right-segmented.

The general situation. It turns out that the case where two segments S1 and
S3 both precede the intermediate segment S2 is impossible. Suppose S2 has
vertices va, va+1, . . . , vb; in particular, this implies that vavb is an edge. Since
each segment before S2 precedes the next segment, the previous arguments apply
to the portion of the vertices before S2, and in particular the vertex va−2 is not
a forward source, hence has no forward edges; therefore va−2 is not adjacent to
vb. By a symmetric argument, there is no edge vavb+2. There is also no edge
va−1vb+1 because it would form an alternating 4-cycle with vavb. Therefore,
va−2, va−1, va, vb, vb+1, vb+2 induce a signed graph of type b) from family F in
Figure 2, a contradiction.

We conclude that if S1 precedes the next segment S2, then S2 must precede
the following segment S3, and so on, and similarly if S3 precedes the previous
segment S2.

Hence it remains only to consider the situation where a unique segment S2,
with vertices va, va+1, . . . , vb precedes both its left neighbour S1 and its right
neighbour S3 and to the left of S1 each segment precedes its left neighbour, and
to the right of S3 each segment precedes its right neighbour. This implies that
all segments before S2 are left-leaning, all segments after S2 are right-leaning,
while S2 is both left-leaning and right-leaning.

To prove that in this situation the signed graph Ĥ is left-right-segmented,
we show that all edges va−eva+o are present, with e even and o odd. This is
obvious when e = 0 and o ≤ b − a, by the observations following the defini-
tion of a segment. We also have the edges vavb+2, va−2vb since the segment S2

is both left-leaning and right-leaning. Then we must have the edge va−2vb+2

else there would be the chain U = va, va−1, va−2, vb, D = va, vb+2, vb+1, vb. We
have the edge vavb+4 since va is a forward source, and thus we must also have
the edge va−2vb+4; otherwise, there is the chain U = va, va−1, va−2, vb+2, D =
va, vb+4, vb+3, vb+2. Continuing this way by induction on e+ o we conclude that
all edges va−eva+o, with e even and o odd, must be present. This completes
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the proof of NP-completeness for any path-separable signed graph that is not
segmented.

2.2 The polynomial cases

To show that List Ĥ-Colouring is polynomial when Ĥ is a segmented signed
graph, we show that Ĥ has a special bipartite min ordering.

Theorem 9. Let Ĥ be a path-separable signed graph. If Ĥ is a segmented signed
graph, then Ĥ has a special bipartite min ordering and thus, List Ĥ-Colouring
is polynomial-time solvable.

Proof. We distinguish two cases: Ĥ being right-segmented or left-right-segmen-
ted.

Case 1. We now describe a special bipartite min ordering of the vertices for the
case of a right-segmented signed graph, with the unicoloured path P . Consider
two white vertices u and v that are forward sources such that u precedes v on
P . Then all forward neighbours of v are also forward neighbours of u, and all
backward neighbours of u are also backward neighbours of v. White vertices z
that are not forward sources have edges from all black forward sources w that
precede z on P . We now construct a bipartite min ordering <: order the white
vertices that are forward sources in the forward order, then order the remaining
white vertices in the backward order. The same ordering is applied on black
vertices. It now follows from our observations above that this is a special min
ordering. For left-segmented graphs, the ordering is similar.

Case 2. We now describe a special min ordering < for the case of a left-right-seg-
mented signed graph Ĥ; we consider its vertices in the order of the unicoloured
path P . We may assume the left-right-leaning segment begins with a white vertex
a and ends with a black vertex b. We denote by a′ the (black) successor of a on
P , and by b′ the (white) successor of a′ on P . We also denote by L the set of

backward sources and by R the set of forward sources of Ĥ, and denote by U
the portion of P from its first vertex to a′, and by V the remaining portion of
P , from b′ to its last vertex. Then the min ordering < we construct has white
vertices ordered as follows: first the vertices in U ∩ L listed in backward order
on P , then the vertices of U \ L listed in forward order on P , followed by the
vertices in V ∩ R in forward order, and then the vertices of V \ R in backward
order. Similarly, the black vertices are ordered as follows: first the vertices of
V ∩R in forward order, then vertices of V \R in backward order, then vertices
of U ∩ L in backward order, and finally the vertices of U \ L in forward order.

To check that < is a min ordering we consider where could a violation of the
min ordering property lie. A violation would consist of white vertices x < y and
black vertices s < t such that xt, ys are edges of Ĥ but xs is not.

We observe that all white vertices in U join all black vertices in V , and no
black vertex in U joins a white vertex in V with the exception of a′ joining b′.
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1. x lies in U ∩ L: In this case, x is adjacent to all black vertices in V , all
black vertices before x on P and to its immediate successor and predecessor
on P . As x belongs to L, its predecessor and its successor belong to U\L
and are its only unicoloured neighbours. Therefore the non-neighbours of x
are in U\L, and ordered in < later than its neighbours. A violation cannot
occur. Moreover, we observe that its bicoloured neighbours all precede its
unicoloured neighbours in < and hence we also verify the special property
of a min ordering for x.

2. x lies in U\L: This situation implies s ∈ U and since s < t, t ∈ U also. If
s follows x on P , then s ∈ U\L giving t ∈ U\L which means xt cannot be
an edge. On the other hand, if s precedes x on P , the edge ys implies y ∈ U
and the ordering x < y implies y ∈ U\L giving ys cannot be an edge. It is
easy to check that the special property holds in this case also.

3. x ∈ V \R: Since x < y, we must have y ∈ V \R as well and y precedes x
on P . The only black vertices adjacent to y with a bicoloured edge must
lie to the left of y on P and therefore to the left of x. Such vertices join x
with a bicoloured edge as well. Thus s ̸∈ R and must be adjacent to y by a
unicoloured edge. Since s < t and t ∈ V (no black vertex in U can join x),
we have t precedes s on P and t ̸∈ L. Now tx cannot be an edge. The special
property is straightforward to verify.

4. x ∈ V ∩R: Since x is a forward source s must precede x on P . If s ∈ V , then
s ∈ V \R as sx is not an edge. Since xt is an edge, t ∈ V and s < t implies
t ∈ V \R contradicting xt is an edge. If s ∈ U , then t ∈ U contradicting the
existence of at least one of ys or xt.

It is easy to check that the special property holds in all cases, and that it also
holds for all black vertices. Thus our ordering is a special min ordering and we
can use the result from [6, 25] which asserts that for semi-balanced signed graphs,
the existence of a special min ordering ensures the existence of a polynomial-time
algorithm.

3 Cycle-separable signed graphs

As an application of Theorem 7, we now consider irreflexive signed graphs in
which the unicoloured edges form a spanning cycle C. Recall that we say that
an irreflexive signed graph Ĥ is cycle-separable if the unicoloured edges of Ĥ
form a spanning cycle in the underlying graph H. In other words, we have a
spanning cycle C whose edges are all unicoloured, and all the other edges of Ĥ
are bicoloured.

In contrast to the path-separable signed graphs, we cannot assume the edges
of C are all blue, and hence our signed graphs in this section are not semi-
balanced, and we cannot use Theorem 6. However, we note that the spanning
cycle C = v0v1 . . . vn−1 is again unique.

The polynomial cases. We first introduce three cycle-separable signed graphs
(actually one is a family of graphs) for which the list homomorphism problem
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will turn out to be polynomial-time solvable. The signed graph Ĥ0 is the 4-cycle
with all edges unicoloured blue. The signed graph Ĥ1 consists of a blue path
b = t0, t1, t2, t3 = w, a blue-red-blue path b, s1, s2, w, together with a bicoloured
edge bw. The signed graph Ĥℓ consists of a blue path b, s1, s2, w, a blue path
b = t0, t1, t2, . . . , tℓ = w (with ℓ ≥ 3 odd), and all bicoloured edges titj with
even i and odd j, j > i + 1. (Note that this includes the edge bw.) These three
cycle-separable signed graphs Hk, k = 0, 1, ℓ, are illustrated in Figure 5. Note
that if the subscript k is greater than 0, then it is odd. Moreover, both H1 and
H3 have 6 vertices and differ only in the colours of the unicoloured edges forming
the spanning cycle C: H1 has the cycle C unbalanced, and H3 has the cycle C
balanced.

b = t0

t1
t2 t3

w = t`

s1 s2s1 s2

t2t1

Ĥ0 Ĥ1 Ĥ`

b = t0 w = t3

Fig. 5. The cycle-separable signed graphs Ĥ0, Ĥ1, and Ĥℓ with ℓ ≥ 3 odd.

For the rest of this section, our goal is to prove the following theorem.

Theorem 10. Let Ĥ be a cycle-separable signed graph. Then List Ĥ-Colour-
ing is polynomial-time solvable if Ĥ is switching equivalent to Ĥ0, or to Ĥ1, or
to Ĥℓ for some odd ℓ ≥ 3. Otherwise, the problem is NP-complete.

3.1 The NP-complete cases

We prove the following theorem by contrapositive, assuming List Ĥ-Colour-
ing is not NP-complete. We will provide a series of observations excluding more
obvious cases which will leave us with graphs from Figure 5 and with one ad-
ditional family of cycle-separable graphs. We will show an NP-completeness re-
duction for the latter.

Theorem 11. Let Ĥ be a cycle-separable signed graph. If Ĥ is not switching
equivalent to any of the graphs from Figure 5, then List Ĥ-Colouring is NP-
complete.

Proof. Suppose Ĥ is a cycle-separable signed graph for which List Ĥ-Colour-
ing is not NP-complete. As Ĥ is irreflexive, it must be bipartite. If Ĥ has no
bicoloured edges, then it must be a balanced even cycle of length 4, i.e., Ĥ is
switching equivalent to Ĥ0.
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Now suppose that Ĥ has at least 6 vertices and the spanning cycle C with
cyclically ordered vertices v0, v1, . . . , vn−1, v0. Without loss of generality all edges

are blue with the possible exception of v0v1. Consider Ĥ − v0. This is switch-
ing equivalent to a segmented signed graph with spanning path v1, v2, . . . , vn−1

(where n is even), and thus it has the structure described above.
By symmetry, there is a right-leaning segment. Let vi be the first vertex of

the first right-leaning segment. Then vi+1 has degree 2 in Ĥ − v0 and degree

2 in Ĥ unless v0vi+1 is a bicoloured edge. If v0vi+1 is an edge, then i + 1 is
odd and the forward source vi sends a bicoloured edge to each vo for o odd with
i+3 ≤ o ≤ n−1. Consequently, v0vi+1vivn−1v0 is an alternating 4-cycle contrary

to our assumption that List-S-Hom(Ĥ) is not NP-complete. We conclude vi+1

has degree 2 in Ĥ.
Rename the vertices of the underlying graphH so that v0 is a vertex of degree

two. The signed graph Ĥ − v0 is path-separable. We are assuming that the list
homomorphism problem for Ĥ − v0 is not NP-complete, so Theorem 7 implies
that Ĥ − v0 is switching equivalent to a segmented signed graph with spanning
path P = v1, v2, . . . , vn−1. In particular, we may switch so the spanning path
v1, v2, . . . , vn−1 of unicoloured edges is all blue, the edge v0vn−1 is blue, and the
edge v0v1 may be red of blue (depending on the sign C).

By symmetry, we may assume v2 is adjacent to vn−1 (recall n is even), oth-

erwise Ĥ contains an induced cycle of length greater than four. Thus we have a
4-cycle v0, v1, v2, vn−1, v0.

Assume first that v2, v3, v4, v5, v2 is also a 4-cycle. Then we must have that
v4vn−1 is also an edge, otherwise Ĥ would have 4-cycle pair. If v1v4 is an
edge, then we have an alternating 4-cycle. If v6vn−1 is not an edge, then the
path v6, v5, v4, vn−1, v0, v1 is a case (b) of family F in Figure 2. Similarly, v1v6
is not an edge and v2v7 is. By repeating this argument, we conclude that
v8vn−1, . . . , vn−4vn−1 and v2v9, . . . , v2vn−3 must also be edges. Thus using our

descriptions of the polynomial path-separable cases, we conclude that Ĥ − v0 −
v1 = v2, v3, . . . , vn−1 is just one segment. If vn−1, vn−2, vn−3, vn−4 is a 4-cycle,
the argument is similar.

If neither v2, v3, v4, v5 nor vn−1, vn−2, vn−3, vn−4 is a 4-cycle, then from The-

orem 7 we conclude that Ĥ − v0 is left-right-segmented, with a left-right-leaning
segment S not at the end of P . This is easy to dismiss, because there would
be a P5 (case (b) of family F) involving the segment S and the vertex v0. In

conclusion Ĥ − v0 − v1 is just one segment. We label the vertices of Ĥ as in
Figure 5, namely, the segment v2, . . . , vn−1 is b = t0, t1, . . . , tℓ = w and the path
v2, v1, v0, vn−1 is b, s1, s2, w.

If the cycle C is balanced, then Ĥ is switching equivalent to some Ĥℓ with
ℓ ≥ 3. If the cycle C is unbalanced and n = 6, then Ĥ is switching equivalent to
Ĥ1. In fact, Ĥ has only the edge s1s2 red. We will show later (in Theorem 12)
that both these cases are polynomial-time solvable.

The main case. Therefore, assume that Ĥ has n > 6 and its spanning cycle C
is unbalanced. Without loss of generality, assume the path b, t1, . . . , tℓ−1, w is
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blue and the path b, s1, s2, w is red. The vertices of the segment b, s1, s2, w are
called the s-vertices and the vertices of the segment b, t1, . . . , tℓ−1, w are called
the t-vertices.

We now prove that in this case List Ĥ-Colouring is NP-complete. Unfor-
tunately, we cannot use a chain (the graph is not semi-balanced so Theorem 6
does not apply). We will instead reduce from one of the NP-complete cases of
Boolean satisfiability dichotomy theorem of Schaefer [28].

The problem. An instance of the problem is a set of Boolean variables V and a set
of quadruples R over these variables. The problem asks if there is an assignment
of 0, 1 to the variables so that for every quadruple (a′, b′, c′, d′) ∈ R, the Boolean
expression (a′ = b′ = c′ = d′) ∨ (a′ ̸= c′) is satisfied.

Schaeffer [28] proved that a Boolean constraint satisfaction problem is NP-
complete except for the well known polynomial cases of 2-SAT, Horn clauses,
co-Horn clauses, linear equations modulo two, or when the only satisfying as-
signments are the all true or the all false assignments. To see that our problem
is not expressible as 2-SAT, consider the following three satisfying assignments
for (a′, b′, c′, d′): (1, 1, 1, 1), (1, 0, 0, 0), (0, 0, 1, 0).

It is well known, see e.g. [13] Lemma 4.9, that any problem expressible as
2-SAT has the property that the majority function on three satisfying assign-
ments must also be a satisfying assignment. However, for our three assignments
the majority function yields the assignment (1, 0, 1, 0) which is not satisfying.
Similarly, our problem is not expressible as Horn clauses (respectively co-Horn
clauses) because the minimum (respectively maximum) function on the two
satisfying assignments (0, 1, 1, 0), (1, 1, 0, 0) is not a satisfying assignment, cf.
Lemma 4.8 in [13]. Finally, our problem is not expressible by linear equations
modulo two because the sum modulo two of the three satisfying assignments
(1, 1, 1, 1), (1, 1, 0, 1), (0, 1, 1, 1) results in the assignment (0, 1, 0, 1) which is not
satisfying, cf. Lemma 4.10 in [13]. Thus our problem is one of the NP-complete
cases.

Gadgets. Consider an instance R (over V ) of our satisfiability problem. We shall

now construct a signed graph Ĝ with lists such that Ĝ admits a list homomor-
phism to Ĥ if and only if there is a satisfying assignment for the set of quadruples
R.

For each quadruple (a′, b′, c′, d′), we shall construct a copy of the gadget
Q(a′, b′, c′, d′) (with lists) as in Figure 6. Observe that the images of a′, b′, c′ and
d′ are all fixed. The remaining vertices, which we call inner vertices, must all
map to the t-vertices or must all map to the s-vertices.

A variable, say r, can appear in multiple quadruples. In this case, there
will be a vertex corresponding to r for each quadruple. If r appears multiple
times in the first or second coordinate, then we add a vertex xr to Ĝ and a
blue edge from xr to each occurrence of r (in the first two coordinates). The
vertex xr has the list {t1}. Similarly, if r appears in the last two coordinates
(corresponding to c′ and d′) of multiple quadruples, then a vertex yr with list

{tℓ−1} is added to Ĝ together with blue edges joining yr to each occurrence of r
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in the last two coordinates. Finally if r occurs in the first or second coordinate
in one quadrangle, say as r′, and in the third or fourth coordinate of another
quadrangle, as r′′, then a blue path r′, r1, r2, . . . , rℓ−1, r

′′ is added to Ĝ with
L(ri) = {ti} for each i = 1, 2, . . . , ℓ− 1. This path needs only to be added once

for the variable r. Observe at this point between any two occurrences of r in Ĝ,
there is a blue path whose image under any homomorphism to Ĥ is uniquely
determined by its lists. Moreover, the image of each such path is a positive walk.
Consequently, under any list homomorphism Ĝ → Ĥ either no occurrence of r
is switched or all occurrences of r are switched.

{b}

{t3, s1}

{t1, s1}

{b}

{t2, s2}
{t3, s1}

{tk−2, s1}

{tk−1, s2}

{t`−3, s2}

{w}

{w}

a′

b′

c′

d′

{t4, s2}

{t5, s1}

repeat vertices s1, s2

Fig. 6. A quadruple gadget Q(a′, b′, c′, d′).

Proof of reduction. We claim that there exists a satisfying assignment for R if
and only if there is a list homomorphism of Ĝ to Ĥ.

Let f : Ĝ → Ĥ be a list homomorphism. We define an assignment πf : V →
{0, 1} by setting the variable r to 1 if an occurrence of r in Ĝ is switched under the
homomorphism f and setting r to 0 otherwise. As observed above, under f , all
occurrences of r are switched or no occurrence is switched. Thus the assignment
πf is a well defined.

To complete the reduction we show πf is a satisfying truth assignment. Con-
sider a particular copy of the gadget Q(a′, b′, c′, d′) and consider the quadruple
(πf (a

′), πf (b
′), πf (c

′), πf (d
′)). For vertices u, v in Q, let P (u, v) denote the path

from u to v in the copy of Q. Initially, P (a′, b′) and P (c′, d′) are both positive
paths, while

P (a′, c′), P (a′, d′), P (b′, c′), P (b′, d′)

are all negative. Switching an end point of a path changes the sign of the path
while switching an interior vertex of the path leaves its sign unchanged. The
crucial observation is that after we fix switchings at endpoints, the signs of the
paths P (a′, c′), P (a′, d′), P (b′, c′), P (b′, d′) (let us call them main paths) are
invariant upon switching at some inner vertices of the gadget.

The last thing we need to argue is that certain switchings of the endpoints of
the quadruple gadget are not possible and some of them are possible. We denote
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a particular switching as a quadruple (sa′ , sb′ , sc′ , sd′) with zeroes and ones with
the meaning that one corresponds to not being switched and zero corresponds
to being switched.

The images of a′, b′, c′ and d′ under f are uniquely determined by their lists.
The remaining vertices, which we call inner vertices, must all map to the t-
vertices or must all map to the s-vertices. That is, for a given quadruple gadget,
its inner vertices must all choose either the first element described in its list or
the second in every possible list homomorphism. We consider the two cases.

– The internal vertices map to the t-vertices. In this case P (a′, c′) maps to

b, t1, t2, . . . , tℓ−1, w. This path is positive in Ĥ while P (a′, c′) is negative in
Q. Thus exactly one of a′ or c′ must be switched under f . That is, πf (a

′) ̸=
πf (c

′) and (πf (a
′), πf (b

′), πf (c
′), πf (d

′)) is a satisfying truth assignment. The
bicoloured edges bt3 and tℓ−3w ensure b′ and d′ can be switched or not
independently of a′, c′ and each other.

– The internal vertices map to the s-vertices. In this case all of P (a′, c′),
P (a′, d′), P (b′, c′), and P (b′, d′) map to b, s1, s2, s1, . . . , s2, w. As the four

paths in Q and the image (walks) in Ĥ are all negative, it follows that either
all of {a′, b′, c′, d′} are switched or none is switched. Thus πf (a

′) = πf (b
′) =

πf (c
′) = πf (d

′) and again we have a satisfying truth assignment for the
quadruple.

Conversely, assume we have a satisfying truth assignment, say π : V → {0, 1}.
For each variable r, switch all occurrences of r if and only if π(r) = 1. As
observed above, all paths between occurrences of r are (still) positive and ad-

mit a list homomorphism to Ĥ. Consider a particular quadruple Q(a′, b′, c′, d′).
If π(a′) ̸= π(c′), then (after switching), the path P (a′, c′) is positive; hence,
we can switch internal vertices in Q to make the path blue. We map it to
b, t1, . . . , tℓ−1, w. We map P (a′, b′) to b, t1, t2, t3, b. Since the edge bt3 is bi-
coloured, (after possibly switching at the neighbour of b′) this mapping is a
list homomorphism. A similar analysis works for the path P (c′, d′). Thus, Q ad-

mits a list homomorphism of Ĥ. If π(a′) = π(b′) = π(c′) = π(d′), then all or
none of a′, b′, c′, d′ are switched. In this case, the internal vertices of Q can be
switched so all the edges are red. Hence, Q maps to the path b, s1, s2, w which
again is the desired list homomorphism.

3.2 The polynomial cases

Next we show that the corresponding problem can be solved in polynomial time
for all the remaining cycle-separable signed graphs, illustrated in Figure 5.

Theorem 12. List Ĥ-Colouring is polynomial-time solvable if Ĥ is switch-
ing equivalent to Ĥ0, or to Ĥ1, or to Ĥℓ for some odd ℓ ≥ 3.

Proof. The proof is divided into three cases.

20



Case 1: If Ĥ is switching equivalent to Ĥ0, then List Ĥ-Colouring is polynomial-
time solvable by Theorem 4.

Case 2: If Ĥ is switching equivalent to Ĥℓ with ℓ ≥ 3, ℓ odd, then List Ĥ-
Colouring is polynomial-time solvable by Theorem 6. Specifically, we claim
that Ĥℓ has a special min ordering. To see this, remove the vertices s1 and
s2, obtaining a path-segmented signed graph Ĥ ′ consisting of just one segment.
According to Section 2.2, Ĥ ′ has a special min ordering < in which b = t0 <
t2 < t4 < . . . and w = tℓ < tℓ−2 < tℓ−4 < . . . . To obtain a special min

ordering of Ĥℓ we simply add the vertices s1, s2 at the end of <, i.e., we set
b = t0 < t2 < t4 < · · · < s2 and w = tℓ < tℓ−2 < tℓ−4 < · · · < s1. The vertex
t2i, i > 0, has bicoloured edges to tℓ, tℓ−2, . . . , t2i+3 and unicoloured edges to
t2i+1, t2i−1. Similarly for t2i−1. Further, since b and w are adjacent with all

vertices of the opposite colour, this is a special min ordering of Ĥℓ.

Case 3: It remains to handle the final case when Ĥ is switching equivalent to Ĥ1

In this case Ĥ is not semi-balanced and hence a different technique is needed.
Note however that Ĥ1 does have a special min ordering, identical to that for
Ĥ3 — Ĥ1 and Ĥ3 only differ in the colour of some unicoloured edges, which
is irrelevant in the definition of special min ordering. The following technique,
transforming the problem to solving a system of linear equations, is inspired by
our proofs in the case of signed trees [3], where more details can be found.

Preprocessing. Let Ĝ together with lists L be an instance of List Ĥ1-Colour-
ing. We may assume G is connected and bipartite. We will call the vertices of
parts of bipartition in Ĝ black and white as well. First, we try mapping the
black vertices of Ĝ to the black vertices of Ĥ1. If that fails, we try mapping the
white vertices of Ĝ to the black vertices of Ĥ1. In the former case we remove
all white (respectively black) vertices from the lists of the black (respectively

white) vertices in Ĝ. The latter case is analogous. Thus we may assume we are
mapping black vertices to black vertices and white vertices to white vertices.

Next we apply to the underlying graphs of Ĝ, Ĥ1 the arc consistency proce-
dure from [14] (see Algorithm 4 in [23]); we also apply the same procedure to the
graphs spanned by the bicoloured edges. If any list becomes empty then there
is no list homomorphism of the underlying graphs and hence no list homomor-
phism of Ĝ to Ĥ1. Otherwise choosing the minimum of each list (with respect
to the special min ordering) defines a list homomorphism f of the underlying
graphs, in which moreover bicoloured edges are taken to bicoloured edges.

As a result, f maps any bicoloured edge of Ĝ to the edge bw in Ĥ1, Moreover,
all vertices v of Ĝ which have b or w in their post-consistency lists (black vertices
v with b ∈ L(v) and white vertices v with w ∈ L(v)) must have f(v) = b or
f(v) = w because they b, w are the smallest black and white vertices respectively,

in the special min ordering of Ĥ1. We call all vertices with f(v) = b or f(v) = w
boundary vertices, and the remaining vertices interior vertices. Thus interior
vertices cannot map to b, w by any homomorphism, as b, w are not in their
post-consistency lists.

21



The interior vertices of Ĝ form a union of components. Consider such a
component K. The subgraph of Ĝ induced by K is called a region. For each
region, either all its vertices map to s1, s2 or all map to t1, t2.

Thus all the edges of the regions and all the edges joining interior vertices to
boundary vertices are unicoloured.

Handling regions. Let K be a region. We will now decide whether K will be
mapped to s1, s2 or to t1, t2, and determine an appropriate switching of the
boundary vertices to make this a homomorphism.

Under any list homomorphism to Ĥ1 the image of K is a single edge. In
particular, K must be balanced. Hence we can switch vertices of K so that
the edges are all blue, and then identify the black vertices and identify the
white vertices so that K is now a single blue edge on vertices k1, k2. The region
has boundary vertices consisting of u1, u2, . . . mapping to b (adjacent to k1)
and v1, v2, . . . (adjacent to k2) mapping to w. We need to switch the boundary
vertices so that the subgraph induced by region and its boundary vertices is a
balanced subgraph that maps to b, t1, t2, w or an anti-balanced subgraph that
maps to b, s1, s2, w.

Note that under any suitable homomorphism, the input graph Ĝ must be
switched so that each walk from vi to vj whose internal vertices belong to K
is positive, and similarly for ui to uj . To determine the switching we solve (in
polynomial time) a system of linear equations modulo two. For each boundary
vertex vi, we will introduce a variable xi with value 1 intended to mean the
vertex is switched and 0 meaning it is not switched. Similarly we introduce a
variable yi for each vertex ui.

If there is a positive walk from vi to vj , we include the equation xi = xj ,
for all i, j. Similarly, if there is a negative walk, we include xi ̸= xj . We proceed
similarly for u1, u2, . . . and the variables yi.

Linear equations. Finally, we introduce linear equations to determine the signs
of walks from vi to uj . If K can only map to t-vertices, then the walks between
vi and uj must be positive. We code the needed switching with xi = yj if there

is a positive walk from vi to uj in Ĝ and xi ̸= yj if there is a negative walk.
Similarly, if K can only map to s-vertices, we must switch to make all walks
between vi and uj negative. If K has a choice, then we can use a variable zk that
is 0 if K maps to t-vertices and 1 if K maps to s-vertices. For this situation, we
include the equation xi = yj + zk if there is a positive walk from vi to uj and
xi = yj + zk +1 if there is a negative walk. After repeating this construction for
each region, we have our desired system of linear equations.

It is easy to see that if the system of linear equations has no solution, then
there is no list homomorphism to Ĥ1. Otherwise, a solution identifies a switching
for all boundary vertices which allows each region to map to Ĥ1.

Thus we have transformed the final case to a polynomial problem of a system
of linear equations, completing the proof of Case 3.
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4 Conclusion

It seems difficult to give a full combinatorial classification of the complexity of
list homomorphism problems for general signed graphs. For irreflexive signed
graphs, which are in a sense the core of the problem, there is a conjectured
classification in [25]. Here we have obtained a full dichotomy classification in the
special case of separable irreflexive signed graphs. The classification confirms
the dichotomy conjecture of [25] for this case, and also confirms that the only
polynomial cases enjoy a special min ordering and the only NP-complete cases
have chains or invertible pairs, as also conjectured in [25].
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