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1 Università Degli Studi Roma Tre, Italy
takoboris.fouotsa@uniroma3.it
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Abstract. The SIDH key exchange is the main building block of SIKE,
the only isogeny based scheme involved in the NIST standardization
process. In 2016, Galbraith et al. presented an adaptive attack on SIDH.
In this attack, a malicious party manipulates the torsion points in his
public key in order to recover an honest party’s static secret key, when
having access to a key exchange oracle. In 2017, Petit designed a passive
attack (which was improved by de Quehen et al. in 2020) that exploits
the torsion point information available in SIDH public key to recover
the secret isogeny when the endomorphism ring of the starting curve is
known.
In this paper, firstly, we generalize the torsion point attacks by de Quehen
et al. Secondly, we introduce a new adaptive attack vector on SIDH-
type schemes. Our attack uses the access to a key exchange oracle to
recover the action of the secret isogeny on larger subgroups. This leads
to an unbalanced SIDH instance for which the secret isogeny can be
recovered in polynomial time using the generalized torsion point attacks.
Our attack is different from the GPST adaptive attack and constitutes a
new cryptanalytic tool for isogeny based cryptography. This result proves
that the torsion point attacks are relevant to SIDH4 parameters in an
adaptive attack setting. We suggest attack parameters for some SIDH
primes and discuss some countermeasures.

Keywords: Post-quantum cryptography · cryptanalysis · adaptive at-
tacks · SIDH.

1 Introduction

The first isogeny-based cryptographic schemes are the CGL (Charles-Goren-
Lauter) hash function [5] and the CRS (Couveignes-Rostovtsev-Stolbunov) key
exchange [31,10]. The CRS scheme is a Diffie-Hellman type key exchange scheme
using ordinary isogenies of elliptic curves. It is vulnerable to a sub-exponential
quantum hidden shift like attack [6] and is not practically efficient.

In 2011, Jao and De Feo proposed SIDH [24,15] that uses isogenies of su-
persingular elliptic curves. SIDH is efficient and it is not vulnerable to the sub-
exponential quantum attack presented in [6]. Nevertheless, a recent paper by

4 Disclaimer: this result is applicable to SIDH-type schemes only, not to SIKE.
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Kutas et al. [26] proves that hidden shift like attacks apply to variants of SIDH
with considerably overstretched parameters. The problem of computing isogenies
between given supersingular elliptic curves is somehow new in cryptography. Its
relation with the supersingular endomorphism ring computation problem have
been studied in [30,12]. A rigorous proof of the equivalence between the two
problems was recently proposed by Wesolowski [38].

Contrarily to the ordinary case where isogenies commute, supersingular iso-
genies do not commute in general. In order to solve this issue in SIDH, the images
of some well-chosen torsion points trough the secret isogeny are computed and
included in the public keys. This implies that the hard problem underlying the
security of SIDH is different from the general supersingular isogeny problem.
Moreover, this torsion points have been used in designing adaptive and passive
attacks on SIDH and/or its (unbalanced) variants.

The most relevant adaptive attack (excluding side channel attacks) on SIDH
is due to Galbraith, Petit, Shani and Ti (GPST) [20]. They suppose that one
honest party Alice uses a static secret key, and the other malicious party Bob
performs multiple key exchanges with Alice. The main idea of the attack is that
Bob replaces the images of the torsion points in his public key by malicious ones
and obtains some information on Alice’s static secret isogeny when looking at the
obtained shared secret. Repeating this process a polynomial number of times,
Bob totally recovers Alice’s private key. The pairing-based key validation method
present in SIDH does not detect the GPST adaptive attack. In SIKE [23] (Su-
persingular Isogeny Key Encapsulation), the GPST adaptive attack is avoided
by leveraging SIDH with a variant [22] of the Fujisaki-Okamoto transform [17].

The first passive torsion points attacks are due to Petit [29] and were recently
improved by de Quehen et al. [11]. These attacks combine the availability of the
endomorphism ring of the starting curve E0 in SIDH and the torsion point
information available in SIDH public keys, to compute a suitable endomorphism
of Alice’s public curve EA. The secret isogeny is then recovered using the later
endomorphism. For sufficiently unbalanced SIDH parameters (the degrees of the
secret isogenies of the parties are of different size), the latest version of the
attack [11] is more efficient compared to the generic meet in the middle and
the van-Oorschot - Wiener (vOW) attack [36]. For balanced parameters (the
degrees of the secret isogenies of both parties are approximately of the same
size), the quantum version of the attack is as efficient as the best known quantum
attacks [11, Figure 1]. Other passive attacks exploiting the availability of torsion
points in the public key are described in [16,26].

The improved torsion points attacks do not apply to SIKE and BSIDH [7]
parameters since these parameters are balanced. Therefore, one may argue that
they are not relevant to SIDH, BSIDH or any other SIDH like schemes using
balanced isogenies degrees.

Contributions. The contribution of this paper is twofold.

First, we revisit the torsion point attacks. The torsion point attacks are
used to recover a secret isogeny φ : E0 → E of degree NA when the images of
torsion points of order NB in E0 are provided. We prove that one can tweak the
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algorithm in such a way that it recovers φ when only the images of three cyclic
disjoint groups G1, G3, G3 ⊂ E0[NB ] of order NB are provided. This constitutes
a generalisation of the torsion point attacks and will be useful in the design of
our adaptive attack.

Secondly, we design a new adaptive attack on SIDH-types schemes, including
BSIDH. Our attack uses torsion point attacks as a subroutine.

Let φA : E0 → EA be Alice’s secret static isogeny in an SIDH instance.
Let NA and NB be the isogeny degrees of Alice and Bob respectively. Our at-
tack actively recovers the images through φA of three cyclic disjoint groups
G1, G3, G3 ⊂ E0[NNB ] of order NBN where N is a well chosen integer coprime
to NA. This leads to an unbalanced SIDH instance for which the torsion point
attacks can be used to recover the secret isogeny in polynomial time.

Our attack differs from the GPST adaptive attack as follows. In the GPST
adaptive attack, the malicious Bob computes isogenies of correct degrees NB and
manipulates torsion point images. Our attack consists of computing isogenies of
degrees larger than NB and scaling the torsion point images by a suitable scalar
to make the public key pass the pairing-based key validation method in SIDH.
One then utilises the torsion point attack to recover the secret.

We prove that our attack runs in polynomial time. We provide specific at-
tack parameters for SIDH primes $IDHp182, $IDHp217, SIDHp377, SIDHp434,
SIDHp503 and SIDHp546. For these SIDH primes, the attack fully recovers
Bob’s secret isogeny querying a few tens of thousand times the key exchange
key exchange oracle. Determining specific attack parameters for BSIDH primes
is computationally intensive. We only give an example of generic attack param-
eters for the smallest BSIDH prime. We suggest countermeasures among which
the Fujisaki-Okamoto transform (as used in SIKE), using SIDH proof of isogeny
knowledge as recently proposed in [14] or setting the starting curve in SIDH to
be a random supersingular curve with unknown endomorphism ring.

The torsion point attacks do not apply to SIDH parameters [11, §1.1 Figure
1] since they do not (yet) outperform generic passive attacks such as the meet
in the middle on SIDH parameters. This attack comes as an ice breaker. This
result, despite being less efficient when compared to the GPST adaptive attack,
it proves that the torsion point attacks become relevant to SIDH and BSIDH
parameters in an adaptive attack setting. Moreover, this attack vector is the
first of its kind. It exploits the fact that in an SIDH instance, the pairing check
does not suffices to convince Alice that Bob effectively computed an isogeny of
degree NB . We believe this attack fosters the understanding of SIDH and is a
new cryptanalytic tool for isogeny based cryptography.

Outline. The remaining of this paper is organized as follows: in Section 2, we
recall some generalities about elliptic curves and isogenies. We briefly present
SIDH and the GPST adaptive attack. In Section 3, we present the torsion point
attacks and describe our generalisation. In Section 4 we present an overview of
our attack and describe the active phase. We also discuss the computation of the
attack parameters and summarize the attack. In Section 5, we suggest attack
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parameters for some SIDH primes and we briefly describe some countermeasures.
We conclude the paper in Section 6.

2 Preliminaries

2.1 Elliptic curves and isogenies

An elliptic curve is a rational smooth curve of genus one with a distinguished
point at infinity. Elliptic curves can be seen as commutative groups with respect
to a group addition having the point at infinity as neutral element. When an
elliptic curve E is defined over a finite field Fq, the set of Fq-rational points
E(Fq) of E is a subgroup of E. For every integer N coprime with q, the N -
torsion subgroup E[N ] of E is isomorphic to ZN ⊕ ZN .

An isogeny from E to E′ is a rational map from E to E′ which is also a
group morphism. The kernel of an isogeny is always finite and entirely defines
the isogeny up to powers of the Frobenius. Given a finite subgroup G of E, there
exists a Frobenius free isogeny of domain E having kernel G, called a separable
isogeny. Its degree is equal to the size of its kernel. The co-domain of this isogeny
is denoted by E/G. The isogeny and the co-domain E/G can be computed from
the knowledge of the kernel using Vélu’s formulas [34] whose efficiency depends
on the smoothness of the isogeny degree.

An endomorphism of an elliptic curve E is an isogeny from E to E. The
structure of E is closely related to that of its endomorphism ring. When E is
defined over a finite field, the endomorphism ring of E is either an order in a
quadratic field, in which case we say E is ordinary, or a maximal order in a
quaternion algebra in which case we say E is supersingular. The generic isogeny
problem is harder to solve for supersingular curves (for which the best attacks
are exponential) than ordinary curves (for which there exists a sub-exponential
attack [3]). SIDH is based on supersingular isogenies.

We refer to the book of Washington [37] and the book of Silverman [33] for
more background on elliptic curves and isogenies. For a quick introduction to
isogeny-based cryptography, we recommend these notes [13] from De Feo.

2.2 SIDH: Supersingular Isogeny Diffie-Hellman

The SIDH scheme is defined as follows.

Setup. Let p = `eAA `eBB − 1 be a prime such that `eAA ≈ `eBB ≈ √p. Let E0 be
a supersingular curve defined over Fp2 . Set E0[`eAA ] = 〈PA, QA〉 and E0[`eBB ] =
〈PB , QB〉. The public parameters are E0, p, `A, `B , eA, eB , PA, QA, PB , QB .

KeyGeneration. The secret key skA of Alice is a uniformly random integer α sam-
pled from Z`eAA . Compute the cyclic isogeny φA : E0 → EA = E0/ 〈PA + [α]QA〉.
The public key of Alice is the tuple pkA = (EA, φA(PB), φA(QB)). Analo-
gously, Bob’s secret key skB is a uniformly random integer β sampled from Z`eBB
and his public key is pkB = (EB , φB(PA), φB(QA)) where φB : E0 → EB =
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E0/ 〈PB + [β]QB〉.

KeyExchange. Upon receiving Bob’s public key (EB , Ra, Sa), Alice checks5 that

e(Ra, Sa) = e(PA, QA)`
eB
B , if not she aborts. She computes the isogeny φ′A :

EB → EBA = EB/ 〈Ra + [α]Sa〉. Her shared key is j(EBA). Similarly, upon re-

ceiving (EA, Rb, Sb), Bob checks that e(Rb, Sb) = e(PB , QB)`
eA
A , if not he aborts.

He computes the isogeny φ′B : EA → EAB = EA/ 〈Rb + [β]Sb〉. His shared key
is j(EAB).

The correctness of the key exchange follows from the fact that

EA/ 〈φA(PB) + [β]φA(QB)〉 ' E0/ 〈PA + [α]QA, PB + [β]QB〉 ' EB/ 〈φB(PA) + [α]φB(QA)〉 .

The scheme is summarized in Figure 1.

E0, PA, QA,

PB , QB

EA, φA(PB),

φA(QB)

EB , φB(PA),

φB(QA)
EAB

φA

φ′B
φB

φ′A

Fig. 1: SIDH Key Exchange

The security of the SIDH key exchange protocol against shared key recovery relies
on Problem 1. Furthermore, Problem 2 states that it is difficult to distinguish
the shared secret from a random supersingular elliptic curve.

Problem 1 (Supersingular Isogeny Computational Diffie-Hellman). Given E0,
PA, QA, PB , QB , EA, φA(PB), φA(QB), EB , φB(PA), φB(QA) (defined as in
SIDH), compute EAB .

Problem 2 (Supersingular Isogeny Decisional Diffie-Hellman). Given E0, PA,
QA, PB , QB , EA, φA(PB), φA(QB), EB , φB(PA), φB(QA) (defined as in SIDH)
and a random supersingular curve E, distinguish between E = EAB and E 6=
EAB .

In the rest of this paper, we denote by NA and NB the degree of Alice’s and
Bob’s isogeny respectively.

2.3 GPST adaptive attack

In SIDH [15] one does a pairing-based check on the torsion points φB(PA) and
φB(QA) returned by a potentially malicious Bob. Let E be a supersingular el-
liptic curve, let N be an integer and let µN be the group of N -roots of unity.

5 Note that in the original SIDH [24], this pairing check is not part of the scheme.
But, as precised in [9] and [20], one includes the check to discard some malformed
public keys.
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Let eN : E[N ] × E[N ] → µN be the Weil pairing [19]. Let φ : E → E′ be an
isogeny of degree M , then for P,Q ∈ E[N ],

eN (φ(P ), φ(Q)) = eN (P,Q)M

where the first pairing is computed on E′ and the second one on E.
In SIDH, given (EB , Ra, Sa) returned by Bob as public key, Alice checks if

e`eAA
(Ra, Sa) = e`eAA

(PA, QA)`
eB
B .

As we will see below, this verification does not assure that the points R,S were
honestly generated. More precisely, the pairing verification does not capture the
GPST adaptive attack.

The GPST adaptive attack. The main idea of the Galbraith et al. adaptive
attack [20] is that if Bob manipulates the torsion points φB(PA) and φB(QA)
conveniently, then he can get some information about Alice’s private key α given
that he knows if the secret curve computed by Alice is equal to EAB or not. Hence
in the attack scenario, Bob needs to have access to the later information. This
access is provided to Bob through a key exchange oracle:

O(E,R, S,E′) which returns 1 if j(E′) = j(E/ 〈R+ [α]S〉) and 0 otherwise

If one supposes that `A = 2 and eA = n, then after each query, Bob recovers one
bit of

α = α0 + 21α1 + 22α2 + · · ·+ 2n−1αn−1.

Concretely, let us suppose that Bob has successfully recovered the first i bits of
α, say Ki = α0 + 21α1 + · · ·+ 2i−1αi−1 so that

α = Ki + 2iαi + 2i+1α′

He generates (EB , φB(PA), φB(QA)) and computes the resulting key EAB . To
recover αi, he chooses suitable integers a, b, c, d and queries the oracle O
on (EB , R, S,EAB) where R = [a]φB(PA) + [b]φB(QA) and S = [c]φB(PA) +
[d]φB(QA). The integers a, b, c and d are chosen to satisfy the following condi-
tions:

1. if αi = 1, 〈R+ [α]S〉 = 〈φB(PA) + [α]φB(QA)〉;
2. if αi = 0, 〈R+ [α]S〉 6= 〈φB(PA) + [α]φB(QA)〉;
3. the Weil paring e2n(R,S) must be equal to e2n(φB(PA), φB(QA))

The first two conditions help to distinguish the bit αi. The third one prevents the
attack from being detected by the pairing-based check presented in Section 2.3.
When attacking the ith bit of alpha where 1 ≤ i ≤ n − 2, the attack uses the
integers

a = θ, b = −θ2n−i−1Ki, c = 0, d = θ(1 +Ki2
n−i−1)
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where θ =
√

(1 + 2n−i−1)−1. The attack recovers the first n− 2 bits of α using
n − 2 oracle queries, and it recovers the two remaining bits by brute force. We
refer to [20] for more details.

The GPST adaptive attack exploits the fact that the pairing check does not
convince Alice that the torsion points returned by Bob were honestly computed.
In the rest of this paper, we will design a new adaptive attack that exploits the
fact that the pairing check does not convince Alice that Bob effectively computed
an isogeny of degree NB .

3 Generalizing torsion points attacks

In this section, we revisit the torsion point attacks. Firstly, we describe the
torsion point attacks. Next, we provide a generalisation of these attacks that can
be used to solve weaker version of the key recovery problem in SIDH (Problem 3,
described below).

3.1 Torsion points attacks on SIDH

The direct key recovery attack (attacking one party’s secret key) in SIDH trans-
lates into solving the following Computational Supersingular Isogeny Problem.

Problem 3. Let NA and NB be two smooth6 integers such that gcd(NA, NB) = 1.
Let E0 be a supersingular elliptic curve defined over Fp2 . Set E0[NB ] = 〈P,Q〉
and let φ : E0 → E be a random isogeny of degree NA. Given E0, E, P , Q, φ(P )
and φ(Q), compute φ.

The difference between Problem 3 and the general isogeny problem is the
fact that the action of φ on the group E0[NB ] is revealed. In 2017, Petit [29]
exploited these torsion point images and the knowledge of the endomorphism
ring of the starting curve E0 to design an algorithm that solves Problem 3 for a
certain choice of unbalanced (NA � NB) parameters. Petit’s attack has recently
been considerably improved by de Quehen et al. [11].

The idea of the torsion points attacks is to find a trace 0 endomorphism
θ ∈ End(E0) that can be efficiently evaluated on E0[NB ], an integer d and a
small smooth integer e such that

N2
A deg θ + d2 = N2

Be. (1)

Writing Equation 1 in terms of isogenies we get

φ ◦ θ ◦ φ̂+ [d] = ψ2 ◦ ψe ◦ ψ1 (2)

where ψ1 and ψ2 are isogenies of degree NB , ψe is an isogeny of degree e. The
torsion point information φ(P ), φ(Q) is used to evaluate τ = φ ◦ θ ◦ φ̂ + [d] on

6 In all this paper, an integer is said to be smooth if it is b-smooth for some integer
b ≈ O(log p) where p is the characteristic of the base field considered.
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E[NB ]. Knowing τ on E0[NB ], the kernels of the isogenies ψ1 : E → E1 and

ψ̂2 : E → E2 can be recovered efficiently. The isogeny ψe : E1 → E2 is recovered
by brute force or meet in the middle. We refer to [11, § 4.1] for technical details.

Having computed ψ2 ◦ ψe ◦ ψ1, one recovers

ker φ̂ = ker (ψ2 ◦ ψe ◦ ψ1 − [d]) ∩ E[NA].

Figure 2 illustrates the attack.

E0 E

E1

E2

θ
φ̂

φ
ψe

ψ̂2

ψ1

Fig. 2: Improved torsion points attack.

The efficiency of torsion point attacks mostly depends on the imbalance be-
tween the isogeny degree NA and the order NB of the torsion points images.

de Quehen et al. [11] show that under some heuristics, when j(E0) = 1728,
Problem 3 can be solved in:

1. Polynomial time when: NB > pNA and p > NA;
2. Superpolynomial time but asymptotically more efficient than meet-in-the-

middle on a classical computer when: NB >
√
pNA;

3. Superpolynomial time but asymptotically more efficient than quantum claw-
finding [25] when: NB > max{NA,

√
p}.

More concretely, if NA ≈ pα and NB ≈ NApη, then the improved torsion points

attack runs in time Õ

(
N

1+2(α−η)
4α

A

)
and Õ

(
N

1+2(α−η)
8α

A

)
on a classical computer

and a quantum computer respectively [11, §6.2 Proposition 27]. In the special
case where α = 1

2 , we get the following corollary.

Corollary 1. Suppose that NA ≈ p
1
2 and NB ≈ p

1
2+η where 1 ≤ η. Under

some heuristics, [11, Algorithm 7] solves Problem 3 in polynomial time when
j(E0) = 1728.

Remark 1. SIKE parameters (for which E0 is close to a curve having j-invariant
1728 and NA ≈ NB ≈

√
p) are not affected by these improved torsion points

attacks. Also, the attack does not affect any SIDH-type scheme in which the
starting curve E0 is a random supersingular curve with unknown endomorphism
ring.

In our attack setting, we will not be provided with the images of torsion
points through isogenies, but with the images of cyclic torsion groups. In the
next section, we generalize the torsion point attacks such that they directly
apply to our setting.
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3.2 Generalized torsion points attacks

We consider the following problem.

Problem 4. Let NA and NB be two integers such that gcd(NA, NB) = 1. Let E0

be a supersingular elliptic curve defined over Fp2 . Let G1, G2, G3 be three cyclic
groups of E0 of order NB such that G1 ∩ G2 = G1 ∩ G3 = G2 ∩ G3 = {0}. Let
φ : E0 → E be a random isogeny of degree NA.

Given E0, G1, G2, G3, E, φ(G1), φ(G2) and φ(G3), compute φ.

The difference between Problem 4 and Problem 3 is the way the torsion point
information is provided. In Problem 3, image points of a basis of the NB-torsion
group are given, while in Problem 4, only the images of three cyclic disjoint
groups of order NB are provided. This a priori represents less information, but
as we show below, this is sufficient to run the improved torsion point attacks.

Let θ, d and e be such that Equation 1 is satisfied, set τ = φ ◦ θ ◦ φ̂ + [d].
Let G1, G2 and G3 be as in Problem 4. In the improved torsion point attacks,
the torsion point information (φ(P ), φ(Q)) is solely used to recover the action of
τ on E[NB ] as explained in Section 3.1. Hence we only need to prove that the
knowledge of φ(G1), φ(G2) and φ(G3) is sufficient to evaluate τ on E[NB ].

First we prove that from the action of φ on 3 cyclic disjoint groups of order
NB , we can recover the image of a basis of E0[NB ] through [λ] ◦ φ for some
integer λ coprime to NB . Concretely, we have the following lemma.

Lemma 1. Let φ : E0 → E an isogeny of degree NA and let NB be a smooth
integer coprime to NA. Let G1 = 〈P1〉, G2 = 〈P2〉, G3 = 〈P3〉 be three cyclic
groups of E0 of order NB such that G1 ∩G2 = G1 ∩G3 = G2 ∩G3 = {0}. Given
H1 = 〈Q1〉, H2 = 〈Q2〉, H3 = 〈Q3〉 such that φ(Gi) = Hi for i = 1, 2, 3; there
exists an integer λ ∈ (Z/NBZ)× such that we can compute λ2 and [λ] ◦φ(P ) for
any P ∈ E0[NB ].

The result in Lemma 1 partially available in [2, Lemma 1 §3.2] where Basso
et. al prove that from the action of φ on 3 well chosen cyclic groups of smooth
order NB , one can recover the action of φ on any group of order NB . Our
Lemma goes a bit further and proves that we can evaluate [λ] ◦ φ on the NB
torsion for some λ ∈ (Z/NBZ)× such that λ2 is known. Note that knowing λ2

does not always enable us to compute λ, since when NB is not a prime power,
the equation x2 ≡ a2 mod NB may have more than two solutions.

Proof (of Lemma 1). For i = 1, 2, 3, set φ(Pi) = [λi]Qi where λi ∈ (Z/NBZ)×.
Since G1 ∩G2 = {0}, then {P1, P2} is a basis of E0[NB ] and {Q1, Q2} is a basis
of E[NB ]. Write P3 = [v1]P1 + [v2]P2 and Q3 = [u1]Q1 + [u2]Q2. Then, we get

[λ3u1]Q1+[λ3u2]Q2 = [λ3]Q3 = φ(P3) = [v1]φ(P1)+[v2]φ(P2) = [v1λ1]Q1+[v2λ2]Q2.

Hence λ3u1 = v1λ1, λ3u2 = v2λ2 and λi/λ3 = ui/vi for i = 1, 2. Since G1∩G3 =
G2 ∩G3 = {0} and NA is coprime to NB , then H1 ∩H3 = H2 ∩H3 = {0} and
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u1, u2, v1, v2 ∈ (Z/NBZ)×. Thus λ1v1/u1 = λ3 = λ2v2/u2, and φ(P1) = [λ3]Q′1,
φ(P2) = [λ3]Q′2 where Q′1 = [v1/u1]Q1 and Q′2 = [v2/u2]Q2.

We have

eNB (P1, P2)deg φ = eNB (φ(P1), φ(P2)) = eNB ([λ3]Q′1, [λ3]Q′2) = eN (Q′1, Q
′
2)λ

2
3 .

We recover λ23 by solving the following discrete logarithm

λ23 = DLP
(
eNB (P1, P2)deg φ, eNB (Q′1, Q

′
2)
)
.

For any S = [α]P1 +[β]P2 ∈ E0[NB ] we have [λ3]◦φ(S) = [α]Q′1 +[β]Q′2. ut

Now that we can evaluate [λ]◦φ point wise on E0[NB ] for some λ ∈ (Z/NBZ)×

such that λ2 is provided, we show how to evaluate τ on E[NB ].

Since we can evaluate φλ = [λ] ◦ φ on E0[NB ], then we can evaluate φ̂λ on

E[NB ] as well. Therefore we can evaluate φλ ◦ θ ◦ φ̂λ on E[NB ]. Meanwhile, we
have

φλ ◦ θ ◦ φ̂λ = ([λ] ◦ φ) ◦ θ ◦ ([λ] ◦ φ̂) = [λ2] ◦ φ ◦ θ ◦ φ̂.

Since λ2 ∈ (Z/NBZ)× is provided, then we get

φ ◦ θ ◦ φ̂ = [λ−2] ◦ φλ ◦ θ ◦ φ̂λ

on E[NB ]. Hence τ = φ ◦ θ ◦ φ̂+ [d] can be efficiently evaluated on E[NB ]. This
concludes our discussion.

From now on, we can translate the solutions in [11] computing θ, d, e, and
using the torsion point attacks to solve Problem 3 into solutions that compute
θ, d, e, and solve Problem 4 in the same time and memory complexity, ignoring
polylogarithmic factors.

Theorem 1 (Generalized Torsion Point Attacks). Suppose we are given
an instance of Problem 4 where NA has O(log log p) distinct prime factors. As-
sume we are given the restriction of a trace-zero endomorphism θ ∈ End(E0) to
E0[NB ], an integer d coprime to NB, and a smooth integer e such that

deg
(
φ ◦ θ ◦ φ̂+ [d]

)
= N2

Be or deg
(
φ ◦ θ ◦ φ̂+ [d]

)
= N2

Bpe.

Then we can compute φ in time Õ(
√
e).

Proof. Follows from the previous discussion, [11, Theorem 3] and [11, Theo-
rem 5].

We have the following Corollary.

Corollary 2. Suppose that NA ≈ p
1
2 and NB ≈ p

1
2+η where 1 ≤ η. Under some

heuristics, Problem 4 can be solved in polynomial time when j(E0) = 1728.

In the following section, we use the generalized torsion point attacks to design
a new adaptive attack on SIDH.



A New Adaptive Attack on SIDH 11

4 A new adaptive attack on SIDH

In this section, we present our attack. First we present an overview, next we
describe the active phase of our attack.

4.1 Overview

In our attack, we suppose that one party is using a static secret/public key pair,
and the other party runs multiple key exchanges with the honest party. He is
provided with a the same oracle O(E,R, S,E′) described in Section 2.3.

The main idea of the attack is to use a key exchange oracle to recover the
action of Alice’s secret isogeny on a larger torsion point group. Doing so leads
to an unbalanced SIDH. The malicious Bob then uses the revisited torsion point
attacks, which in this case run in polynomial time, to recover Alice’s secret key.
Hence our attack has two phases.

Let NA and NB be the isogeny degrees of Alice and Bob respectively. In
general, we have NANB |p+ 1 in the case of SIDH schemes, NA|p+ 1, NB |p− 1
or NB |p + 1, NA|p − 1 for BSIDH. Let E0 = E(1728) be the starting curve,
E0[NB ] = 〈PB , QB〉, and let (EA, φA(PB), φA(QB)) be Alice’s public key where
her static secret key is an isogeny φA : E0 → EA of degreeNA. Moreover, suppose
that you are given some “suitable” smooth integer N coprime to NA such that
E0[NBN ] ⊂ E0(Fp2k) for some integer k (we will provide the requirements on N
as we describe the attack in the following sections).

The two phases of the attack can be summarized as follows.

– The active phase. Bob uses the access to a key exchange oracleO(E,R, S,E′)
to secretly transform Alice’s static public key (EA, φA(PB), φA(QB)) into a
tuple (EA, φA(G1), φA(G2), φA(G3)) where G1 = 〈P 〉, G2 = 〈Q〉, G3 = 〈R〉
are cyclic subgroups of maximal order in E0[NBN ], such that G1 ∩ G2 =
G1 ∩G3 = G2 ∩G3 = {0}.

– The passive phase. Having (EA, φA(G1), φA(G2), φA(G3)), Bob applies
the revisited torsion point attacks to recover Alice’s secret.

The passive phase is nothing else than the revisited torsion point attacks de-
scribed in Section 3.2. In the rest of this section, we provide a full description of
the active phase.

4.2 Explicit description of the active phase

Let p be the base prime. Let N = `v11 · · · `vnn be a smooth integer coprime to NA
such that E0[`vii ] ⊂ E(Fp2ki ) and for each prime `i which is not a square modulo
NA, vi is even. Let G1, G2, G3 be cyclic subgroups of E0[NBN ] or order NBN
such that G1 ∩G2 = G1 ∩G3 = G2 ∩G3 = {0}. The active phase of the attack
consists in recovering φA(Gj) for j = 1, 2, 3.

For j = 1, 2, 3, we can represent Gj as Gj =
∑r
i=1Gji where Gji is a group of

order NB`
vi
i . The action of φA on Gj is recovered by computing φA(Gji) for i =
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1, · · · , n. Storing φA(Gj) in this form enables us to perform all computations in
extension fields of degree k1, · · · , kn, instead of LCM(k1, · · · , kn) the full group
Gj is considered. This is because all supersingular isogenies are Fp2-rational.
Hence we never go to extension fields with degree beyond max{ki, i = 1, · · · , r}.
Let us describe how we compute φA(Gji) for j = 1, 2, 3 and i = 1, · · · , n.

Let G be a cyclic subgroup of E0[NB`
v] of order NB`

v. Let us suppose that
` ≡ µ2 mod NA is a square modulo NA and that v = 1. Note that φA([`]G) is
readily provided in Alice’s public key since this group has order NB . To compute
the action of φA on G of order NB`, Bob computes the isogeny φG : E0 → EG
having kernel G together with R = [µ−1]φG(PA), S = [µ−1]φG(QA). Let H be
a random cyclic subgroup of EA[NB`] of order NB` containing φA([`]G). Let
φH : EA → EH be the isogeny of kernel H and φ′A : EG → EG/φG(ker(φA))
be the isogeny of kernel φG(ker(φA)). Then if H is the image of the group G
through φA then the diagram in Figure 3 commutes and O(EG, R, S,EH) = 1.
In the other case, when H 6= φA(G), Lemma 2 shows that the oracle returns 1
with negligible probability.

E0

EA

EB

EAB

EG

EH = Eφ′
A
(G)

···

φA

φ′B

φB

ψH

φ′A

φG

φH

Fig. 3: Computing the action of φA on G.

Lemma 2. Suppose that ` ≈ O(log p) and NANB ≈ p (or NANB > p), and
let G, H, EH and EG/φG(ker(φA)) be defined as above. If H 6= φA(G) then
EH = EG/φG(ker(φA)) with negligible probability.

Proof. Suppose that EH = EG/φG(ker(phiA)) and let H ′ = φA(G). Let H ′ =
φA(G). By construction, we get [`]H = [`]φA(G) = [`]H ′, and we can decompose
φH and φ′H as φH = ψH ◦φ′B and φH′ = ψH′ ◦φ′B where φH and φH′ are isogenies

of degree ` from EAB to EG/φG(ker(φA)). Since H 6= H ′, then ψ̂H′ 6= ±ψH and

ψ̂H′ ◦ψH is a non scalar endomorphism of EAB of degree `2. Therefore, the curve
EAB is an `2-small curve as defined in [28].
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On the other hand, since NANB ≈ p, then EAB is statistically a random
supersingular curve [21]. Moreover, the number of `2-small curves is roughly
`3 [28]. Considering the fact that the number of supersingular curves defined
over Fp2 is p

12 , then the probability that EAB is an `2-small curve is at roughly
12`3

p , which is negligible since ` ≈ O(log p). ut

Remark 2. We scale φG(PA) and φG(QA) by µ−1 in order to avoid the detection
by pairing computation. When scaled by µ−1, we have

eNA(R,S) = eNA([µ−1]φG(PA), [µ−1]φG(QA))

= eNA(PA, QA)µ
−2 deg φG

= eNA(PA, QA)NB .

The above equation also justifies the requirement that ` should be a quadratic
residue modulo NA. When ` is not a quadratic residue modulo NA and `2 divides
N , we set the group G to have order NB`

2 and we proceed the same way. In the
later case, we scale the points φG(PA) and φG(QA) by `−1 mod NA instead.

If 1 < v, then the process can be iterated to recover the action of φA on groups
of order NB`, NB`

2, · · · , NB`v when ` is a square modulo NA, respectively NB`
2,

NB`
4, · · · , NB`v when ` is not a quadratic residue modulo NA. Note that in the

later case, v is even.

We deduce Algorithm 1 for computing the action of φA on a larger group G.

Lemma 3. Algorithm 1 runs in time Õ(kv) = O(kv ·poly(log p)) time whenever
` is of polynomial size and E0[NB`

v] ⊂ E(Fp2kv ). The output of Algorithm 1 is
φA(G) with overwhelming probability.

Proof. Since `, NA and NB are smooth integers, the time complexity of Algo-
rithm 1 depends on the degree kv of the field extension only. Hence Algorithm 1
runs in time O(kv · poly(log p)). The second point of the Lemma follows from
Lemma 2. ut

Recall that E0[NB`
vi
i ] ⊂ E(Fp2ki ). Set k∗ = max{ki}. Algorithm 2 fully describes

the active phase our attack.

Lemma 4. Algorithm 2 runs in time Õ(max{k∗}) whenever `i for i = 1, · · · , n,
NA, NB are smooth integers.

Proof. Follows from the Lemma 3. ut

This concludes our description of the active phase. In the next section, we
discuss the computation of the integer N .
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Algorithm 1 Evaluating the action of φA on a larger group G of order NB`
v

using O(E,R, S,E′) .

Require: E0, PA, QA, PB , QB , EA, φA(PB), φA(QB), G.
Ensure: φA(G).
1: Set G0 = [`v]G;
2: if ` is a square modulo NA then
3: Compute µ =

√
` mod NA;

4: for i = 1, · · · , v do
5: Gi = [`v−i]G
6: Compute φGi : E0 → EGi of degree NB`

i and of kernel Gi, together
with R = [µ−i]φGi(PA) and S = [µ−i]φGi(QA);

7: for H cyclic group of EA of order NB`
i containing φA(Gi−1) do

8: Compute φH : EA → EH of kernel H;
9: if O(EGi , R, S,EH) = 1 then

10: Set φA(Gi) = H;

11: G′ = φA(Gv);
12: else
13: for i = 1, · · · , v/2 do
14: Gi = [`v−2i]G
15: Compute φGi : E0 → EGi of degree NB`

2i and of kernel Gi, together
with R = [`−i]φGi(PA) and S = [`−i]φGi(QA);

16: for H cyclic group of EA of order NB`
2i containing φA(Gi−1) do

17: Compute φH : EA → EH of kernel H;
18: if O(EGi , R, S,EH) = 1 then
19: Set φA(Gi) = H;

20: G′ = φA(Gv/2);

21: return G′.

Algorithm 2 Recovering the action of φA on cyclic disjoint groups G1, G2, G3

of order NBN using the oracle O(E,R, S,E′)

Require: E0, PA, QA, PB , QB , EA, φA(PB), φA(QB), NA, NB , N = `v11 · · · `vnn ,
Gji for j = 1, 2, 3 and i = 1, · · · , n.

Ensure: φA(Gji) for j = 1, 2, 3 and i = 1, · · · , r.
1: for i = 1, · · · , n do
2: for j = 1, 2, 3 do
3: Compute φA(Gji) using Algorithm 1;

4: return φA(Gji) for j = 1, 2, 3 and i = 1, · · · , n.

4.3 Computing the integer N

We address the existence and the computation of the integer N . We would
like to compute a smooth integer N = `v11 · · · `vnn coprime to NA such that
E0[NB`

vi
i ] ⊂ E(Fp2ki ) and for each prime `i which is not a square modulo NA,
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vi is even. Recall that by Corollary 2, the torsion point attacks run in polynomial
time when p < N .

We start by the following Lemma which describes the group structure of
supersingular curves over extension fields.

Lemma 5. Let E/Fp2 be a supersingular elliptic curve such that
E(Fp2) ' (Zp−ε)2 where ε = ±1 corresponds to the sign of the trace of Frobenius
t = 2εp of E over Fp2 .
Then for every natural number k, the group structure of E over Fp2k is given by

E(Fp2k) ' (Zpk−εk)2 (3)

Proof. Let k be natural number and let tk be the trace of Frobenius of E over
Fp2k . Then by Hasse Theorem (theorem V.1.1 of [34]),

|E(Fp2k)| = p2k + 1− tk.

Over Fp2 , the characteristic equation of Frobenius is given by

X2 − 2εpX + p2 = (X − εp)2

By Theorem 4.12 of [37]
tk = 2(εp)k = 2εkpk

where εk is the sign of tk. Hence t2k = 4p2k and by lemma 4.8 of [32]

E(Fp2k) ' (Z√
p2k−εk)2 ' (Zpk−εk)2.

ut

From Equation 3, we have that E0[NB`
vi
i ] ⊂ E0(Fp2ki ) if and only ifNB`

vi
i |pki−

εki where ε is the sign of the trace of Frobenius of E0 as described in the proof
of Lemma 5.

Let ` be a small prime. Then `v|p2k − 1 for some k ≤ `v. This means that
for each prime `i dividing N , ki ≤ `vii . This heals a easy way to compute N :
choose the smallest primes `i coprime to NANB , such that p < N =

∏
`2i . Then

the largest `i is in O(log p). Moreover we have ki at most `2i .
To moderate the fields extension degrees, we also include in N primes ` that

are squares modulo NA. For this primes, we only require ` to divide p2k − 1,
hence obtaining a smaller field extension.

We describe the full process in Algorithm 3. The algorithm returns the list
P of prime power factors of N with the list D of the corresponding extension
field degrees.

Lemma 6. Algorithm 3 runs in polynomial time and for each prime `i dividing
N , ki ≤ `2i ≈ O(log2 p).

Proof. Follows from the previous discussion. ut
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Algorithm 3 Computing N

Require: p, NA, NB .
Ensure: P , D.
1: Create the lists P and D, set N = 1, set ` = 1;
2: while N < p do
3: choose the next prime ` coprime to NANB ;
4: if ` is a square modulo NA then
5: Compute the smallest integer k such that `|p2k − 1.
6: Append ` to the list P and 2k to the list D;
7: N = N ∗ `;
8: else
9: Compute the smallest integer k such that `2|p2k − 1.

10: Append `2 to the list P and 2k to the list D;
11: N = N ∗ `2;

12: return P, D;

Remark 3. In all this section, we were attacking Alice’s secret isogeny. To attack
Bob’s secret isogeny instead, one interchanges the roles of NA and NB . Mostly,
the quadratic residuosity condition on N will depend on NB .

Remark 4. In practice, on may set a bound a bound on the extension degrees
and slightly increase the size of the primes `i. This will be the case in the attack
parameters we will present in Section 5.

4.4 Attack summary

The full attack can is summarised in Algorithm 4.

Algorithm 4 New Adaptive attack on SIDH

Require: E0, PA, QA, PB , QB , EA, φA(PB), φA(QB), NA, NB .
Ensure: ker(φA).
1: Compute a suitable smooth integer N using Algorithm 3.
2: Let G1, G2, G3 cyclic disjoint subgroups of E0[NBN ] of order NBN .
3: Compute φA(G1), φA(G2), φA(G3) using the oracle O(E,R, S,E′) and

Algorithm 2.
4: Compute φA using the revisited torsion point attacks of Theorem 1.
5: return ker(φA).

Now we evaluate the number of oracle queries. Since N = `v11 · · · `vnn where
for each prime `i which is not a square modulo NA, vi is even, then we can
write N = `2v11 · · · `2vnn `u1

n+1 · · · `
um
n+m where the primes `n+j for j = 1, · · · ,m are

squares modulo NA. From Algorithm 1, for each prime factor `i (1 ≤ i ≤ n) of
N , the maximum number of queries to the oracle (E,R, S,E′) is equal to the

number of cyclic subgroups of
(
Z/`2iZ

)2
order `2i , which is `i(`i+1). Note that if
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the first `i(`i+1)−1 queries fail, then there is no need to perform the last query
since it will succeed. Also, for each prime factor `n+j (1 ≤ j ≤ m) of N , the
maximum number of queries to the oracle (E,R, S,E′) is equal to the number

of cyclic subgroups of (Z/`iZ)
2

order `i, which is `i + 1. Here also, there is no
need to perform the last query when the first `i queries failed. Therefore, the
maximum number of oracle queries in the attack is

Oq =

n∑
i=1

vi [`i(`i + 1)− 1] +

m∑
j=1

uj`n+j .

Now we can state the main result of this paper.

Theorem 2. Let p, E0, NA < p, NB < p, PA, QA, PB, QB, EA, φA(PB),
φA(QB) be the public parameters and the public key of an SIDH type scheme.

Provided a key exchange oracle O(E,R, S,E′), Algorithm 4 recovers φA in
polynomial time.

Furthermore, Algorithm 4 performs at most

Oq =

n∑
i=1

vi [`i(`i + 1)− 1] +

m∑
j=1

uj`n+j

queries to the key exchange oracle where N = `2v11 · · · `2vnn `u1
n+1 · · · `

um
n+m is the

integer computed in Step 1.

Proof. By Lemma 3, Step 1 outputs a smooth integer N such that max{ki} ≈
O(log2 p). Hence by Lemma 3, Step 3 runs in time Õ(log2 p) = Õ(1). Step 4 runs
in polynomial time since p < N . The number of oracle queries follows from the
discussion preceding Theorem 2. ut

Remark 5. In our attack, the malicious Bob computes isogenies of degree NB`
2

or NB` depending on the quadratic residuosity of ` modulo NA. In appendix A,
we suggest a variant of the attack where isogenies Bob computes isogenies of
degree `2 or ` instead. Nevertheless, this variant can be easily detected.

5 Relevance and countermeasures

In this section, we suggest some attack parameters for $IDH and SIDH primes.
We discuss possible countermeasures to the attack.

5.1 Attack parameters for some SIDH primes

We propose attack parameters for the two (non cryptographic size) primes
suggested for the $IKE challenge [8, §10], the SIDH primes SIDHp377 and
SIDHp546 suggested by Longa et. al [27], SIDHp434 and SIDHp503 as speci-
fied in SIKE [23].
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As attack parameters, we provide the prime factorisation of N , the maximum
field extension degree k∗ = max{ki}, η ≈ N/p and the number Oq of oracle
queries. We also precise which party is attacked: B stands for Bob and A stands
for Alice.

The outcome of our investigations on the above mentioned $IDH primes and
SIDH primes is summarised in Table 1 and Table 2 respectively.

Party k∗ η Oq N

$IDHp182 prime: p = 291357 − 1

B 96 185
182

7251 52 ∗ 7 ∗ 112 ∗ 13 ∗ 19 ∗ 31 ∗ 37 ∗ 43 ∗ 472 ∗ 61 ∗ 67 ∗ 73 ∗ 79 ∗ 97 ∗ 103 ∗
109 ∗ 127 ∗ 139 ∗ 157 ∗ 181 ∗ 241 ∗ 277 ∗ 421 ∗ 433 ∗ 541 ∗ 661 ∗ 919

$IDHp217 prime: p = 2110367 − 1

B 96 222
217

9349 52 ∗ 7 ∗ 13 ∗ 19 ∗ 31 ∗ 37 ∗ 43 ∗ 61 ∗ 67 ∗ 73 ∗ 79 ∗ 97 ∗ 109 ∗ 157 ∗ 163 ∗
181 ∗ 193 ∗ 199 ∗ 211 ∗ 223 ∗ 229 ∗ 271 ∗ 277 ∗ 307 ∗ 337 ∗ 571 ∗ 631 ∗
1009 ∗ 1093 ∗ 1249 ∗ 1381

Table 1: Attack parameters for the two $IDH primes.

When it comes to BSIDH instances, generating specific attack parameters
is less trivial. We believe this may be because BSIDH primes7 are twin primes.
Using the generic attack parameters computation described in Algorithm 3, the
degree of the field extensions are relatively larger compared to those used when
running the attack on SIDH. For example, let us consider the smallest BSIDH
prime (prime in example 6 of [7])

p = 2 · (23 · 34 · 17 · 19 · 31 · 37 · 532)6 − 1.

Set NA = p+ 1 and NB = p− 1. Then we get

N = 52 · 112 · 232 · 292 · 412 · 472 · 592 · 612 · 672 · 712 · 792·
832 · 892 · 972 · 1012 · 1072 · 1092 · 1132 · 1272 · 1312 · 1372

and the `2i torsion points for `i dividing N are defined over extension fields of
Fp2 of degree

20, 55, 253, 406, 820, 23, 3422, 15, 402, 2485, 3081, 3403, 1958,
9312, 2020, 5671, 11772, 12656, 8001, 1310, 2329,

the order is the same as in the prime factorisation of N . The number of oracle
queries is Oq = 152523. Note that here, one will be working with extension
fields of degree up to 12656. One may prefer to compute a different integer N
for which the maximum extension field degree is relatively small, but as we
mentioned before, this requires intensive computations which we could not do
on a personal computer.

7 Primes p such that both p+ 1 and p− 1 are smooth.
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Party k η Oq N

SIDHp377 prime: p = 21913117 − 1

B 120 377
377

40728 52 ∗ 7 ∗ 112 ∗ 13 ∗ 19 ∗ 31 ∗ 37 ∗ 43 ∗ 61 ∗ 67 ∗ 73 ∗ 79 ∗ 97 ∗ 103 ∗
109 ∗ 157 ∗ 181 ∗ 193 ∗ 199 ∗ 229 ∗ 241 ∗ 271 ∗ 277 ∗ 307 ∗ 313 ∗
331∗337∗433∗487∗571∗631∗661∗739∗1009∗1021∗1051∗
1093∗1249∗1993∗2161∗2707∗3433∗3529∗4003∗4603∗5419

SIDHp434 prime: p = 22163137 − 1

B 152 438
434

66169 52 ∗ 7 ∗ 112 ∗ 13 ∗ 172 ∗ 19 ∗ 31 ∗ 37 ∗ 43 ∗ 61 ∗ 67 ∗ 712 ∗ 73 ∗
79 ∗ 97 ∗ 103 ∗ 109 ∗ 127 ∗ 139 ∗ 151 ∗ 181 ∗ 193 ∗ 211 ∗ 277 ∗
373 ∗ 409 ∗ 421 ∗ 433 ∗ 457 ∗ 547 ∗ 601 ∗ 613 ∗ 739 ∗ 751 ∗ 757 ∗
1123 ∗ 1171 ∗ 1231 ∗ 1489 ∗ 1741 ∗ 1873 ∗ 2311 ∗ 2593 ∗ 2887 ∗
3037 ∗ 3061 ∗ 4357 ∗ 5227 ∗ 6091 ∗ 6661 ∗ 7621

SIDHp503 prime: p = 22503159 − 1

B 158 512
503

81049 52∗7∗112∗13∗19∗31∗37∗43∗61∗67∗73∗79∗97∗103∗109∗
127∗139∗151∗157∗163∗181∗193∗199∗211∗229∗241∗277∗
409∗421∗433∗439∗457∗463∗571∗577∗601∗859∗967∗1093∗
1153∗1171∗1201∗1303∗1327∗1741∗2131∗2179∗2269∗2371∗
2377∗2689∗3037∗3169∗4663∗6151∗6469∗6529∗8893∗9769

SIDHp546 prime: p = 22733172 − 1

B 152 551
546

112441 52 ∗ 7 ∗ 112 ∗ 13 ∗ 19 ∗ 31 ∗ 37 ∗ 43 ∗ 61 ∗ 67 ∗ 73 ∗ 79 ∗ 832 ∗ 97 ∗
103 ∗ 109 ∗ 127 ∗ 139 ∗ 151 ∗ 157 ∗ 163 ∗ 181 ∗ 193 ∗ 223 ∗ 277 ∗
307 ∗ 379 ∗ 409 ∗ 421 ∗ 433 ∗ 457 ∗ 613 ∗ 631 ∗ 661 ∗ 691 ∗ 751 ∗
1117 ∗ 1153 ∗ 1249 ∗ 1321 ∗ 1621 ∗ 1741 ∗ 1753 ∗ 1801 ∗ 1933 ∗
1999 ∗ 2053 ∗ 2137 ∗ 2281 ∗ 3571 ∗ 3823 ∗ 5059 ∗ 5281 ∗ 5563 ∗
6373 ∗ 6397 ∗ 6481 ∗ 7549 ∗ 7639 ∗ 8161 ∗ 9151

Table 2: Attack parameters for some SIDH primes.

Remark 6. Our attack applies to eSIDH [4] as well. It can be easily adapted
to k-SIDH [1] and it’s variant by Jao and Urbanik [35]. In the later case, the
number of oracle queries is exponential in k.

5.2 Countermeasures to the attack

A straightforward countermeasure of the attack is to use a variant of the Fujisaki-
Okamoto transform [18,22] as in SIKE. This transform obliges Bob to disclose
his secret key to Alice who will recompute Bob’s public to verify its correctness.
Recomputing Bob’s public key will enable Alice to detect Bob’s maliciousness.

A second countermeasure is that Bob uses the SIDH proof of Knowledge
as recently suggested in [14]. In this proof of knowledge, Bob proves that there
exists an isogeny of degree NB between E0 and EB and that the provided torsion
points were not maliciously computed. Nevertheless, this countermeasure is very
costly, since the proof of isogeny knowledge is nothing else than the SIDH based
signature scheme, which is relatively slow and has large signatures.
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Another less costly countermeasure is to set the curves E0 to be a random
supersingular elliptic curve with unknown endomorphism ring. This counters the
improved torsion points attack. Hence Bob will not be able to recover Alice’s
secret isogeny after recovering its action on a larger torsion group. Nevertheless,
one should keep in mind that this later countermeasure does not counter the
GPST adaptive attack.

6 Conclusion

In this paper, we generalized the torsion point attacks in such a way that they
can be used to recover a secret isogeny provided its action on three disjoint
cyclic subgroup of relatively large order. We then used this generalized torsion
point attacks to design a new adaptive attack on SIDH type schemes. The attack
consists of maliciously computing isogenies of larger degrees than expected in
SIDH, then using an access to the key exchange oracle to recover the action of the
honest party’s secret isogeny on a larger torsion groups. Afterwards, one obtains
an unbalanced SIDH instance on which one applies the generalized torsion points
attack to recover the honest party’s secret isogeny. Our attack runs in polynomial
time.

We provide concrete attack parameters for SIDH instances instantiated with
the SIDH primes $IDHp182, $IDHp217, SIDHp377, SIDHp434, SIDHp546 and
SIDHp503. A search of attack parameters on BSIDH primes is ongoing. We
finally suggest countermeasures among which the Fujisaki-Okamoto transform
(as used in SIKE), using a proof of isogeny knowledge as recently proposed in
[14] or setting the starting curve in SIDH to be a random supersingular curve
with unknown endomorphism ring.

This result proves that torsion point attacks, which do not yet apply to SIDH,
become relevant to SIDH parameters in an adaptive attack setting. Moreover, it
introduces a new cryptanalytic tool for isogeny based cryptography.

Acknowledgements. We would like to thank the anonymous reviewers for their
valuable comments and feedback.
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12. Kirsten Eisenträger, Sean Hallgren, Kristin Lauter, Travis Morrison, and
Christophe Petit. Supersingular isogeny graphs and endomorphism rings: reduc-
tions and solutions. In Advances in Cryptology – EUROCRYPT 2018, pages 329–
368. Springer, 2018.

13. Luca De Feo. Mathematics of isogeny based cryptography. CoRR, abs/1711.04062,
2017.

14. Luca De Feo, Samuel Dobson, Steven D. Galbraith, and Lukas Zobernig. SIDH
Proof of Knowledge. Cryptology ePrint Archive, Report 2021/1023, 2021. https:
//ia.cr/2021/1023.
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16. Tako Boris Fouotsa, Péter Kutas, and Simon-Philipp Merz. On the Isogeny Prob-
lem with Torsion Point Information. Cryptology ePrint Archive, Report 2021/153,
2021. https://eprint.iacr.org/2021/153.

17. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption. In Michael J. Wiener, editor, Advances in Cryptology-
CRYPTO’99, volume 1666 of Lecture Notes in Computer Science, pages 537-554,
Santa Barbara, CA, USA, August 15-19, 1999. Springer, Heidelberg, Germany.

18. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In Annual International Cryptology Conference,
pages 537–554. Springer, 1999.

19. Steven D. Galbraith. Mathematics of Public Key Cryptography. Cambridge Uni-
versity Press, 2012.

20. Steven D Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On the security
of supersingular isogeny cryptosystems. In Advances in Cryptology – ASIACRYPT
2016, pages 63–91. Springer, 2016.

21. Steven D. Galbraith, Christophe Petit, and Javier Silva. Identification protocols
and signature schemes based on supersingular isogeny problems. In Tsuyoshi Tak-
agi and Thomas Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017,
pages 3–33. Springer International Publishing, 2017.

https://ia.cr/2021/543
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2020/633
https://eprint.iacr.org/2020/633
https://ia.cr/2021/1023
https://ia.cr/2021/1023
https://eprint.iacr.org/2021/153


22 T. B. Fouotsa and C. Petit

22. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the
Fujisaki-Okamoto transformation. In Theory of Cryptography Conference, pages
341–371. Springer, 2017.

23. David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo,
Basil Hess, Aaron Hutchinson, Amir Jalali, Koray Karabina, Brian Koziel, Brian
LaMacchia, Patrick Longa, Michael Naehrig, Geovandro Pereira, Joost Renes,
Vladimir Soukharev, and David Urbanik. Supersingular Isogeny Key Encapsu-
lation, October 1, 2020. https://sike.org/files/SIDH-spec.pdf.

24. David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from su-
persingular elliptic curve isogenies. In Bo-Yin Yang, editor, Post-Quantum Cryp-
tography, pages 19–34, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
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NB`
v. In the case where ` is coprime to NB , there is no need to consider groups

of order NB`
v since we already know the action of φA on the NB-torsion points.

Therefore, we can directly recover the action of φA on groups of order `v.
Let d be the smallest divisor of NB such that NB = dN ′B and N ′B is a square

modulo NA, say N ′B ≡ γ2 mod NA. To recover the action of φA on a cyclic group
G1 of order ` where ` ≡ µ2 mod NA, Bob chooses a cyclic group G0 of order d
and sets G = G0+G1, which is a group of order d`. He computes the isogeny φG :
E0 → EG = E0/G together with R = [γµ−1]φG(PA) S = [γµ−1]φG(QA). For
each cyclic group H ⊂ EA[d`] containing φA(G0), Bob computes EH = EA/H
and queries the oracle (EG, R, S,EH). Note that

eNA(R,S) = eNA([γµ−1]φG(PA), [γµ−1]φG(QA))

= eNA(PA, QA)γ
2µ−2 deg φG

= eNA(PA, QA)N
′
B`
−1d`

= eNA(PA, QA)NB ,

Hence the pairing check does not detect the attack. Nevertheless, when NB is a
very smooth integer (like in SIDH where NB = 3b and d ∈ {1, `}), d is small.
Hence Alice can easily check if the curves E0 and EG are d`-isogenous to discard
such malicious public keys.
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