Skip to main content

A Multi-precision Quantized Super-Resolution Model Framework

  • Conference paper
  • First Online:
Book cover Algorithms and Architectures for Parallel Processing (ICA3PP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13155))

  • 1775 Accesses

Abstract

Equipment’s computing capability has been greatly enhanced at present, which helps deep learning achieve excellent results in various applications, such as super-resolution. However, for higher performance, lower model size and faster computing speed, model compression is widely applied to accomplish the goal. For instance, model quantization is a typical compression method, such as quantization aware training and etc. Quantization aware training can take more quantization loss due to data mapping in model training into account, clamping and approximating the data representation range when updating parameters, which introduces quantization errors into loss function. In the quantization process, we used a quantization strategy that we quantized the model in different stages of combination, and found that some stages of the two super-resolution models’ generators based on SRGAN and ESRGAN showed sensitivity to quantization during the process, which greatly reduced the performance. Therefore, according to the quantization sensitivity, we use higher bits integer quantization for the sensitive stage, and get the multi-precision quantized model. For quantizing the SR model automatically, we propose a multi-precision quantization framework in this paper according to the ratio of input and output channels in every stage in the model. We also have our work tested on eight classical data sets of super-resolution. Generally speaking, both the two models’ PI values approach the original model’s respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fan, S., Fei, J., Shen, L.: Accelerating deep learning with a parallel mechanism using CPU + MIC. Int. J. Parallel Program. 46(4), 660–673 (2018)

    Article  Google Scholar 

  2. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR, pp. 105–114. IEEE Computer Society (2017)

    Google Scholar 

  3. Dong, C., Loy, C.C., He, C.C., Tang, X.: Image super-resolution using deep convolutional networks. CoRR, vol. abs/1501.00092 (2015)

    Google Scholar 

  4. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_5

    Chapter  Google Scholar 

  5. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  6. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: CVPR, pp. 2790–2798. IEEE Computer Society (2017)

    Google Scholar 

  7. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: CVPR Workshops, pp. 1132–1140. IEEE Computer Society (2017)

    Google Scholar 

  8. Jolicoeur-Martineau, A.: The relativistic discriminator: a key element missing from standard GAN. In: ICLR (Poster). OpenReview.net (2019)

    Google Scholar 

  9. Choi, J., Wang, Z., Venkataramani, S., Chuang, P.I., Srinivasan, V., Gopalakrishnan, K.: PACT: parameterized clipping activation for quantized neural networks. CoRR, vol. abs/1805.06085 (2018)

    Google Scholar 

  10. Courbariaux, M., Bengio, Y., David, J.: BinaryConnect: training deep neural networks with binary weights during propagations. In: NIPS, pp. 3123–3131 (2015)

    Google Scholar 

  11. Courbariaux, M., Bengio, Y.: BinaryNet: training deep neural networks with weights and activations constrained to +1 or \(-\)1. CoRR, vol. abs/1602.02830 (2016)

    Google Scholar 

  12. Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J.: Quantized convolutional neural networks for mobile devices. In: CVPR, pp. 4820–4828. IEEE Computer Society (2016)

    Google Scholar 

  13. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_32

    Chapter  Google Scholar 

  14. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. CoRR, vol. abs/1704.04861 (2017)

    Google Scholar 

  15. Sa, C.D., et al.: High-accuracy low-precision training. CoRR, vol. abs/1803.03383 (2018)

    Google Scholar 

  16. Chu, T., Luo, Q., Yang, J., Huang, X.: Mixed-precision quantized neural networks with progressively decreasing bitwidth. Pattern Recogn. 111, 107647 (2021)

    Article  Google Scholar 

  17. Mishra, A.K., Nurvitadhi, E., Cook, J.J., Marr, D.: WRPN: wide reduced-precision networks. In: ICLR (Poster). OpenReview.net (2018)

    Google Scholar 

  18. Zhuang, B., Liu, L., Tan, M., Shen, C., Reid, I.D.: Training quantized neural networks with a full-precision auxiliary module. In: CVPR, pp. 1485–1494. Computer Vision Foundation/IEEE (2020)

    Google Scholar 

  19. Li, F., Liu, B.: Ternary weight networks. CoRR, vol. abs/1605.04711 (2016)

    Google Scholar 

  20. Zhou, A., Yao, A., Guo, Y., Xu, L., Chen, Y.: Incremental network quantization: towards lossless CNNs with low-precision weights. In: ICLR (Poster). OpenReview.net (2017)

    Google Scholar 

  21. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neural networks: training neural networks with low precision weights and activations. CoRR, vol. abs/1609.07061 (2016)

    Google Scholar 

  22. Kim, N., Shin, D., Choi, W., Kim, G., Park, J.: Exploiting retraining-based mixed-precision quantization for low-cost DNN accelerator design. IEEE Trans. Neural Netw. Learn. Syst. 32(7), 2925–2938 (2021)

    Article  Google Scholar 

  23. Li, M., Lin, J., Ding, Y., Liu, Z., Zhu, J., Han, S.: GAN compression: Efficient architectures for interactive conditional GANs. In: CVPR, pp. 5283–5293. Computer Vision Foundation/IEEE (2020)

    Google Scholar 

  24. Zhuang, B., Liu, J., Tan, M., Liu, L., Reid, I.D., Shen, C.: Effective training of convolutional neural networks with low-bitwidth weights and activations. CoRR, vol. abs/1908.04680 (2019)

    Google Scholar 

  25. Cai, H., Gan, C., Wang, T., Zhang, Z., Han, S.: Once-for-all: train one network and specialize it for efficient deployment. In: ICLR. OpenReview.net (2020)

    Google Scholar 

  26. Chang, S., et al.: MSP: an FPGA-specific mixed-scheme, multi-precision deep neural network quantization framework. CoRR, vol. abs/2009.07460 (2020)

    Google Scholar 

  27. Vasquez, K., Venkatesha, Y., Bhattacharjee, A., Moitra, A., Panda, P.: Activation density based mixed-precision quantization for energy efficient neural networks. CoRR, vol. abs/2101.04354 (2021)

    Google Scholar 

  28. Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)

    Google Scholar 

  29. Lee, R., et al.: Journey towards tiny perceptual super-resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 85–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_6

    Chapter  Google Scholar 

  30. Ma, Y., Xiong, H., Hu, Z., Ma, L.: Efficient super resolution using binarized neural network. In: CVPR Workshops, pp. 694–703. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  31. Xin, J., Wang, N., Jiang, X., Li, J., Huang, H., Gao, X.: Binarized neural network for single image super resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 91–107. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_6

    Chapter  Google Scholar 

  32. Li, H., et al.: PAMS: quantized super-resolution via parameterized max scale. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 564–580. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_34

    Chapter  Google Scholar 

  33. Jacob, B., et al.: Quantization and training of neural networks for efficient integer-arithmetic-only inference. CoRR, vol. abs/1712.05877 (2017)

    Google Scholar 

  34. Soudry, D., Hubara, I., Meir, R.: Expectation backpropagation: parameter-free training of multilayer neural networks with continuous or discrete weights. In: NIPS, pp. 963–971 (2014)

    Google Scholar 

  35. Yuan, N., Zhu, Z., Wu, X., Shen, L.: MMSR: a multi-model super resolution framework. In: Tang, X., Chen, Q., Bose, P., Zheng, W., Gaudiot, J.-L. (eds.) NPC 2019. LNCS, vol. 11783, pp. 197–208. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30709-7_16

    Chapter  Google Scholar 

  36. Yuan, N., Liu, J., Wang, Q., Shen, L.: Customizing super-resolution framework according to image features. In: ISPA/BDCloud/SocialCom/SustainCom, pp. 1189–1196. IEEE (2020)

    Google Scholar 

  37. Yuan, N., Zhang, D., Wang, Q., Shen, L.: A multi-model super-resolution training and reconstruction framework. In: He, X., Shao, E., Tan, G. (eds.) NPC 2020. LNCS, vol. 12639, pp. 105–116. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79478-1_9

    Chapter  Google Scholar 

  38. Imambi, S., Prakash, K.B., Kanagachidambaresan, G.R.: PyTorch. Programming with TensorFlow (2021)

    Google Scholar 

  39. Zhang, S., Qin, Z., Yang, Y., Shen, L., Wang, Z.: Transparent partial page migration between CPU and GPU. Front. Comput. Sci. 14(3), 1–13 (2019). https://doi.org/10.1007/s11704-018-7386-4

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by National Nature Science Foundation of China (Grant No. 62032001 and 61972407) and Key Laboratory Open Projects Grant No. SZU-GDPHPCL201903.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J., Zhang, D., Wang, Q., Shen, L. (2022). A Multi-precision Quantized Super-Resolution Model Framework. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2021. Lecture Notes in Computer Science(), vol 13155. Springer, Cham. https://doi.org/10.1007/978-3-030-95384-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95384-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95383-6

  • Online ISBN: 978-3-030-95384-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics